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COIL ENLARGEMENTS OF ALGEBRAS
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Abstract. Let $A$ be a finite dimensional, basic and connected alge-

bra over an algebraically closed field $k$ . We define a notion of
weakly separating family in the Auslander-Reiten quiver of $A$ which
generalises the notion of a separating tubular family introduced by

C. M. Ringel. Given an algebra $A$ having a weakly separating
family $\mathcal{F}$ of stable tubes, we say that an algebra $B$ is a coil enlarge-

ment of $A$ using modules from $\mathcal{F}$ if $B$ is obtained from $A$ by an
iteration of admissible operations performed either on a stable tube

of $\sigma r$ , or on a coil obtained from a stable tube of $\sigma r$ by means of
the operations done so far. The purpose of this paper is to describe
the module category of $B$ . We also give a criterion for the tame-

ness of $B$ if $A$ is a tame concealed algebra.

Introduction.

Let $k$ be an algebraically closed field, and $A$ be a basic and connected finite
dimensional k-algebra (associative, wilh an identity). We are interested in the
study of the category $mod$ $A$ of finitely generated right A-modules. Among

the nice features this category may possess is the existence of separating tubular
families, introduced by Ringel in [12]. A well-known example of a class of
algebras having a separating tubular family is the class of tame concealed
algebras: in this case, the family consists of stable tubes. Further, Ringel

introduced a notion of extension or coextension by branches using modules from
a separating tubular family, then he showed that this process does not affect
the existence of separating tubular families, so that the tilted algebras of eucli-
dean type and the tubular algebras also possess such families [12]. Separating

tubular families also occur in the module categories of wild algebras: this is
the case, for instance, for all wild canonical algebras.

In $[2, 3]$ , the first two authors introduced the notion of admissible opera-
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tions which generalised that of branch extensions or coextensions. These allowed
to define and describe components of the Auslander-Reiten quiver, called coils
and multicoils, then a class of algebras, called multicoil algebras. Multicoil
algebras are tame and actually of polynomial growth [2] (4.6), and this class
of algebras seems to be of fundamental interest in the study of simply con-
nected algebras of polynomial growth (see, for instance, [14, 16]). In particular,

it follows from [14], [2] and [12] that if $A$ is a strongly simply connected
algebra of polynomial growth, then the support algebra of any indecomposable

A-module is either a tilted algebra or a coil enlargement of a tame concealed
algebra.

Our approach in this paper is different. We generalise the notion of sep-
arating tubular family as follows: a family of standard, pairwise orthogonal
components $\pi=(\pi_{i})_{i\in I}$ of the Auslander-Reiten quiver of $A$ will be called a
weakly separating family if the indecomposable modules not in $9i$ split into two
classes $\mathcal{P}$ and $\mathcal{Q}$ such that there is no non-zero morphism from $\mathcal{Q}$ to $\mathcal{P}$ , from $\mathcal{Q}$

to $\xi\Gamma$ , or from $9i$ to $\mathcal{P}$ , while any non-zero morphism from $\mathcal{P}$ to $Q$ factors
through the additive subcategory generated by $\sigma r$ . A similar notion of weakly

separating subcategory has been introduced in [8]. Denoting by ind $A$ a full
subcategory of $mod$ $A$ consisting of a complete set of non-isomorphic indecom-
posable A-modules, we express the foregoing properties by writing ind $A=$

$\mathcal{P}fQ$ . Given an algebra $A$ having a weakly separating family $g$ of stable
tubes, we say that an algebra $B$ is a coil enlargement of $A$ using modules
from $\mathcal{F}$ if $B$ is obtained from $A$ by an iteration of admissible operations per-
formed either on a stable tube of $g;$ , or on a coil obtained from a stable tube
of $g$ by means of the operations done so far. We also introduce numerical
invariants $c_{\overline{B}}$ and $c_{B}^{+}$ which measure respectively the number of corays and rays
inserted in the tubes of 9 by this sequence of admissible operations, and gen-
eralise respectively the notions of coextension and extension types. The aim
of the present paper is to give a precise description of the module category of
a coil enlargement algebra. Our results are summarised in the theorem.

THEOREM. Let $A$ be an algebra with a weakly separating family $\mathcal{F}$ of stable
tubes and $B$ be a coil enlargement of A using modules from $\xi\Gamma$ . Then:

(a) $B$ has a weakly separating family $Z^{\prime}$ of coils obtained from the stable
tubes of $\mathcal{F}$ by the corresponding sequence of admissible operations;

(b) there is a unique maximal branch coextension $B^{-}$ of A which is a full
subcategory of $B$ , and $c_{\overline{B}}$ is the coextension type of $B^{-};$

(c) there is a unique maximal branch extension $B^{+}$ of A which is a full sub-
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category of $B$ , and $c_{B}^{+}$ is the extension type of $B^{+};$

(d) ind $B=\mathcal{P}^{\prime}ff^{\prime}\mathcal{Q}^{\prime}$ , where $\mathcal{P}^{\prime}$ consists of indecomposoble $B^{-}$ -modules, and
$\mathcal{Q}^{\prime}$ consists of indecomposable $B^{+}$ -modules.

If, in particular, $A$ is a tame concealed algebra and $\mathcal{F}$ is its separating
tubular family, we obtain handy criteria allowing to verify whether or not $B$

is tame. Namely, we show that $B$ is tame if and only if $B^{-}$ and $B^{+}$ are tame,

if and only if $B$ is a multicoil alegebra, or if and only if the Tits form of $B$

is weakly non-negative. This yields a class of tame algebras of finite global
dimension for which all indecomposable modules are known and which satisfies
the Tits form criterion (see [10]).

In [17], the third author shows how to iterate this process to obtain a
larger class of tame algebras of finite global dimension satisfying the Tits form
criterion.

Our paper is organised as follows. After a brief introductory section (1),

in which we fix the notation and recall the relevant definitions, section (2) is
devoted to the study of weakly separating families. We show in (2.7) part (a)

of the above theorem, that is, the existence of weakly separating families is
preserved by admissible operations. In section (3), we study the maximal branch
enlargements which are full convex subcategories of a coil enlargment, proving
in (3.5) parts (b) and (c) of the theorem. In section (4) we complete the descrip-
tion of the module category of a coil enlargement and prove the criteria for
tameness of a coil enlargement of a tame concealed algebra.

1. Notation and preliminary definitions.

1.1. Throughout this paper, $k$ will denote a fixed algebraically closed field.
An algebra $A$ will always mean a basic, connected, associative finite dimen-
sionnal k-algebra with an identity. Thus there exists a connected bound quiver
$(Q_{A}, I)$ and an isomorphism $A\cong kQ_{A}/I$ . Equivalently, $A=kQ_{A}/I$ may be con-
sidered as a k-linear category, of which the object class $A_{0}$ is the set of points
of $Q_{A}$ , and the morphism set $A(x, y)$ from $x$ to $y$ is the quotient of the k-
vector space $kQ_{A}(x, y)$ of all formal linear combmations of paths in QA from $x$

to $y$ by the subspace $I(x, y)=I\cap kQ_{A}(x, y)$ , see [6]. A full subcategory $C$ of
$A$ is called convex if any path in $A$ with source and target in $C$ lies entirely
in $C$ .

By an A-module is always meant a finitely generated right A-module. We
shall denote by $mod$ $A$ the category of A-modules and by ind $A$ a full subcate-
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gory consisting of a complete set of non-isomorphic indecomposable A-modules.

For a full subcategory $C$ of $mod A$ , we denote by add $C$ the additive full sub-

category of $mod$ $A$ consisting of the direct sums of indecomposable direct sum-
mands of the objects in $C$ . For two full subcategories $C$ and C’ of $mod A$ , the

notation $Hom_{A}(C, C^{\prime})=0$ will mean that $Hom_{A}(M, M^{\prime})=0$ for all $M$ in $C$ , and
$M^{\prime}$ in $C^{\prime}$ . For a point $i$ in $Q_{A}$ , we denote by $S(i)$ the corresponding simple

A-module, and by $P(i)$ (or $I(i)$) the projective cover (or injective envelope, re-
spectively) of $S(i)$ . The support of an A-module $M$ is the full subcategory

$SuppM$ of $A$ with object class $\{i\in A_{0}|Hom_{A}(P(i), M)\neq 0\}$ . If $C$ is a full con-
vex subcategory of $A$ such that $A$ is obtained from $C$ by a sequence of one-
point extensions (or coextensions), we denote by $M|_{C}$ the restriction of an A-

module $M$ to $C$ that is, the largest submodule (or quotient module, respec-
tively) of $M$ that is a C-module.

1.2. We shall use freely properties of the Auslander-Reiten translations
$\tau=DTr$ and $\tau^{-1}=TrD$ and the Auslander-Reiten quiver $\Gamma(mod A)$ of $A$ , for
whidh we refer to $[5, 12]$ . We shall agree to identify points in $\Gamma(mod A)$

with the corresponding indecomposable A-modules, and components with the
corresponding full subcategories of ind $A$ . A component $\Gamma$ of $\Gamma(mod A)$ is
called standard if $\Gamma$ is equivalent to its mesh category $k(\Gamma)$ , see [6].

A translation quiver $\Gamma$ is called a tube $[7, 12]$ if it contains a cyclical path

and its underlying topological space is homeomorphic to $S^{1}\times R^{+}$ (where $S^{1}$ is
the unit circle, and $R^{+}$ is the non-negative real line). A tube has only two
types of arrows: pointing to infinity or pointing to the mouth. This also
applies to sectional paths, that is, paths $x_{0}\rightarrow x_{1}\rightarrow\cdots\rightarrow x_{m}$ in $\Gamma$ such that $ x_{i-1}\neq$

$\tau x_{i+1}$ for all $0<i<m$ . A maximal sectional path consisting of arrows pointing
to infinity (or to the mouth) is called a ray (or a coray, respectively). Tubes
oontaining neither projectives nor injectives are called stable. It was shown in
[15] that every standard component of $\Gamma(mod A)$ with infinitely many $\tau$-orbits
is in fact a stable tube.

1.3. The one-point extension of the algebra $A$ by the module $M_{A}$ is the

algebra $A[M]=\left\{\begin{array}{ll}A & 0\\M & k\end{array}\right\}$ with the usual addition and multiplication of matrices.

The quiver of $A[M]$ contains $Q_{A}$ as a full subquiver and an additional (exten-

sion) point that is a source. The $A[M]$ -modules are usually identified with
triples (V, $X,$

$\varphi$), where $V$ is a k-vector space, $X$ an A-module and $\varphi:V\rightarrow$

$Hom_{A}(M, X)$ a k-linear map. An $A[M]$ -linear map (V, $X,$
$\varphi$ ) $\rightarrow(V^{\prime}, X^{\prime}, \varphi^{\prime})$ is

then identified with a pair $(f, g)$ , where $f:V\rightarrow V^{\prime}$ is k-linear, $g:X\rightarrow X^{\prime}$ is
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A-linear and such that $\varphi^{\prime}f=Hom_{\Lambda}(M, g)\varphi$ . One defines dually the one-point co-
extension $[M]A$ of $A$ by $M$.

2. Weakly separating families.

2.1. DEFINITION. Let $A$ be an algebra. A family $\xi\Gamma=(\xi\Gamma_{i})_{i\in I}$ of components

of $\Gamma(mod A)$ is called a weakly separating family in $mod$ $A$ if the indecom-
posable A-modules not in $\mathcal{F}$ split into two classes $\mathcal{P}$ and $\mathcal{Q}$ such that:

(WS1) the components $(g_{i})_{i\in I}$ are standard and pairwise orthogonal;
(WS2) $Hom_{A}(\mathcal{Q}, \mathcal{P})=Hom_{A}$($Q$, Er) $=Hom_{A}(\sigma\tau, \mathcal{P})=0$ ; and
(WS3) any morphism from $\mathcal{P}$ to $\mathcal{Q}$ factors through add $\xi\Gamma$ .

Clearly, this definition is a straightforward generalisation of the definition

of separating tubular families in [12] (3.1). Thus, every separating tubular
family is a weakly separating family, but the converse is not true as we shall

see in (2.8) below. We also note that, if $\mathcal{P}$ , $\xi T$ and $\mathcal{Q}$ are as in the defini-
tion, then $\mathcal{P}$ is closed under predecessors and $\mathcal{Q}$ is closed under successors. If
$9i$ is a weakly separating family in $mod A$ , and $\mathcal{P},$ $\mathcal{Q}$ are as in the definition,

we shall say that $q$ separates (weakly) $\mathcal{P}$ from $\mathcal{Q}$ and write ind $A=\mathcal{P}\Psi Q$ ;

this terminology is justified by the following lemma.

LEMMA. Let $A$ be an algebra, and $q$ be a weakly separating family in
$mod A$ , separating $\mathcal{P}$ from $\mathcal{Q}$ . Then $\mathcal{P}$ and $\mathcal{Q}$ are uniquely determined by Y.

PROOF. The proof of [12] (3.1) (4) p. 120 applies mutatis mutandis. We

shall however repeat it here for the convenience of the reader. We start by

defining a sequence of full subcategories of ind $A$ as follows:

$\mathcal{P}_{0}=\{M\in indA|Hom_{A}(M, f)\neq 0, M\not\in\sigma\}$

and, for $i\geqq 1$ ,

$\mathcal{P}_{2i-1}=\{M\in indA|Hom_{A}(\mathcal{P}_{2i-2}, M)\neq 0, Hom_{A}(f, M)=0\}$

$\mathcal{P}_{2i}=\{M\in indA|Hom_{A}(M, \mathcal{P}_{2i-1})\neq 0\}$ .

We shall prove by induction on $i$ that $\mathcal{P}_{0}\subseteqq \mathcal{P}_{1}\subseteqq\cdots\subseteqq \mathcal{P}_{i}\subseteqq \mathcal{P}_{i+1}\subseteqq\cdots\subseteqq \mathcal{P}$ .
Clearly, $Hom_{A}(\mathcal{Q}, \mathcal{F})=0$ implies $\mathcal{P}_{0}\subseteqq \mathcal{P}$ . Assume inductively that $\mathcal{P}_{2i-2}\subseteqq \mathcal{P}$ , we
shall show that $\mathcal{P}_{2i-2}\subseteqq \mathcal{P}_{2i-1}$ . Since $Hom_{A}(\xi\Gamma, \mathcal{P})=0$ , we have $Hom_{A}(\mathcal{F}, \mathcal{P}_{2i-2})$

$=0$ . On the other hand, $M\in \mathcal{P}_{2i-2}$ implies $Hom_{A}(\mathcal{P}_{2l-2}, M)\neq 0$ . Consequently,
$\mathcal{P}_{2i-2}\subseteqq \mathcal{P}_{2i-1}$ . We claim that $\mathcal{P}_{2i-1}\subseteqq \mathcal{P}$ . Indeed, if this is not the case, there

exists a module $M\in \mathcal{P}_{2i-1}$ which belongs to $\xi\Gamma\mathcal{Q}$ . Hence there exists $L\in \mathcal{P}_{2i-2}$

$\subseteqq \mathcal{P}$ and a non-zero morphism $L\rightarrow M$ which can be factored through add $\xi\Gamma$ , then



458 $lbrah\iota m$ ASSEM, Andrzej SKOWRONSKI and Bertha TOM\’E

$Hom_{A}(X, M)\neq 0$ , a contradiction since $M\in \mathcal{P}_{2i-1}$ . This shows our claim. Simi-
larly, one proves that $\mathcal{P}_{2i-1}\subseteqq \mathcal{P}_{2i}\subseteqq \mathcal{P}$ for every $i$ .

We shall now prove that $\mathcal{P}$ coincides with some $\mathcal{P}_{i}$ . Assume first that $P_{A}$

is an indecomposable projective module lying in $\mathcal{P}$ . Since $A$ is connected, there
exists a sequence of indecomposable projectives $P_{0},$ $P_{1},$

$\cdots,$
$P_{2i-1},$ $P_{2i}=P$ with

$Hom_{A}(P_{0}, \xi T)\neq 0,$ $Hom_{A}(P_{2\iota-2}, P_{2l-1})\neq 0$ and $Hom_{A}(P_{2l}, P_{2l-1})\neq 0$ for all $1\leqq l\leqq i$ .
We may clearly choose such a sequence with $i$ minimal. We claim that all $P_{l}$

in this sequence belong to $\mathcal{P}$ . Indeed, if this is not the case, let $t$ be maximal
with $P_{t}\not\in \mathcal{P}$ . Then $t$ is odd (for, otherwise, $Hom_{A}(P_{l}, P_{t+1})\neq 0$ gives $P_{t+1}\not\in \mathcal{P}$ , a
contradiction to the choice of $t$). Now $P_{t+1}\in \mathcal{P}$ and $Hom_{A}(P_{t+1}, P_{l})\neq 0$ imply

that any non-zero morphism from $P_{t+1}$ to $P_{t}$ factors through add $q$ . Hence
$Hom_{A}(P_{t+1}, \xi\Gamma)\neq 0$ and we obtain a (strictly) shorter sequence by deleting
$P_{0},$

$\cdots,$
$P_{t}$ : a contradiction to the minimality of $i$ . This shows our claim that

$P_{l}\in \mathcal{P}$ for all $l$ . Now, let $M\in \mathcal{P}$ . There exists an indecomposable projective
module $P_{A}$ with $Hom_{A}(P, M)\neq 0$ . Then $P\in \mathcal{P}$ , and the previous argument implies

that there exists $l$ such that $P\in \mathcal{P}_{l}$ . Consequently, $M\in \mathcal{P}_{l+1}$ . This shows that
$\mathcal{P}$ coincides with some $\mathcal{P}_{i}$ and hence is uniquely determined by S. Consequently,
$q$ also determines uniquely Q. $\square $

2.2. We recall the notion of admissible operations $[2, 3]$ . Let $A$ be an
algebra and $\Gamma$ be a standard component of $\Gamma(mod A)$ . For an indecomposable

module $X$ in $\Gamma$, called the pivot, three admissible operations are defined, de-
pending on the shape of the support of $Hom_{A}(X, -)|_{\Gamma}$ (this is by definition the
subcategory of $\Gamma$ consisting of the indecomposable modules $M$ such that
$Hom_{A}(X, M)\neq 0$ and the morphisms $f:M\rightarrow N$ such that $Hom_{A}(X, f)\neq 0)$ . These
admissible operations yield in each case a modified algebra $A^{\prime}$ of $A$ , and a
modified component $\Gamma^{\prime}$ of $\Gamma$ :

adl) If the support of $Hom_{A}(X, -)|_{\Gamma}$ is of the form:

$ X=X_{0}\rightarrow X_{1}-X_{2^{-}}\cdots$

$X$ is called an $adl$ )$-pivot$ , we set $A^{\prime}=(A\times D)[X\oplus Y_{1}]$ , where $D$ is the full $t\times t$

lower triangular matrix algebra, and $Y_{1}$ is the unique indecomposable projective-
injective D-module. In this case, $\Gamma^{\prime}$ is obtained from $\Gamma$ and $\Gamma(mod D)$ by

insertlng a rectangle consisting of the modules $Z_{ij}=(k,$ $X_{i}\oplus Y_{j},$ $\left(\begin{array}{l}1\\1\end{array}\right))$ for $i\geqq 0$ ,

$1\leqq j\leqq t$ , and $X_{i}^{\prime}=(k, X_{i}, 1)$ for $i\geqq 0$ , where $Y_{j},$ $1\leqq j\leqq t$ , denote the indecom-
posable injective D-modules. If $t=0$ , we set $A^{\prime}=A[X]$ , and the rectangle
reduces to the ray formed by the modules of the form $X_{i}^{\prime}$ .

ad2) If the support of $Hom_{A}(X, -)|_{\Gamma}$ is of the form:
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$\}_{t}^{\prime}\rightarrow\cdots-Y_{1}-X=X_{0^{-}}X_{1}-X_{2}\rightarrow\cdots$

with $t\geqq 1$ (so that $X$ is injective), $X$ is called an $ad2$)$- pivot$ , we set $A^{\prime}=A[X]$ .
In this case, $\Gamma^{\prime}$ is obtained by inserting in $\Gamma$ a rectangle consisting of the

modules $Z_{ij}=(k,$ $X_{i}\oplus Y_{j},$ $\left(\begin{array}{l}1\\1\end{array}\right))$ for $i\geqq 1,1\leqq j\leqq t$ and $X_{i}^{\prime}=(k, X_{t}, 1)$ for $i\geqq 0$ .

ad3) If the support of $Hom_{A}(X$, - $)$ $|_{\Gamma}$ is of the form:

$X=XY_{1}|_{0}\rightarrow X\rightarrow Y|_{1}^{1}\rightarrow-.-\rightarrow-\rightarrow\rightarrow X^{Y_{\iota}}\uparrow_{-1}^{l}\rightarrow X_{\iota}\rightarrow-----$

with $t\geqq 2$ (so that $X_{l-1}$ is injective), $X$ is called an $ad3$ )$- pivot$ , we set $A^{\prime}=A[X]$ .
In this case, $\Gamma^{\prime}$ is obtained by inserting in $\Gamma$ a rectangle consisting of the

modules $Z_{ij}=(k,$ $X_{i}\oplus Y_{j},$ $\left(\begin{array}{l}1\\1\end{array}\right))$ for $i\geqq 1$ , $1\leqq j\leqq i$ and $i>t,$ $1\leqq j\leqq t$ , and $X_{i}^{\prime}=$

$(k, X_{i}, 1)$ for $i\geqq 0$ .
It is shown in [3] that the component of $\Gamma(mod A^{\prime})$ containing $X$ is $\Gamma^{\prime}$

and that, under suitable assumptions (which will always be satisfied in the pre-
sent paper), $\Gamma^{\prime}$ is standard. The parameter $t$ (which, in the notation above, is
the number of modules of the form $Y_{j}$ ) is called the parameter of the operation:

it is such that the number of rays in the rectangle of $\Gamma^{\prime}$ inserted by the admis-

sible operation equals $t+1$ . The dual operations $ad1^{*}$ ) $ad2^{*}$ ) $ad3^{*}$) are also
called admissible, and the parameter $t$ then measures the number of corays

inserted. We recall the following definition from $[2, 3]$ .

DEFINITION. A translation qniver $\Gamma$ is called a coil if there exists a sequ-

ence of translation quivers $\Gamma_{0},$ $\Gamma_{1},$ $\cdots$ , $\Gamma_{m}=\Gamma$ such that $\Gamma_{0}$ is a stable tube and,

for each $0\leqq i<m,$ $\Gamma_{i+1}$ is obtained from $\Gamma_{i}$ by an admissible operation.

We are now able to define the class of algebras we shall study in this
work.

Definition. Let $A$ be an algebra, and $g$ be a weakly separating family of
stable tubes of $\Gamma(mod A)$ . An algebra $B$ is called a coil enlargement of $A$

using modules from $\sigma r$ if there is a finite sequence of algebras $A=A_{0},$ $A_{I},$ $\cdots$ ,

$A_{m}=B$ such that, for each $0\leqq j<m,$ $A_{j+1}$ is obtained from $A_{j}$ by an admissible
operation with pivot either on a stable tube of $q$ or on a coil of $\Gamma(mod A_{j})$ ,

obtained from a stable tube of $\xi\Gamma$ by means of the sequence of admissible opera-
tions done so far. The sequence $A=A_{0},$ $A_{1},$ $\cdots$ , $A_{m}=B$ is then called an admis-
sible sequence.
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For instance, the representation-infinite tilted algebras of euclidean type,
and the tubular algebras are, by [12] (4.9) (5.2), coil enlargements of a tame
concealed algebra using only operations adl) and $ad1^{*}$ ). In this example, the
size of the coils is measured by a numerical invariant, called the extension or
coextension type (see [12] (4.7)), whose definition can be generalised as follows.

2.3 DEFINITION. Let $B$ be a coil enlargement of $A$ using modules from the
weakly separating family $\mathcal{F}=(\xi\Gamma_{i})_{i\in I}$ of stable tubes. The coil type $c_{B}=(c_{B}^{-}, c_{B}^{+})$

of $B$ is a pair of functions $c_{B},$ $c_{B}^{+}:$ $I\rightarrow N$ defined by induction on $0\leqq j<m$ , where
$A=A_{0},$ $A_{1},$ $\cdots$ , $A_{m}=B$ is an admissible sequence.

(i) $c_{A}=c_{0}=(c_{0}^{-}, c_{0}^{+})$ is the pair of functions $c_{0}^{-}=c_{0}^{+}$ such that, for each $i\in I$ ,
the common value of $c_{0}^{-}(i)$ and $c_{0}^{+}(i)$ is the rank of the stable tube $q_{i}$ .

(ii) Assume $c_{A_{j-1}}=c_{j-1}=(c_{\overline{j}-1}, c_{j-1}^{+})$ is known, and let $t_{j}$ be the parameter
of the admissible operation from $A_{j-1}$ to $A_{j}$ , then $c_{A_{j}}=c_{j}=(c_{\overline{j}}, c_{j}^{+})$ is the pair
of functions defined by:

$c_{j}^{-}(i)=\left\{\begin{array}{l}c_{\overline{j}-1}(i)+t_{j}+1 iftheoperationisad1^{*})ad2^{*})orad3^{*})with\\pivotinthecoilof\Gamma(modA_{j- 1})arisingfrom\sigma r_{i},\\c_{\overline{J}-1}(i) otherwise\end{array}\right.$

qnd

$c_{J-1}^{+}(i)=\left\{\begin{array}{l}c_{J-1}^{+}(i)+t_{j}+1 iftheoperationisad1)ad2)orad3)with\\pivotinthecoilof\Gamma(modA_{j-1})arisingfrom\xi\Gamma_{i},\\c_{J-1}^{+}(i) otherwise\end{array}\right.$

It follows from the definition that the coil type does not depend on the
admissible sequence leading from $A$ to $B$ since, for each $i\in I$ , $c_{B}^{+}(i)$ and $c_{B}^{-}(i)$

measure respectively the total number or rays and corays inserted in the tube
$\xi\Gamma_{i}$ by the sequence of admissible operations.

If all but at most finitely many values of each of the functions $c_{\overline{B}}$ and $c_{B}^{+}$

equal l, we shall replace each by a (finite) sequence, containing at least two
terms and including all those which are larger than 1. To enable us to com-
pare the number of rays and corays inserted in any individual tube, we shall
use the following additional conventions:

(1) The finite sequences for $c_{\overline{B}}$ and $c_{B}^{+}$ contain exactly the same number of
terms, where we agree to add to either sequence as many l’s as neces-
sary.

(2) $c_{\overline{B}}$ is a non-decreasing sequence, that is, if $c_{\overline{B}}=(c_{B}^{-}(i_{1}), \cdots c_{\overline{B}}(i_{\epsilon}))$ then
$c_{B}^{-}(i_{1})\leqq c_{B}^{-}(j_{2})\leqq\cdots\leqq c_{B}^{-}(i_{s})$ .

(3) $c_{B}^{+}$ is the sequence consisting of the values of $c_{B}^{+}$ corresponding to the
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values of $c_{\overline{B}}$ , that is, if $c_{\overline{B}}$ is as in (2), then $c_{B}^{+}=(c_{B}^{+}(\iota_{1}^{\prime}), \cdots , c_{B}^{+}(i_{S}))$ .

2.4. The main theorem of this section asserts that, if $A$ is an algebra

with a weakly separating family $X$ of stable tubes, and $B$ is a coil enlargement

of $A$ using modules from $\xi\Gamma$ , then the family $q^{\prime}$ of coils of $\Gamma(mod B)$ obtained
from the stable tubes of $\xi\Gamma$ is weakly separating in $mod B$ . In order to show

this result, we shall need three lemmata. We shall always use the notation
of (2.2).

LEMMA. Let $A$ be an algebra, $\Gamma$ be a standard component of $\Gamma(mod A)$ and
$ X\in\Gamma$ be the pivot of an admissible operation. Let $A^{\prime}$ be the modified algebra

and $\Gamma^{\prime}$ be the modified component. Any indecomposable $A^{\prime}$ -module whose restric-

tion to $A$ has an indecomposable direct summand of the form $X_{i}$ , for some $i\geqq 0$ ,

belongs to $\Gamma^{\prime}$ .

PROOF. We may assume, by duality, that the admissible operation is one
of adl), ad2), ad3). For an $A^{\prime}$-module $M$, we let $M_{0}$ denote its restriction to
$A\times D$ , if the operation is adl), or to $A$ if it is ad2) or ad3). Denoting by $e$

the extension point of $A^{\prime}$ , we represent A’-modules by triples $(M_{e}, M_{0}, \varphi_{M})$ ,

where $M_{e}$ is a finite dimensional k-vector space and $\varphi_{M}$ is a k-linear map from
$M_{e}$ to $Hom_{A\times D}(X\oplus Y_{1}, M_{0})$ or to $Hom_{A}(X, M_{0})$ , respectively.

Let $M=(M_{e}, M_{0}, \varphi_{M})$ be an indecomposable A’-module such that $M_{0}$ has an
indecomposable direct summand of the form $X_{i}$ for some $i\geqq 0$ . We can assume
$M_{e}\neq 0$ (otherwise the indecomposability of $M$ implies that $M\cong X_{i}$ , and there is
nothing to show). Let $p:M_{0}\rightarrow X_{i}$ be a projection morphism with section $q:X_{i}$

$\rightarrow M_{0}$ . There exists a morphism $f=(f_{e}, f_{0}):M\rightarrow X_{i}^{\prime}$ with $f_{e}\neq 0$ and $f_{0}=p$ (for,

if this is not the case, $f=(O, p):M\rightarrow X_{i}$ is a retraction with section $(0, q))$ . We
may choose $i$ to be minimal with this property. If $f$ is an isomorphism there

is nothing to show. Assume thus that this is not the case.
In the case adl), $f$ factors through the right minimal almost split morphism

ending in $X_{i}^{\prime}$ . Using the minimality of $i\geqq 1$ , we obtain a morphism $g=(g_{e}, g_{0})$ :
$M\rightarrow Z_{il}$ with $g_{e}\neq 0$ . In the cases ad2), ad3), if $i=0$ , then ${\rm Im} f\not\leqq X_{0}=radP(e)$ .
Hence $f$ is a retraction and $M\cong X_{0}^{\prime}=P(e)$ , a contradiction to the assumption

that $f$ is not an isomorphism. If $i>0,$ $f$ factors through the right minimal

almost split morphism ending in $X_{i}^{\prime}$ . In ad2), using the minimality of $i\geqq 1$ , we
obtain a morphism $g=(g_{e}, g_{0}):M\rightarrow Z_{il}$ with $g_{e}\neq 0$ . In ad3), we obtain similarly,

for $1\leqq i\leqq t$ , a morphism $g=(g_{e}, g_{0}):M\rightarrow Z_{ii}$ with $g_{e}\neq 0$ and, for $i>t$ , a morphism
$g=(g_{e}, g_{0}):M\rightarrow Z_{il}$ with $g_{e}\neq 0$ . Using an obvious descending induction on $i+j$ ,

we thus show that there exists an isomorphism $M\rightarrow Z_{ij}$ for some $j$ . $\square $
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2.5. Before the next lemma, we observe that, if $\Gamma$ is a coil in $\Gamma(mod A)$ ,

and $X$ is an $ad2$)-pivot in $\Gamma$ such that the support of $Hom_{A}(X, -)|r$ is of the
form

$ Y_{t}\leftarrow\cdots\leftarrow Y_{1}-X=X_{0}-X_{1}\rightarrow X_{f}-\cdots$

then it follows from [3], Theorem (A), that each of the modules $Y_{i}$ is injective
(thus, in the notation of [3] (2.3), $\Gamma=\Gamma^{*}$).

LEMMA. Let $A$ be an algebra with a family $q$ of coils weakly separating $\mathcal{P}$

from $Q,$ $\Gamma$ be a coil in Er and $X$ be an $ad2$)-pivot in $\Gamma$ . Let $A^{\prime}=A[X]$ , where
$e$ denotes the extension point. Let $\mathcal{P}^{\prime},$ $\mathcal{F}^{\prime},$ $Q^{\prime}$ be the classes in ind $A^{\prime}$ defined as
follows:

(i) $\mathcal{P}^{\prime}=\mathcal{P}$ ;
(ii) $\mathcal{F}^{\prime}$ consists of all indecomposables $M_{A^{\prime}}$ such that $M_{e}=0$ and $M=M|_{4}$ is

in $g$ , or $M_{e}\neq 0$ and $M|_{A}$ has an indecomposable direct summand of the form $X_{i}$ ,

for some $i\geqq 0$ ; and
(iii) $Q^{\prime}$ consists of all indecomposables $M_{A^{\prime}}$ such that $M_{e}=0$ and $M=M|_{A}$ is

in $\mathcal{Q}$ , or $M=(k, 0,0)$ , or $M_{e}\neq 0$ and the indecomposable direct summands of $M|_{A}$

belong either to the set $\{Y_{1}, \cdots, Y_{t}\}$ or to the support of $Hom_{A}(X, -)|_{Q}$ .
Then ind $A^{\prime}=\mathcal{P}^{\prime}\mathcal{F}^{\prime}Q^{\prime}$ , and $\sigma\tau^{J}$ separates weakly $\mathcal{P}^{\prime}$ from $Q^{\prime}$ .

PROOF. Let $M$ be an indecomposable $A^{\prime}$ -module. If $M_{e}=0$ , then $M=M|_{A}$

and $M\in \mathcal{P}\vee\sigma\tau\vee Q$ . Hence $M\in \mathcal{P}^{\prime}\xi\Gamma^{\prime}Q^{\prime}$ . If $M_{\epsilon}\neq 0$ , and $M|_{A}=0$ then $M=$

$(k, 0,0)$ and $M\in Q^{\prime}$ . If $M_{e}\neq 0$ and $M|_{A}\neq 0$ , the indecomposable direct summands
of $M|_{A}$ belong to $\{X_{i}|i\geqq 0\}\cup\{Y_{1}, \cdots, Y_{l}\}\cup Q$ , since each of these summands
receives a non-zero morphism from $X$ . Hence $M\in\pi^{J}Q^{\prime}$ .

By (2.4), $\sigma r^{\prime}=\Gamma^{\prime}\vee\sigma\tau_{0}$ , where $\mathcal{F}_{0}$ consists of all the components of $\mathcal{F}$ distinct
from $\Gamma$ . Hence, by [3] (2.3), all the components of $\mathcal{F}^{\prime}$ are standard and pair-
wise orthogonal. Clearly, $Hom_{A^{\prime}}(\xi\Gamma^{\prime}Q^{\prime}, \mathcal{P}^{\prime})=0$ . Also, $Hom_{A^{\prime}}(Q^{\prime}, \xi\Gamma_{0})=0$ . Let
now $M\in Q^{\prime}$ and $N\in\Gamma^{\prime}$ . It is easily seen that $Hom_{A^{\prime}}(M, N)=0$ in each of the
following four cases:

1) $M_{e}=0$ ;
2) $M=(k, 0,0)$ ;
3) $M_{e}\neq 0,$ $N_{e}=0$ and $N\not\in\{Y_{1}, \cdots, Y_{l}\}$ ; and
4) $M_{e}\neq 0,$ $N_{c}\neq 0$ and $N=X_{i}^{\prime}=(k, X_{i}, 1)$ for some $i\geqq 0$ .
Let $M_{e}\neq 0$ and $N=Y_{j}$ for some $1\leqq j\leqq t$ , or $N=Z_{ij}$ for some $i\geqq 0,1\leqq j\leqq t$ .

Then any non-zero morphism $f\in Hom_{A^{\prime}}(M, N)$ factors through the right minimal
almost split morphism ending in $N$, and an obvious induction on $j$ , or $i+$ ],

respectively, yields $f=0$ because $Hom_{A}(M_{0}, X_{0})=0$ . This completes the proof
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that $Hom_{A^{\prime}}(Q^{\prime}, \Gamma^{\prime})=0$ .
Consider now a morphism $f:M\rightarrow N$ with $M\in \mathcal{P}^{\prime},$ $N\in Q^{\prime}$ . Since $\mathcal{P}^{\prime}=\mathcal{P}\subseteqq$

ind $A$ , we have ${\rm Im} f\subseteqq N|_{A}$ . If $N|_{A}$ is indecomposable, it lies in $\mathcal{Q}$ . If not, its
indecomposable direct summands belong to $Q\cup\{Y_{1}, \cdots, Y_{l}\}$ by (2.4). Since
$\{Y_{1}, --, Y_{t}\}\subseteqq \mathcal{F}\subseteqq \mathcal{F}^{\prime}$ , and $\mathcal{F}$ is weakly separating, it follows that $f$ factors
through a module in add $\mathcal{F}^{\prime}$ . $\square $

2.6. Let $\Gamma$ be a coil in $\Gamma(mod A)$ and $X$ be an $ad3$)-pivot in $\Gamma$ such that
the support of $Hom_{A}(X, -)|_{\Gamma}$ is of the form

$Y_{1}\rightarrow Y,$ $\rightarrow--\rightarrow Y_{t}$

$\{$

$X=X_{0}\rightarrow X_{1}\uparrow\rightarrow-----\rightarrow x|_{-1^{-X_{t}}}\rightarrow--$

with $t\geqq 2$ and $X_{t-1}$ injective. Consider the subquiver $\Gamma^{\prime}$ of $\Gamma$ obtained by deleting
the arrows $Y_{i}\rightarrow\tau_{A}^{-1}Y_{i-1}(1<i\leqq t)$ if they exist, and denote by $\Gamma*$ the connected
component of $\Gamma^{\prime}$ contalning $X$ (see [3] (2.4)). By [3], Theorem (A), if an inde-
composable module $M$ belongs to $\Gamma$ but not to $\Gamma^{*}$ , then $M\cong\tau_{A}^{-s}Y_{j}$ for some
$1\leqq s\leqq t-j$ , so that it belongs to the coray of $\Gamma$ passing through $Y_{j+s}$ .

LEMMA. Let $A$ be an algebra with a family $\xi\Gamma$ of coils weakly separating
$\mathcal{P}$ from $Q,$ $\Gamma$ be a coil in $\mathcal{F}$ and $X$ be an $ad3$)-pivot in $\Gamma$. Let $A^{\prime}=A[X]$ , where
$e$ denotes the extension point. Let $\mathcal{P}^{\prime},$ $\mathcal{F}^{\prime},$ $\mathcal{Q}^{\prime}$ be the classes in ind $A^{\prime}$ defined as
follows:

(i) $\mathcal{P}^{\prime}=\mathcal{P}$ ;
(ii) $\mathcal{F}^{\prime}$ consists of all indecomposables $M_{A^{\prime}}$ such that $M_{e}=0$ and $M=M|_{A}$ is

in $(\xi\Gamma\backslash \Gamma)\cup\Gamma^{*}$ , or $M_{e}\neq 0$ and $M|_{A}$ has an indecomposable direct summand of the

form $X_{i}$ , for some $i\geqq 0$ ; and
(iii) $Q^{\prime}$ consists of all indecomposables $M_{A^{\prime}}$ such that $M_{e}=0$ and $M=M|_{A}$ is

in $\mathcal{Q}\cup(\Gamma\backslash \Gamma^{*})$ , or $M=(k, 0,0)$ , or $M_{e}\neq 0$ and the indecomposable direct summands

of $M|_{A}$ belong either to the set $\{Y_{I}$ , $\cdot$ .. , $Y_{t}\}$ or to the support of $Hom_{A}(X$ , - $)$ $|_{Q}$ .
Then ind $A^{\prime}=\mathcal{P}^{\prime}\mathcal{F}^{\prime}\mathcal{Q}^{\prime}$ , and $\sigma r^{\prime}$ separates weakly $\mathcal{P}^{\prime}$ from $Q^{\prime}$ .

PROOF. Similar to the proof of (2.5), except for the modules in $\Gamma\backslash \Gamma^{*}$

which in ind $A$ lie in $\mathcal{F}$ and in ind $A^{\prime}$ lie in $\mathcal{Q}^{\prime}$ . For these modules, we observe
that:

1) $Hom_{A}(M, N)=0$ whenever $M$ belongs to $\Gamma\backslash \Gamma^{*}$ and $N$ belongs to $\Gamma^{*};$

and
2) any morphism from $M$ to $N$, where $M$ belongs to $\mathcal{P}^{\prime}=\mathcal{P}$ and $N$ belongs
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to $\Gamma\backslash \Gamma^{*}$ , factors through a module in $\Gamma^{\prime}$ (namely, one of the modules $Y_{j}$ , with
$1\leqq j\leqq t)$ . $\square $

2.7. THEOREM. Let $A$ be an algebra with a family ET of stable tubes weakly

separating $\mathcal{P}$ from $\mathcal{Q}$ , and let $B$ be a coil enlargement of A using modules from
$\mathcal{F}$ . Then $mod B$ has a family $\xi\Gamma^{\prime}$ of coils, weakly separating $\mathcal{P}^{\prime}$ from $\mathcal{Q}^{\prime}$ .

PROOF. Let $A=A_{0},$ $A_{1},$
$\cdots,$

$A_{m-1},$ $A_{m}=B$ be an admissible sequence. We
prove the statement by induction on $0\leqq i\leqq m$ . It holds for $i=0$ by the hypo-

thesis on $A$ . Assume that it holds for some $0\leqq i<m$ . That it also holds for
$i+1$ follows from [12] (4.7) (1) p. 230, it the admissible operation used in pas-

sing from $A_{i}$ to $A_{i+1}$ is adl) or $ad1^{*}$ ), and from (2.5) (2.6) and their duals in

the remaining cases. $\square $

2.8. EXAMPLE. Let $A=A_{0}$ be the tame hereditary algebra given by the
quiver

Its type is $c_{A}=((2,2,2), (2,2,2))$ . The algebra $A_{1}$ given by the quiver

bound by $\delta\beta\epsilon=0$ , is obtained from $A$ by an admissible operation of type $ad1^{*}$ )

with pivot the simple regular A-module of dimension-vector $0_{1}011$ Its type is

$c_{A_{1}}=((2,2,4), (2,2,2))$ . Then $A_{1}$ is a tilted algebra of euclidean type $\tilde{D}_{\epsilon}$ hav-
ing a complete slice in its postprojective component and a (unique) coinserted
tube. The algebra $A_{2}$ given by the quiver
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bound by $\delta\beta\epsilon=0,$ $\delta\gamma\rho=0$ , is obtained from $A_{1}$ by an admissible operation of
type $ad1^{*}$ ) with pivot in a stable tube of $\Gamma(mod A_{1})$ , having dimension-vector

$1_{1}0$

$0_{0}^{0}1$
. Its type is $c_{A_{2}}=((2,4,4), (2,2,2))$ , and it is a tubular algebra. By [12],

both $mod A_{1}$ and $mod A_{2}$ have separating tubular families. The algebra $A_{s}$

given by the quiver

bound by $\delta\beta\epsilon=0,$ $\nu\alpha\gamma=0,$ $\mu\lambda=\nu\alpha\beta\epsilon,$ $\delta\gamma\rho=0$ , is obtained from $A_{2}$ by an admis-
sible operation of type ad2), with pivot the indecomposable $A_{2}$-module having
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$0_{0_{1}0}^{0}$

dimension-vector 11 Its type is $c_{A_{3}}=((2,4,4), (2,4,2))$ . The separating
$1_{1}$

tubular family of $mod A_{2}$ arising from the family of stable tubes of $mod$ $A$ be-
comes, by (2.7), a weakly separating family in $mod A_{3}$ , containing a non-trivial

coil (actually, a quasi-tube, in the sense of [13]). Finally, the algebra $A_{4}$ given

by the quiver

9

bound by $\delta\beta\epsilon=0$ , $\nu\alpha\gamma=0$ , $\mu\lambda=\nu\alpha\beta\epsilon$ , $\delta\gamma\rho=0,$ $\omega\alpha\beta=0,$ $\eta\sigma=\omega\alpha\gamma\rho$ , is obtained
from $A_{3}$ by an admissible operation of type ad2). Its type is $c_{A_{4}}=((2,4,4)$ ,

(2, 4, 4)). The weakly separating family of coils in $mod A_{3}$ becomes in $mod A_{4}$

a weakly separating family $\mathcal{F}_{4}$ of coils. However, $\sigma\tau_{4}$ is not a separating family

in the sense of [12] (3.1). Indeed, let $M$ and $N$ be the indecomposable $A_{4^{-}}$

modules given by

$M(a)=\left\{\begin{array}{l}k ifa=3,4,5,6,7,8,9.\cdot\\ 0 ifa=1,2,10,11.\cdot\end{array}\right.$

and

$N(a)=\left\{\begin{array}{l}k ifa=2,3,7,9_{\prime}10,11.\cdot\\ 0 ifa=1,4,5,6,8\cdot.\end{array}\right.$

with the obvious morphisms. By (2.5), $M\in \mathcal{P}_{4}$ and $N\in Q_{4}$ , where $\mathcal{F}_{4}$ weakly

separates $\mathcal{P}_{4}$ from $Q_{4}$ . On the other hand, the morphism $f:M\rightarrow N$ defined by
$f_{a}=1_{k}$ if $M(a)=N(a)=k$ , and $f_{a}=0$ otherwise has for image the semisimple

module $S=S(3)\oplus S(7)\oplus S(9)$ . Each of the simple summands of $S$ lies in a dif-
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ferent coil in $g_{4}$ , so that, while $f$ factors through add $\mathcal{F}_{4}$ , it does not factor
through each $coil\ln \mathcal{F}_{4}$ .

3. Maximal branch enlargements inside a coil enlargement.

3.1. Let $A$ be an algebra with a weakly separating family $\sigma r$ of stable
tubes, and $B$ be a coil enlargement of $A$ using modules from S. By (2.7), ind $B$

$=\mathcal{P}^{\prime}\xi T^{\prime}\mathcal{Q}^{\prime}$ , where $\mathcal{F}^{\prime}$ is a family of coils weakly separating $\mathcal{P}^{\prime}$ from $\mathcal{Q}^{\prime}$ .
We want to give a finer description of the full subcategories $\mathcal{P}^{\prime}$ and $Q^{\prime}$ of ind $B$ .
For this purpose, we shall show that the admissible sequence leading from $A$

to $B$ can be replaced by another, which consists of a block of operations of
type $ad1^{*}$), followed by a block of operations of types adl), ad2), ad3), and,

dually, that it can be replaced by another admissible sequence, which consists
of a block of operations of type adl), followed by a block of operations of types
$ad1^{*}),$ $ad2^{*}$ )

$,$

$ad3^{*}$ ). This is the aim of the following technical lemmata, the
first of which gives a sufficient condition for two admissible operations to

commute.

LEMMA. Let $A$ be an algebra with a weakly separating family $\xi T$ of coils,

and $A^{\prime}$ be obtained from $A$ by applying two admissible operations using modules

from $\mathcal{F}$ . If:
(i) the pivot of the second operation belongs to no ray, or coray, inserted

by the first; and
(ii) in case the second operation is of type $ad3$) or $ad3^{*}$) and is applied first

to $A$ , the pivot of the first still belongs to the family of coils obtained from $\pi$ ;

then, denoting by $A^{\prime\prime}$ the algebra obtained from $A$ by applying the two operations

in the reverse order, $A^{\prime}\cong A^{\prime\prime}$ .

PROOF. Since the admissible operations consist of one-point extensions or
coextensions, it is easily seen that both algebras have the same bound quiver. $\square $

In particular, this lemma covers the case of two consecutive operations ad2)

and $ad1^{*}$ ) (or ad3) and $ad1^{*}$)), since the pivot of $ad1^{*}$ ) must be a coray module,

and therefore it cannot belong to the rectangle inserted by ad2) (or ad3), respec-
tively).

3.2. Lemma (3.1) also covers the case of two consecutive operations of
types adl) with pivot $X=X_{0}$ and $ad1^{*}$ ) with pivot $Y\neq X_{0}^{\prime}=(k, X, 1)$ (in the nota-
tion of (2.2)). Indeed, assume that $SuppHom_{A}(X, -)|r$ consists of an infinite
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sectional path starting with $X$ (so that $X$ can be chosen as $adl$ )$- pivot$ ) and
$SuppHom_{A}(-, X)|_{\Gamma}$ consists of an infinite sectional path ending with $X$ (so that
$X$ can also be chosen as $ad1^{*}$)-pivot). Apply the operation adl) with pivot
$X=X_{0}$ , then $X_{0}^{\prime}$ is the only module in the rectangle inserted by adl) that can
be an $ad1^{*}$)-pivot. If however $Y\cong X_{0}^{\prime}$ , we can apply the following lemma to

replace the given sequence by a sequence consisting of $ad1^{*}$ ) with pivot $X$

followed by adl) with pivot $X_{0}^{\prime\prime}=(X, k, 1)$ .

LEMMA. Let $A$ be an algebra with a weakly separating family Er of coils,

and $X$ be an indecomposable in a coil of $g$ which is an $ad1$ ) and $ad1^{*}$ ) pivot. Let
$A^{\prime}$ be the algebra obtained by first applying $ad1$ ) with pivot $X$ , then $ad1^{*}$ ) with

pivot $X^{\prime}=(k, X, 1)$ , and $A^{\prime\prime}$ be the algebra obtained by first applying $ad1^{*}$ ) with

pivot $X$ , followed by $ad1$ ) with pivot $X^{\prime\prime}=(X, k, 1)$ . Then $A^{\prime}\cong A^{\prime\prime}$ .

PROOF. Clearly, both algebras have the same bound quiver. $\square $

3.3. Let $\angle 4$ be an algebra with a weakly separating family ff of coils, and
$Y$ be an indecomposable in a coil of $q$ which is an adl) and $ad1^{*}$ ) pivot. Let
$A_{1}$ be obtained from $A$ by applying adl) with pivot $Y$ , and $A_{2}$ be obtained from
$A_{1}$ by applying $ad2^{*}$ ) with pivot $X=P(a)$ , where $a$ is the extension point of
$A_{1}$ . Let $\Gamma$ be the standard coil of $\Gamma(mod A_{1})$ containing $X$ . Then the support

of $Hom_{A}(-, X)|_{\Gamma}$ is of the form

... $-X_{2}-X_{1}-X_{0}=X-Y_{1}-\cdots\leftarrow Y_{t}$

with $t\geqq 1$ and $X_{1}=Y$ . Then $Y_{1},$
$\cdots,$

$Y_{l}$ are indecomposable projective $A_{1}$ -modules
corresponding respectively to points $a_{1},$ $\cdots,$ $a_{l}$ in the quiver $Q_{A_{1}}$ of $A_{1}$ . Let $b$

be the coextension point of $A_{2}=[X]A_{1}$ . The bound quiver of $A_{2}$ is of the form

$a_{1}$ $a_{\iota}$

with $A_{2}(a, b)$ one-dimensional. Let $A^{\prime}$ be the full convex subcategory of $A_{2}$

consisting of all po’lnts except $a$ . Then $A^{\prime}$ is the coextension of $A$ at $X_{1}$ by

the coextension branch $K$ consisting of the points $b,$ $a_{l},$ $\cdots$ , $a,1$ that is, in the
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notation of [12] (4.7), we have $A^{\prime}\cong[K, X_{1}]A$ and $A_{2}\cong A^{\prime}[I(b)]$ , where $I(b)$

denotes the indecomposable injective A’-module corresponding to $b$ . That adl)
followed by $ad2^{*}$ ) can be replaced by $ad1^{*}$) followed by ad2) is the content of
the next lemma whose proof follows from the discussion above. For the notion
(and notation) of branch extension, we again refer the reader to [12] (4.7).

LEMMA. Let $A$ be an algebra with a weakly separating family $\mathcal{F}$ of coils,
and $Y$ be an indecomposable in a coil of $\mathcal{F}$ which is an $ad1$ ) and $ad1^{*}$)$- pivot$ . Let
$a$ be the extension point of $A[Y]$ and $K$ be the branch $a\rightarrow a_{1}\rightarrow\cdots\rightarrow a_{l}$ . Let $b$

be the coextension point of $[Y]A$ and $K^{\prime}$ be the branch $a_{1}\rightarrow\cdots\rightarrow a_{l}\rightarrow b$ . Then
$[P(a)](A[Y, K])\cong([K^{\prime}, Y]A)[I(b)]$ . $\square $

3.4. Let $A_{1}$ be an algebra with a weakly separating family $\xi\Gamma$ of coils, and
$X$ be an indecomposable in a coil $\Gamma$ of $\mathcal{F}$ which is an $ad3^{*}$)-pivot. The support
of $Hom_{A_{1}}(-, X)|_{\Gamma}$ is of the form

$Y_{t}\downarrow\rightarrow\cdot-\rightarrow Y_{g}\downarrow\rightarrow Y_{1}\downarrow$

$------X_{l}-X_{t-1^{-}}---X_{1}\rightarrow X_{0}=X$

with $t\geqq 2$ . We shall assume for the time being that $A_{1}$ was obtained from an
algebra $A$ by applying $r$ consecutive operations of type adl), the first of which
had $Y=X_{l}$ as a pivot, and these operations built up a branch $K$ in $A_{1}$ with
points $a,$ $a_{1},$ $\cdots$ , $a_{t}$ , so that $X_{l-I}$ and $Y_{t}$ are the indecomposable projective $A_{1^{-}}$

modules corresponding respectively to $a$ and $a_{1}$ , and both $Y_{1}$ and $\tau_{A_{1}}^{-1}Y_{1}$ are ray
modules in $\Gamma$ . Let $A_{2}=[X]A_{1}$ and let $b$ denote the coextension point of $A_{2}$ .
The bound quiver of $A_{2}$ is of the form

with $A_{2}(a, b)$ one-dimensional. If follows from our assumptions that $X|_{A}=X_{l}$

and $X|_{K}$ is the indecomposable injective K-module in $a_{1}$ . Let $A^{\prime}$ be the full
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convex subcategory of $A_{2}$ consisting of all points except $a$ . Then $A^{\prime}\cong[K^{\prime}, X_{t}]A$ ,

where $K^{\prime}$ is the branch with points $b,$ $a_{1},$ $\cdots$ , $a_{t}$ and $A_{2}=A^{\prime}[Z]$ , where $Z$ is

the indecomposable A’-module such that $Z|_{A}=X_{t}$ and $Z|_{K^{\prime}}$ is the indecomposable

projective K’-module in $a_{1}$ . Let $\Gamma^{\prime}$ be the standard coil of $\Gamma(mod A^{\prime})$ contain-
ing $Z$ . It follows from the shape of the bound quiver of $A^{\prime}$ and the description

of the indecomposable module $Z$ that the support of $Hom_{A^{\prime}}(Z, -)|_{\Gamma^{r}}$ is of the
form

$U_{1}\rightarrow U_{2}\rightarrow--\rightarrow U_{\iota}$

$Z=Z\uparrow_{0}\rightarrow Z_{1}|\rightarrow--\rightarrow Z|_{l-1}\rightarrow Z_{\iota}=X\rightarrow Z_{+1}\rightarrow---$

with $t\geqq 2$ . Since $A_{2}=[X]A_{1}$ and $X,$ $Z$ belong to the standard coil containing
$X_{l}$ in $\Gamma(mod A_{2})$ , we get that $U_{1}=Y_{l},$ $U_{2}=Y_{t-1},$ $\cdots,$

$U_{l}=Y_{1}$ . That the sequence
of operations of type adl) that build up $K$ followed by $ad3^{*}$ ) (with pivot $X$)

can be replaced by the sequence of operations of type $ad1^{*}$ ) that build up $K$ ‘

followed by ad3) (with pivot $Z$ ) is the content of the next lemma, whose proof

follows from the discussion above.

LEMMA. Let $A$ be an algebra with a weakly separating family ET of coils

and $Y$ be an indecomposable in a coil of $q$ which is an $ad1$ ) and $ad1^{*}$ )$- pivot$ . Let
$c$ be the root of a branch of length $t$ , and let $K$ and $K^{\prime}$ be the branches con-
structed as follows: $K$ consists of a root $a$ , the branch in $c$ and an arrow $a\rightarrow c$ ,

while $K^{\prime}$ consists of a root $b$ , the branch in $c$ and an arrow $c\rightarrow b$ . Let $X$ be the
indecomposable $A[Y, K]$ -module such that $X|_{A}=Y$ and $X|_{K}$ is the indecomposable

injective K-module in $c$ , and let $Z$ be the indecomposable $[K^{\prime}, Y]A$ -module such

that $Z|_{A}=Y$ and $Z|_{K^{\prime}}$ is the indecomposable projective K’-module in $c$ . Then
$[X](A[Y, K])\cong([K^{\prime}, Y]A)[Z]$ . $\square $

3.5. We are now able to prove the main result of this section.

THEOREM. Let $A$ be an algebra with a weakly separating family $g$: of stable
tubes, and $B$ be a coil enlargement of A using modules from $g;$ . Then:

a) There is a unique maximal branch coextension $B^{-}$ of A which is a $ful/$

convex subcategory of $B$ , and $c_{\overline{B}}$ is the $coextens\iota on$ type of $B^{-}$ .
b) There is a unique maximal branch extension $B^{+}$ of A which is a $ ful\iota$

convex subcategory of $B$ , and $c_{B}^{+}$ is the extension type of $B^{+}$ .

PROOF. We shall only prove a), since the proof of b) is dual. We shall
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first prove that the admissible sequence leading from $A$ to 13 can be replaced

by another consisting of a block of operations of type $ad1^{*}$ ) followed by a
block of operations of types adl), ad2), ad3). This is done by induction on the

number $n$ of operations in this admissible sequence. If $n=0$ , there is nothing

to prove. Assume $n>0$ , and let $A=A_{0},$ $A_{1},$
$\cdots,$

$A_{n-1},$ $A_{n}=B$ be the correspond-

ing sequence of algebras, where we assume the statement holds for $A_{n-I}$ . If

the $n^{th}$ operation is of type adl), ad2) or ad3), there is nothing to show. If it

is of type $ad1^{*}$), we are able, by (3.1) and (3.2), to replace the given sequence

by one of the required form. If it is of type $ad2^{*}$), there must be in the

sequence an operation of type adl) that gives rise to the pivot $X$ of $ad2^{*}$ ) and

the operation done between these two must not affect the support of $Hom(-, X)$

restricted to the coil containing $X$ . By (3.1), all these operations commute with
$ad2^{*})$ , so we can apply $ad2^{*}$) after adl) and then, using (3.3), replace these two

operations by one of type $ad1^{*}$) followed by one of type ad2). Using again (3.1)

and (3.2), we are able to replace the given sequence by one of the required

form. There remains to consider the case where the $n^{th}$ operation is of type

$ad3^{*})$ . There must be in the sequence at least one operation of type adl) that

gives rise to the pivot $X$ of $ad3^{*}$) and to the modules $Y_{1},$
$\cdots,$

$Y_{t}$ in the support

of $Hom(-, X)$ restricted to the coil containing $X$ ( $\ln$ the notation of (2.2)). The

operations done after must not affect this support. By (3.1), these operations

commute with $ad3^{*}$ ), and the operations of type adl) that give rise to $X,$ $Y_{1}$ ,

$\ldots$ $Y_{t}$ can be done consecutively so that, by (3.4), we are able to replace these
operations of type adl) followed by $ad^{*}$ ) by some operations of type $ad1^{*}$ ) fol-
lowed by an operation of type ad3). Another application of (3.1), (3.2) yields a
sequence of the required form. This completes the proof of our claim.

Let now $B^{-}$ be the branch coextension of $A$ determined by the block of
operations of type $ad1^{*}$ ) in the new admissible sequence. Since the remaining

block in the sequence consists of operations of types adl) ad2) ad3), that is,

one-point extensions or, in the case adl), branch extensions, it is clear that $B^{-}$

is a branch coextension of $A$ maximal with respect to the property of being a

full convex subcategory of $B$ . Furthermore, $c_{\overline{B}}$ is the coextension type of $B^{-}$

because, if $\mathcal{F}=(\xi\Gamma_{i})_{i\in I}$ , then, for each $i\in I,$ $c_{B}^{-}(i)$ equals the rank of $\mathcal{F}_{i}$ plus the

number of corays inserted in $\mathcal{F}_{i}$ by the sequence of admissible operations of
type $ad1^{*}$ ) (see (2.3)).

There remains to show the uniqueness of $B^{-}$ . Let $B^{*}$ be a branch coexten-

sion of $A$ inside $B$ . We first note that, by construction of $B^{-}$ , all the coexten-

sion points of $A$ inside $B$ must belong to $B^{-}$ . Now, if $b$ is a point in $B^{*}$ , it

must belong to a coextension branch of $A$ inside $B$ , hence, since the root of
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this branch belongs to $B^{-}$ , the point $b$ itself must belong to $B^{-}$ (by construc-
tion of the latter). This shows that $B^{*}$ is contained in $B^{-}$ and completes our
proof. $\square $

3.6. EXAMPLE. In (2.8), for $B=A_{4}$ , the algebra $B^{-}$ is given by the quiver

bound by $\delta\beta\epsilon=0$ and $\delta\gamma\rho=0$ . Its type is indeed $c_{\overline{B}}=(2,4,4)$ . The algebra $B^{+}$

is given by the quiver

bound by $\nu\alpha\gamma=0$ and $\omega\alpha\beta=0$ . Its type is indeed $c_{B}^{+}=(2,4,4)$ .

4. The module category of a coil enlargement.

4.1. We shall now complete the description of the module category of a
coil enlargement of an algebra having a weakly separating family of stable
tubes. We shall use the following notation. Let $K$ be a branch whose root is
denoted by $b$ . Then $K$ is a tilted algebra of type $A_{n}$ and there exist a com-



Coil enlargements of algebras 473

plete slice $\Sigma$ of $\Gamma(mod K)$ consisting of the indecomposable K-modules $M$ such

that there exists a sectional path $P(b)\rightarrow\cdots\rightarrow M$, and a complete slice $\Sigma^{\prime}$ of
$\Gamma(mod K)$ consisting of the indecomposable K-modules $M^{\prime}$ such that there exists
a sectional path $M^{\prime}\rightarrow\cdots\rightarrow I(b)$ . We shall denote by $\mathcal{L}(K)$ the set of all objects

in ind $K$ which are (not necessarily proper) predecessors of $\Sigma^{\prime}$ , and by $R(K)$

the set of all objects in ind $K$ which are (not necessarily proper) successors of
$\Sigma$ . Thus, in the notation of [12] (4.7) (1),

$R(K)=\{M\in indK|\langle l_{K}, \underline{\dim}M\rangle>0\}$

$\mathcal{L}(K)=\{M\in indK|\langle\underline{\dim}M, l_{K}\rangle>0\}$ .

The main result of this section generalises [12] (4.7) (1) p. 230.

THEOREM. Let $A$ be an algebra with a family $\mathcal{F}=(\mathcal{G}_{i})_{i\in I}$ of stable tubes,

weakly separating $\mathcal{P}$ from $\mathcal{Q}$ . Let $B$ be a coil enlargement of A using modules

from $9i$ , and $B^{-}=j=1s[K_{j}^{*}, E_{j}^{*}]A,$ $B^{+}=A[E_{i}, K_{i}]_{i-1}^{r}$ . Let $\mathcal{P}^{\prime}$ be the class of all

mdecomposables $M_{B}$ such that either $M|_{A}$ is non-zero and in $\mathcal{P}$ , or else $SuppM$ is

contained in some $K_{j}^{*}$ and $M\in \mathcal{L}(K_{j}^{*})$ . Let $\mathcal{Q}^{\prime}$ be the class of all indecomposables
$N_{B}$ such that either $N|_{A}$ is non-zero and in $Q$ , or else $SuppN$ is contained in some
$K_{i}$ and $N\in R(K_{i})$ . Then there exists a family $\sigma^{\prime}=(\xi\Gamma_{i}^{\prime})_{i\in I}$ of coils in $\Gamma(mod B)$

such that ind $B=\mathcal{P}^{\prime}\mathcal{F}^{\prime}\mathcal{Q}^{\prime},$ $\mathcal{P}^{\prime}$ consists of $B^{-}$ -modules, and $\mathcal{Q}^{\prime}$ consists of $B^{+}-$

modules.

PROOF. We have seen, in the proof of (3.5), that the sequence of admis-

sible operations leading from $A$ to $B$ can be replaced by a sequence consisting

of a block of operations of type, $ad1^{*}$ ), that determines $B^{-}$ , followed by a block

of operations of types adl), ad2) or ad3). Dually, it can be replaced by a
sequence consisting of a block of operations of type adl), that determines $B^{+}$ ,

followed by a block of operations of types $ad1^{*}$ ), $ad2^{*}$ ) or $ad3^{*}$ ).

Using the first admissible sequence and (2.7) together with [12] (4.7) (1) $p$ .
230, we obtain that ind $B=\mathcal{P}^{\prime}\mathcal{F}^{\prime}\mathcal{Q}_{1}$ , where $\mathcal{P}^{\prime}$ is the class of all indecomposable
$B^{-}$ -modules $M$ such that either $M|_{A}$ is non-zero and in $\mathcal{P}$ , or else $SuppM$ is

contained in some branch $K_{j}^{*}$ and $M\in \mathcal{L}(K_{j}^{*})$ , and $\mathcal{G}^{\prime}$ is the weakly separating

family of coils obtained from $\sigma\tau$ by appIying the admissible operations in the

sequence mentioned above. Using the second admissible sequence and the obvious
fact that both sequences give rise to the same weakly separating family of coils,

we obtain that ind $B=\mathcal{P}_{1}\xi\Gamma^{\prime}\mathcal{Q}^{\prime}$ , where $\mathcal{Q}^{\prime}$ is the class of all indecomposable
$B^{+}$-modules $N$ such that either $N|_{A}$ is non-zero and in $Q$ , or else $SuppN$ is con-
tained in some branch $K_{i}$ and $N\in R(K_{i})$ . By (2.1), $\mathcal{P}^{\prime}=\mathcal{P}_{1},$ $\mathcal{Q}^{\prime}=\mathcal{Q}_{1}$ and the proof
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is complete. $\square $

REMARKS. Since Er’ is obtained from Er by a (finite) sequence of admissible
operations, only finitely many stable tubes of $\mathcal{F}$ are affected by these operations,
and the remaining, when considered as stable tubes in $\sigma r^{\prime}$ , consist of $B^{-}$ -modules
(or of $B^{+}$-modules). Moreover, the non-stable coils in $\mathcal{F}^{\prime}$ may contain infinitely
many non-isomorphic indecomposable modules which are neither $B^{-}$ -modules nor
$B^{+}$-modules. Indeed, these correspond to the points of intersection of the in-
serted rays with the inserted corays. In particular, for each $d\in N$, all but at
most finitely many non-isomorphic indecomposable modules in $\xi\Gamma^{\prime}$ of dimension
$d$ are $B^{-}$ -modules or $B^{+}$-modules.

4.2. We now consider the case where $A$ is a tame concealed algebra. We
shall obtain a criterion for the tameness of a coil enlargement $B$ of $A$ using
modules from its (separating) family of stable tubes. We shall need the follow-
ing definitions. An algebra $B$ is called cycle-finite if, for any cycle in $mod B$ ,

no morphism on the cycle lies in the infinite power of the radical of $mod B$

(see [1]). Multicoil algebras are defined and studied in $[2, 3]$ . For the notions
of tame, domestic, linear growth, polynomial growth and the Tits form of an
algebra, we refer the reader to [13]. Let $B$ be a coil enlargement of an alge-
bra $A$ having a weakly separating family of stable tubes. Its type $c_{B}=(c_{B}^{-}, c_{B}^{+})$

is called tame if each of the sequences $c_{\overline{B}}$ and $c_{B}^{+}$ equals one of the following:
$(p, q)$ , $1\leqq p\leqq q,$ $(2,2, r)$ , $2\leqq r,$ $(2,3,3),$ $(2,3,4),$ $(2,3,5)$ or (3, 3, 3), (2, 4, 4),
(2, 3, 6), (2, 2, 2, 2).

COROLLARY. Let $A$ be a tame concealed algebra and $\mathcal{F}$ be its separating
tubular family. Let $B$ be a coil enlargement of A using modules from $\xi T$ . The
following conditions are equivalent:

(a) $B$ is tame;
(b) $B^{-}$ and $B^{+}$ are tame;

(c) $B$ is a multicoil algebra;
(d) $B$ is of polynomial growth;
(e) $B$ is (domestic or) of linear growth;
(f) $B$ is cycle-finite;
(g) $c_{B}$ is tame;
(h) the Tits form $q_{B}$ of $B$ is weakly non-negative.
Moreover, $B$ is domestic if and only if both $B^{\sim}and$ $B^{+}$ are tilted algebras

of euclidean type.
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PROOF. $(a)\Rightarrow(b)$ Clear, since $B^{-}$ and $B^{+}$ are full convex subcategories of $B$ .
$(b)\Rightarrow(c)$ follows from (4.1), since if $B^{-}$ and $B^{+}$ are tame, they are multicoil

algebras, and those B-modules which are neither $B^{-}$ -modules nor $B^{+}$-modules
must belong to a weakly separating family of coils.

$(c)\Rightarrow(f)$ follows from the definition of multicoil algebras.
$(f)\Rightarrow(a)[1](1.4)$ .
$(b)\Rightarrow(g)[11](3.3),$ $[9](2.1)$ .
$(g)\Rightarrow(b)[12](4.9)(2)$ p. 246 and (5.2) (4) p. 276.
$(a)\Rightarrow(h)[10](1.3)$ .
$(h)\Rightarrow(g)$ since $B^{-}$ and $B^{+}$ are full convex subcategories of $B$ , each of the

Tits forms $q_{B}$-and $q_{B+}$ is weakly non-negative; by [11] (3.3), $c_{B}$ is tame.
$(c)\Rightarrow(d)[2](4.6)$ .
$(d)\Rightarrow(a)$ trivial.
$(b)\Rightarrow(e)$ By [4] (2.3) and [9] (2.1), $B^{-}$ and $B^{+}$ are both of linear growth.

Applying (4.1), $B$ itself is of linear growth.
$(e)\Rightarrow(a)$ trivial.
The last assertion follows from [4] (2.3) and [12] (4.9) (1) p. 241. $\square $

4.3 EXAMPLE. In (2.8) (3.6), the algebra $B$ is tame and non-domestic (but

of linear growth). In fact, it follows from (4.1) that if we denote

ind $B^{-}=\mathcal{P}_{0}^{-}\xi\Gamma_{0}^{-}(\gamma\check{\in Q}+\mathcal{F}_{\gamma}^{-})\mathcal{F}_{\overline{\infty}}Q_{\infty}^{-},$

and

ind $B^{+}=\mathcal{P}_{0}^{+}\xi\Gamma_{0}^{+}(\gamma\in\check{Q}+\mathcal{F}_{\gamma}^{+})\Psi_{\infty}^{+}\mathcal{Q}_{\infty}^{+}$ ,

then
ind $B=\mathcal{P}^{\prime}\mathcal{F}^{\prime}Q^{\prime}$

where $\mathcal{P}^{\prime}=\mathcal{P}_{0}^{-}\mathcal{F}_{0}^{-}(\gamma\check{\in Q}+\mathcal{F}_{\gamma}^{-})$ and $\mathcal{Q}^{\prime}=(\delta\check{\in 0}^{+}\mathcal{F}_{\delta}^{+})\vee\sigma r_{\infty}^{+}\vee Q_{\infty}^{+}$ . The family $\mathcal{F}^{\prime}$ is

obtained from gts (or else from $z_{0}^{+}$ ) by applying two operations of type ad2)

(or $ad2^{*}$ ), respectively). In fact, $ff^{\prime}$ consists of all but two of the stable tubes
of $\Gamma(mod A)$ and two non-trivial coils (actually, quasi-tubes).

4.4 EXAMPLE. Let $A=A_{0}$ be the tame hereditary algebra given by the
quiver
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2

Its type is $c_{A}=((2,2),$ $(2,2))$ . The algebra $A_{1}$ given by the quiver

2

bound by $\gamma\epsilon=0$ is obtained from $A$ by an admissible operation of type $ad1^{*}$ )

with pivot the simple regular A-module of dimension-vector $0_{1}^{0}0$ . Its coil type

is $c_{A_{1}}=((2,5),$ $(2,2))$ . Then $A_{1}$ is a tilted algebra of type $\tilde{A}_{6}$ . The algebra $A_{2}$

given by the quiver

2



Coil enlargements of algebras 477

bound by $\gamma\epsilon=0,$ $\rho\delta=0$ and $\rho\epsilon=\nu\lambda$ is obtained from $A_{1}$ by an admissible opera-
tion of type ad3) with pivot the indecomposable $A_{1}$-module of dimension-vector
$o_{1}^{0_{0}}$

$1_{1_{0}}$

. Its type is $c_{A2}=((2,5),$ $(2,5))$ . The algebra $B=A_{3}$ given by the quiver

9

bound by $\gamma\epsilon=0,$ $\rho\delta=0,$ $\sigma\beta=0,$ $\rho\epsilon=\nu\lambda$ is obtained from $A_{2}$ by an operation of
$o^{1_{0}}$

type adl) with pivot the indecomposable $A_{2}$-module of dimension vector $0_{0}^{0}0$ . Its
$0$

type is $c_{B}=((2,5),$ $(3,5))$ .
The algebra $B^{+}$ is given by the quiver

9
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bound by $\sigma\beta=0,$ $\rho\delta=0$ . Its extension type is $c_{B}^{+}=(3,5)$ . Clearly, $B^{+}$ is a tilted
algebra of type $\tilde{A}_{7}$ . The algebra $B^{-}$ coincides with the tilted algebra $A_{1}$ , and

its coextension type is $c_{\overline{B}}=(2,5)$ . Since both $B^{-}$ and $B^{+}$ are domestic, it fol-
lows from (4.2) that so is $B$ .
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