TSUKUBA J. MATH.
Vol. 19 No. 2 (1995), 409—444

ENERGY DISTRIBUTION OF THE SOLUTIONS OF
ELASTIC WAVE PROPAGATION PROBLEMS
IN STRATIFIED MEDIA R’
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Abstract. This paper deals with the asymptotic energy distributions
for large times of the solutions of elastic wave propagation problems
in stratified media R®. We construct asymptotic wave functions
which approximate the solutions for large times and calculate the
asymptotic energy of the solutions using these asymptotic wave
functions. In particular, it is shown that the energy of Stoneley
wave is asymptotically concentrated along the interface.
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§ 1. Introduction

Energy distribution of the solutions of various wave propagation problems
has been studied by C.H. Wilcox ([10], [11], [12], [13]). He constructed asymp-
totic wave functions which approximate the solutions in the sense of L* for
large times and calculated asymptotic energy distributions of the solutions in
several domain by making use of these asymptotic wave functions.

The construction of asymptotic wave functions is based on an eigenfunction
expansion theorem which is proved by the same author and on the method
of stationary phase. J.C. Guillot [3] studied a Rayleich surface wave pro-
pagating along the free boundary of a transversely isotropic elastic half-space
and showed that the energy of the Rayleich component of the solutions with
finite energy is asymptotically concentrated along the boundary.

In this paper we shall derive energy distribution of the solutions of elastic
wave propagation problems in plane-stratified media R® using methods due to
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Wilcox. We construct asymptotic wave functions by using spectral integral
representations of the solutions and the method of stationary phase. The inte-
gral representations are based on an eigenfunction expansion theory which was
proved by the author [8] using methods due to S. Wakabayashi [9]. We cal-
culate asymptotic energy of the solutions for large times of the interface prob-
lems for elastic waves and show that the energy of the Stoneley components
of the solutions with finite energy is asymptotically concentrated along the
interface.

We start with the mathematical formulation of the elastic wave propagation
problem.

Consider the plane stratified medium R*= {x=(x,, x,, xs); x;R} with the
planar interface x;=0, which is defined by

('21) #1, pl)) x8<0:

'2 3/ 8/ (8:
W), (), o) {ug, e 02), x>0,

Here 2,, 45, p1, po are certain quantities called Lamé constants and 01, p:>0 are
the densities.

We shall denote the lower half-space R:={x=R?*; x,<0} by medium 1 and
the upper half-space Ri={x<R®; x;>0} by medium II, respectively, as in
Figure 1.
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Figure 1. Stratified media I and II.

The propagation problem of elastic waves in the stratified medium is for-
mulated as the following initial-interface value problem :

2
(1.1) %;(t, x)+Mu(t, x)=0,
(1.2) u(t, x)|13=-0=u(t; x)|13=+0,
(1.3) O rsU(l, X)|zg4=_0=0 rsu(t, x)lx3=+o ,

(1.4) u(0, x)=f(x), %%(0, x)=g(x),
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where
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(1.2) and [1.3) are called interface conditions, and is called an initial con-

dition.

The chuy, ¢iii(G, j, k, I=1, 2, 3) are the stress-strain tensors given by

Chitj=A10r 015+ 11041035+ 0430:1)
Chi17=220 11015+ p£2(0£10:;+ 02 0:1)

(1.8)

with the properties

Il A I
Crili=Cik1;=Chiji=Cljki

7SN ) SENN J SR §
Criti=—Cirlj=Crij1—Cljri

and d.; is the Kronecker delta. We assume that the constants ¢}, cil,; satisfy

the following stability conditions
(1.9) /21:+ﬂi>0, ‘ui>0, (z:l, 2):

which are equivalent to the conditions
3 ! . 3
20 ChijS1;Ski2300 23 |Saal?, 0,>0,
k.i. 1, =1 k,i=1

3 3
> C%ljsljskigaaz 2 Isesl?, 0,>0,
Eoi L, =1

k,t=1

for all complex symmetric 3X3 matrices (s:;:), spi=$:C (cf. [4]).
We introduce the Hilbert space

(1.10) H=L*R? C® p(x3)dx)
with inner product
(u, v)*—'SRsu-vp(xs)dx,

where u-v denotes the usual scalar product in C?:u-v=>%_, u,0;.
shown in [8, Theorem 1.2] that the operator A on 4 with domain

D(A)={us H¥R:, C*)DHYR}, C°);
u satisfies the interface conditions and
in the sense of trace on x,=0}

It was
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and action defined by
(1.11) Au=Mu, ueD(A)
is a self-adjoint operator on %. Here
H¥RE, C¥)={u(x); Dsucs L*(R?) for 0a<2}

is a Hilbert space with innner product

(u, v), :‘—S > D*u(x)-D*v(x)dx .

3 |ajsm
Rill

Every ueD(A) satisfies the interface conditions [1.2) and [1.3), so the mixed
problem (1.1)-(1.4) may be reformulated as the problem of finding a function u:
R— % such that

(112) a—t2~+Au 0 for VtER,

(1.13) w(0)=f, %?(0)=g -

The operator A is non-negative [8, Lemma 1.4] and the spectral theorem for

self-adjoint operators (cf. [2]) implies that [1.12) and [1.13) has a (generalized)
solution given by

(1.14) u(t)=(cos tA*)f+(A 2 sin tA%)g, t=R

for every pair f, g€ 4. u has derivatives du/d¢t and d?u/df* and is a strict
solution of if and only if feD(A), g D(AY?).

Next we define the energy of solution u on a set KCR?® at time ¢ for the
elastic wave propagation problem by

(1.15) Eu, K, z):SK(l%lt‘—[zp(xs)— %M,e,g;‘] 8xk)d

k.,

If u is a solution of (1.1)-(1.4), u satisfies the conservation laws of energy:
E(u, R®, )=FE(u, R*, 0)=const. for VieR,

where the constant may be finite or infinite. If one defines a sesquilinear form
B in & by
D(B)=HYR?, C*)C 4
and
ou oOu

kjin
rs H9x; Ox,

B, U)Z_kzjllg ax,

then it is easy to verify that B is closed and non-negative, and that A is the
unique self-adjoint non-negative operator in 4 associated with B (cf. [6]). Then
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D(A'?)=H'(R®, C*) and for all ueD(A"?) one has
3 ou Ou
1/2.,112 — —_
A =B, w=— 3§ M3 Sed,
where ||| is the norm in 4. It follows that

(1.16) E(u, R, z)-—H H A U= w2 .

Here the norm |u||, is called the energy norm. If f&D(A?*Y), g 4, then u(t)
€D(AY?), du/dte % for all teR and u(¢) satisfies

(1.17) lu@l 2=/ u(0)|2 <o for VieR.

Therefore a necessary and sufficient condition for u to have this property is
that the initial state f, g has finite energy:

(1.18) feD(AY?), gE X .

Hereafter we consider only solutions with finite total energy.
When

fed, geDAT?,

the solution u of the elastic wave propagation problem in %, defined by
and ((1.13), satisfies
u(t, x)=Refv(t, x)},
where
u(t, -)=e 14V p h=f+iA'?g,

then v(¢, x) has the following representation (see Section 2):

v(t, x)= Jvi(t, x)+ S v, )+ X v, x)E Il .

jeM jeM keN

vii(t, x)(J< {p:, ps}) are called Pressure (P) components, vi(t, x)(j< {s;, s.}) are
called Shear Vertical (SV) components, v{f(t, x)(j € M= {s;, pi, ss, p2}) are called
Stoneley components and vi(¢, x)(keN=/{s,, s;}) are called Shear Horizontal
(SH) components. We remark that if

(1.19) Dis (¢2,)>0,

then the Stoneley components exist. Here ¢;,= min {c;,, ¢;,} and Dis(z) is defined
by (2.6) below (cf. Section 2, [8, Section 3]). This condition is determined by
Lamé constants 4;, #; and densities p; (=1, 2).

Our main results are the following theorems. [Theorem 1.1l shows that the
energy of the Stoneley components vi/(¢, x)(J=M) of v is asymptotically con-
centrated along the interface x,=0.
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THEOREM 1.1. We assume that

feDANK, — gedND(A?),  Dis(ci)>0,
then
lim E@Y, (CT(0)UCHONNB(, 91), H=E@i, B, 0),  jEM,

where
C ()= {xeR2; —0(|x"|)<x3<0},
C'(O)={xeR:; 0<x:<O(|x" )},
B@t, $t)={x€R*; cst—IN= | x| Scsit+I), xR},
(t): liiron()(t):oo, | 9(t) | <2¢s:t,
0(1x'|): lxljfgwﬂ(lx’I)zm, monotone increasing function,

cs:. . propagation speed of Stoneley wave.

The next theorem shows that the P, SV, SH components vi(t, x)(jEM),
va(t, x)(keN) behave like free waves.
THEOREM 12. We assume that

feDAVNA, gEIHND(AE),
then '
lim E@iy, Sot, DSy, (b DUS(L HUSy, 9), H=E@ws, B, 0), jEM,

%i_.m E(UZiln le(t; 'g)ussz(t: 19)! t):E(v;:ky RS’ 0)7 kENy

where
S, (¢, W)={x€R:; ¢, I—IN)=< | x| S5, t+HD)},

Spt, IN=A{xERL; cp t—IO)=| x| =cp, t+I(B)},
Sep(t, IO)=A{xERL; cst—IO= | x| SCoyt +9(D)},
Spolt, IWN=A{xERY ; cpt—I M= | x| Scpyt+I9(B)},
() : thl H(t)=o0 ,

Cp,» Cp,: Dropagation speeds of P waves,

Cs,» Cs, . Propagation speeds of SV and SH waves.

These theorems are obtained calculating the energy of the asymptotic wave
functions vf=(¢, x), vir(t, x) (JeM), vi2(t, x) (ke N) which defined by means of
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the stationary phase method.

The remainder of this paper is organized as follows. In Section 2, we give
spectral integral representations of the solutions of the propagation problem by
using the eigenfunction expansion theorem for A developed in [8]. In Section
3, we construct asymptotic wave functions of the Stoneley components by means
of the method of stationary phase. We construct asymptotic wave functions of
the P, SV, SH components in Section 4. In Section 5, we calculate the asym-
ptotic energy distributions of the solutions for large times.

§2. Eigenfunction Expansions for A

The eigenfunction expansion theorem for A was developed in [8]. In this
section it is applied to give spectral integral representations of the solutions of
the elastic propagation problem. This section begins with a brief review of
the structure and properties of the eigenfunctions and the expansion theorem.

Let 5’=(7:, n:)R* be the dual variables of x'=(x,, x,) and let F,. denote
the partial Fourier transformation with respect to x’;

~ ’ — ’ —13 _}_ -i(z +x ) ’
a(y’, xo)=Fu)ln’, xs)= l';lal.rg' 27TS|x'|sRe 171+%279) y(x)d x

for v in 4. Let
D(A)=F, D(A)= {2 ; uD(A)},
Aa=F, AF;'a, #cD4).
For every 7’0, let

7]1 '—“7]2 O 1 O 0
@.1) U:|~7717~| e o 0|, c=l0 0 1]
0 0 |y 0 1 0

where U and C are unitary matrices and |%’|=(5i+%3)"?. Then we have
(2.2) Au=F;"UC(A\(n")DA:L")UC)'Fru  for usD(A),

where A,(y’) and A,(5»’) are non-negative self-adjoint operators (see [8, Proposi-

tion 1.71, [1], [3]).

We can get an explicit representation of the Green function G(xs, ¥s, 7" ; ()
for the operator A,(y’)—{I ({&R) from the expression of the solution for the
following problem :

(2.3) (Ai(n’, D)=Qu(y’, x)=1(n’, xa),

2.4) V(0’5 X8)2y=-0=0(n’, X5)|24=10,
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(2.5) B (', X9)lz4=0=Bi(n (", X5)|24=10 -

Here [2.4) and [2.5) are the interface conditions for A,(n’, D) corresponding to
and [(1.3). A,(y’, D) (D=(1/i)d/dx,)) is the differential operators corre-
sponding to the self-adjoint operator A,(»’). Since the solution v of should
satisfy the interface conditions and [2.5), the denominator of v has the
Lopatinski determinant A(y’, {) as follows:

A(p’, O=17"|°Dis(2),

(2.6) Dis (2) = (21— ) — £ +5 )+4(;z1 (12)*21a3b by

1
Uiz

2
—a,b, (2({11—‘!12)“{‘ '%:-Z) —‘azbz(2(#1 #2) 1
S2

s1
_"f:’lﬁza(axb2+azb1)22 )
81789
where

C
I

- _— e -
01:\/1—‘6“12‘)‘;, 02:\/1—6?;, blz\/l“‘T, bz:\/l—‘—-

The squares of propagation speeds of shear(SV, SH) and pressure(P) waves are
given by

2= 12,

(2.7) R 2 =1, 9),

o o
respectively. From the conditions the minimum speed of {c,,, ¢, ¢, ¢p,}
is either ¢, or c,,.

We can see that Dis(z) has the only one real zero when Dis(z) has zeros.
Denote by c§: its real zero. Then the zero of A(y’, {) is c4:|7n’|* and is the
origin of the Stoneley wave propagating along the interface x,=0 in the elastic
space R3 and cs, is its speed.

By virtue of principle of the argument, the conditions for the existence of
zeros of the Lopatinski determinant A(yn’, {)=1|%"|°Dis(z) (the existence of the
Stoneley waves) are given as follows:

If c,,<cs,, then

(i) Dis(c§,)>0== The zero {=c5.|n’|* of A(y’, {) in { exists in
[0, ¢%,1n’1*) with order 1. More precisely, we shall
prove in the proof of [8, Theorem 6.5] that cg,#0.
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(ii) Dis(c5)=0==5 c¢s.=c,, and we shall consider this case under
some some restricted conditions (cf. [8, Lemma 6.4]).

(iii) Dis(c,)<0 == A(y’, {) has no zero.

If ¢;,<cs,, then we must replace Dis(c§)) by Dis(c3,).

We also obtain an explicit representation of the Green function G,(xs, ¥, " ;&)
for the operator A,(y")—{I ({£R) by the same method as G,(x,, y5, ”; ). The
Lopatinski determinant corresponding to the operator A,(n’)—ZI ({&R) has no
zero. By using the Green functions Gi(x;, ys, %’; ) and Gy(xs, ys, 17; (), wWe
define

di(xs, 75 O=F3[Gi(xs, vs, 77 ; DIEQALN)—=OPspo(xs)™", jEM,
t . C cStlﬂ |2 .

O (xs, ;0= NSy (x5, 73 0), JEM,

Dor(xs, 73 O=F7i[Go(x3, 5, 7' ; DUEAs(n)—Lp(x5)"', kEN.

Here n=(9:, 52 §)=(y’, ), A;(n)=c}|n|* are the eigenvalues of A,(n’), Pxn) are
mutually orthogonal projections for A.(yn’), A:(n)=ci|n|* are the eigenvalues of
As(n’), M={sy, p1, Ss, po} and N={s;, s,}. When {—2,(n)+i0, {—ck:|n|? a
{—2Ax(n)£:0, the limits ¢ii(x,, 1), ¢if(xs, ), and ¢5(x,, 5) exist and these hmlt
functions are generalized eigenfunctions for A,(y’), A(y’), respectively.
Using these generalized eigenfunctions for A,(n’), A.(»’), we define gener-
alized eigenfunctions for A as follows:

2.8) Gix, )= g ST IUCEE (s, DO, TEM,
2.9) Gz, )= gt eI UCH (xo, B0, JEM,
(2.10) G3(x, )= o O TIDUCOsaBixs 7)), kEN,

where O,., denotes the nXn zero matrix.
Now we define the Fourier transform of fe 4 with respect to these gen-
eralized eigenfunctions: f— (7§, 75, i),

2.11) Fom=tim.|  onx prfpGadr,  jeM,
(2.12) Fr=tim.| oS gy f(px)dz,  jeM,

— 00

(2.13) Fam=tim.|  gatx prf(ne)dz, kN,
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corresponds to the Parseval and Plancherel formulas.

THEOREM 2.1. We assume that Dis(c},)>0. Let f, ged and 0<a<b<oo.
Then we have

o g):f§f<gnsf ) 2y + - 281 (n)dn)
+ kgzvgmfzt”(”) -&5(n)dy.

The first half of expresses the Fourier inversion formula with
respect to generalized eigenfunctions. The latter half gives the canonical form
for A.

THEOREM 2.2. We assume the same assumption as Theorem 2.1.
(1) For fe4,

R-rco

foo=grim| @ux nism e oy

+ l.i.m.Smlnglfz*k(x, 7)f #(n)dy.

EEN R-o

(2) For feD(A),

Af(0)=73, ‘-L;T'S.,,,ﬂ“ﬂ’?)?”l‘f("' M)+ ekl n’ 1795 x, D FSFm)dy
+k§v1.lizﬂ.gmlskzk(n)sbz*k(x, M )d,
and
APym=2fitn), €M,
(APStop=ctln’ 12 fSKn),  jeM,
(APsm)=am)fam),  keN.
gives an explicit expression of the ranges R(®*).

THEOREM 2.3. Assume the same assumption as Theorem 2.1. We define the
mappings by
f:j: j{Bf —_—> fitj("])EL2(Ri, CS)’ ]EM,
D asf —> [HoeL R, €3, jeM,
O3 IADf —> fa(n)eL (RS, C*, keN,
and put
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D=3 05D X OB X 03,
jeMm kEN

jieM

Then we have
R(@*)= §M®(Pj(v)®01x1)L2(Ri, Cs)EBjGZIIKGB(Pj(v)@Olxl)Lz(R", C?)
@EN@(OzXzEBl)Lz(Ri, Cc*).

This implies that @* are unitary operators in 9, and that the systems of gener-
alized eigenfunctions {df, ¢5F, &h and (¢, ¢5F, dnt are complete, respectively.

The next theorem shows the utility of the eigenfunction expansion theorem
for the operator A.

THEOREM 2.4. Let W(R) be a complex-valued bounded Lebesgue measurable
function on a(A)={A: A=0} and let W(A) be the corresponding operator defined
by means of the spectral theorem.

Then we have

(m)ﬁ(ﬂ):w(cglﬂ 12) fi(p)e(PAn)PO0 1) LARE, C%),  jEM,
T
A )=T(ck: |9’ 1) ) e(P(n)D01)LAR?, C),  jeM,

T AP =T(cil 7 1) fa(n)E(00e@DLYRE, €,  keN.

It will be convenient to rewrite the solution (1.12)-(1.13) in the following
form.

THEOREM 2.5. Let f and g be real-valued functions such that

(2.14) fedq, g D(A™Y?),
and define

(2.15) h=f+iAV*ge 4.
Then the solution in 4 defined by satisfies
(2.16) u(t, x)=Re{v(t, x)},

where v(t, x) is the complex-valued solution in 4 defined by
(2.17) u(t, )=e 4 2h,

The proof of is due to Wilcox [10, Theorem 2.3]. This theo-
rem implies that the solution u(¢, x) of (1.12)and [1.13) is determined by v(¢, x).
Combining [Theorem 2.4 and we have the following :
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THEOREM 2.6. We assume that
fe s, gED(A™Y?), Dis (c3,)>0.

Then the solution of the elastic wave propagation problem, by and (1.13)
has the representation

(2.18) u(t, x)—Zvu(t x)+ ZMv F(t, x)+ Zszk(t X)E K,

where

(2.19) vit, O=Lim.| gy, phitdn,  jeM,
R-o JiyIsSR

(2.20) VK, x)—-llmg etesen i g, i)y,  jEM,
R~ JIpIsSR

(2.21) Vi, x>=1.i.m.5 e ek ndn(x, Phi(n)dy,  keN,
R-o J|yisR

and

(2.22) hi(n)=F(n)+i , i TEYMEPANBO) LR, €2,

rs 1
(2.23) h$Hp)=f% ‘(7))+z sl7] &1 (n)e(Py(n)P0,..)LYR?, C*?),
(2.24) k(n) Fa(n)+i llmgu(n)E(OzszBl)Lz(R C?).

§3. Transient Gulded (Stoneley) Waves

This section deals with the Stoneley components v$#(¢, x) (€M) defined by
(2.20) and [(2.23). It is shown in Section 5 below that these components are
transient, in the sense that the energy in any bounded region tends to zero for

large ¢, and are guided, in the sense that the energy concentrate near the
boundary x;=0. The proofs are based on asymptotic approximations for v$f(¢, x)
(M) for large t which are derived in this section.

In this section it is assumed that the initial data f(x) and g(x) are real-
valued functions and fe 4, geD(A™"?), and that the condition Dis(c%,)>0 (i.e.
existence of the Stoneley wave) is satisfied.

Substituting [2.9) in [2.20), we can represent the Stoneley components v5f(t, x)
(€M) in the form

. 1
3.1) v, x)=l.éL13°1.(§7—c—)SlvlsRe“” 7 tesetn DU )C(PSF(xs, n)@oxxl)h f(p)dy,
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where
vl _1]2 O l 0 O
1
U(v,)zl—ﬂ‘?ﬁl 772 771 0 ’ C: 0 0 1 ’ ﬂ:(v,, 5):‘_(771’ 772, E);
0 0 |yl 0 1 0

and ¢7f(xs, 7) is a generalized eigenfunction for the operator A,(n’) (given by
[8, (4.17) and (4.18)71).
The function ¢ff(xs, ) and ﬁfj‘(r;) (€M) can be written in the form

(3.2) O (x, U)Zs—_}goj—b,—!e'c“”'”"”8’¢fjt(77')Pj(77),
3.3) Rst0n)= sff%]l]—,,k%'),
where

Cgc
Coj=— —-63_ (O<Coj<l).

Here ¢3/(’) is a bounded continuous function (see [8, (4.17) and (4.18)]) and
k$H(n")e L¥ R, C*) because

2

viy'| dédy’

rR|§+ico;| |
=SR2| kfj‘(ﬂ')lz(gls—————“z_’_lc%; : 7] d&)dn’

T
=—— [ k("M L2 cre -
Coj

(3.4) 1Al facan=] | kE(n")

Then the integral in (3.1) is rewritten

1 .
3.5 vif(t, x)=Li.m. —“)S et (x' 0! ~tesgIn’ N =Cojin’ 1151
( ) 1.1( ’ ) Bveo \ 27T 19 ISR

X U(p" U0 ) DO0)Q(n )V g Tk (9)dy!, jEM,

where

(3.6) Q= e o ET s (P, OB0s0)dE

3.7) Psl(n):—P,z(r})——'l—%;(__Sl‘E —l:;[nf)
Pp,<n>=Pp2<n>=|—7%—z(:Z::; 'Z;'E).

We note that U(n")C(¢5(5")P0:x1)Q(%") is a bounded continuous function
of »’ in R? because
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rags 2"t do=T

/ 17" L ,
QU= o Cprdi=

g2sRre- 1y 126° 4¢3’ |® Coj

Now we consider the following integral

3.8) w(t, x):%gmei(f“v'-“lm’l)-Czlr)'||xsl\/m'¢(7)/)d77/’ ¢EQ(R2)=Q)(R2, 0),
where ¢, and ¢, are positive constants and 9(R?) denotes the usual Schwartz

space.
Introducing plane polar coordinates (v, w) for 7’, we find

(3.9) wit, x)z%S:Ss,ei"“’""""1"‘“cz"s‘vs’”sﬁ(vw)dwdv
:_z_];S:e—ivclt-vcz|xs|vs/2](x/, v)dv,

where

(3.10) J(x?, ,,):Ssle‘”"'“’gb(uw)dw.

In order to find the asymptoic behavior of w(¢, x) for t—oo, we calculated the
asymptotic behavior of J(x’, v) for |x’|—co making use of the method of sta-

tionary phase.

The following theorem is a version of the method of stationary phase and
give the asymptotic formula at infinity of the Fourier transform of a measure
(with smooth density) concentrated on the hypersurface S*~! (see [6, Section 5],
[7, Section 4] for general C*= hypersurface S).

THEOREM 3.1. Let S be the unit sphere of R* (n=2), u be a C> function
defined on S. Then we have the following asymptotic formula:

(3.11)
I(x) __:__Ssei(z.c)ﬂ(s)ds

— _27’_ =DI2 iz (x ey (n-1)) _ E_

(n-1)/2

) e‘i(lll—(ﬂﬂ)(ﬂ‘l))_i_q(x")
as |x|—oo along the ray x=|x|60, where ¢(x) satisfies

(3.12) (ZYqxr=0(x1=m)  as |x]-o0

for each multi-index y.

Applying this theorem to we find
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313 =, w=(2 Vet )+ () e g0+ o, )
where

(3.14) x'=r0, r=|x"1=0, fSt,

and we get

(3.15) lgo(x’, v)| Mylyx’| 7% for |x’|=1.

Here M,=M,(¢) is a positive constant which is independent of x/, §S* and
»y>0. In (3.13) the square roots are defined by the convention that if z==+1|z|
then z'/2=e*t=/9|z|12 with |z|Y*=0.

Substituting (3.13) in [3.9), we obtain

(3.16) w(t, x)=(2ir) | e e iug(u0)dy

+(=2miry | e enziyg(—16)dy

+ (]1(t, x)
where

(3.17) a2, x)=(Zfr)"‘g:e'ml‘"”°2‘”3‘v3’2qo(x’, v)dy,

lqu(t, 2)| <(27) "M, | %’ | /S“e dy

=(27) 'Mycz' | x7 | 732 xe| 7h

From it follows that ¢,(¢, x) is a continuous function of x=(x’, x;). There-
fore we have

(3.18) lg:(t, )| SMA+ |2/ [*)7 (14| x1)70 for x=(x', x:)ER?,

where M=max ((27) *M,c3', max. .1s:|q:(¢, x)|) is independent of ¢.
Let us define the functions Gj(r, 6, xs) by

(3.19) Gy, 0, wy=(x2mi) 2| Terorrenming(£20)dy, <, mER, S

Then we have

Gi(r—cit, 0, xs) 4 Gar+cit, 8, xs)
NG N2

x'=rf, r=|x'|=0, 08, x,=R.

(3.20) w(t, x)= +a.(, x)

We prepare the following four lemmas.
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LEMMA 3.2. For every ¢(y’)= L*(R?), G§(z, 0, x5) can be define and we have

(3.21) 1G3(e, 8, o)l rarxsxm="7= 19"l zacres -

PrROOF. By Fubini’s theorem, we have

” G;(T, 0, xs)llf2rxsxm

= 1] 1086 0, xorazdoax=(|_ (] 16i 0, x)1*d<)d0dx,

S,,S S | FrsG(e, 0, xs)|2dl))d0dx3 (by Parseval’s formula)
SRS Sw ‘“‘2"‘3'|v¢(»0)|2du)d0dx3
-]

sxS S —mzzs”dxs)lsﬁ(va)lvdde

== [ 160t avao

Cse
J— 1 4 2 ’
-—E;||¢(7) N E2cre, p’'=v0. 0O

LEMMA 3.3. For every ¢= L¥R?), we define wi(t, x) by

’

G|’ | —ct, Ty %o)
(3.22) w3(t, x)= WiEd
Then we have
(3.23) w3, Mizmn=1GH(z, 8, x)lE2rxsixm

= c— (n I Ezcro> -
2

PROOF.

lwjtt, Misaan ={ | |"1Gsr—cit, 6, x)i*drddz,

[l 63w 0, morracasax,

SIGH(z, 0, x)lizrxsixm . O

LEMMA 3.4. The function w(t, x) defined by (3.8) for ¢=D(R?) can also be
defined for any ¢<= L*(R?) and we have
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1
(3.24) lw(, ')”LZ(RF!):76;”¢(77/)”L2(R2) .
2
Proor. In fact,

lw, Mean=| (1wt 01%ds")dx,

L
= [ (ele s e = VT Tt )1y )
(Parseval’s formula)

] O e g

1

=—dnMizme . O
Cy

LEMMA 3.5. (See Wilcox [10, Lemma 2.7]). Assume that u(t, x) has the pro-
perties

(3.25) u(t, -)e L*(R™) for every t>t,,
(3.26) lim lu(t, Hrecxy=0  for every compact KCR",
(3.27) lu(t, x)| <g(x)e LA(R").

where t, is a constant. Then

(3.28) %LIE lut, )lzzrny=0.

THEOREM 3.6. Let wy=w and w3 be the functions defined by (3.8) and (3.22)
for ¢= LA(R?), respectively. Then

(3.29) 112;1 lwg(t, )—wgE, lrewsn=0.

ProOOF. First we consider the case where ¢=9(R?). Putting
(3.30) u(t, x)=wy(t, x)—w3(, x),

we verify that (3.25)-(3.27) hold for u(¢, x). From Lemma 3.3 and Lemma
3.4, u(t, -)e L¥R?®) for every i€R. Next consider

1 LI
welty )= 5|, | I, v, @dudo,

o
where
O(x, v, @)=e™? @ *21%s1 32 (vw)

Noting that ¢ is a C' function of v in [0, ) for fixed (x’, ), we perform an
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integration by parts with respect to v. Then we get the estimate

S —_—
where My is a positive constant which depends on K and ¢ but does not de-
pend on t. As for wj(l, x), we have for any d>0
d

d
lw3t, e =| S lhGsr—ct, 0, x)1%drdodx,

d oo
:S SS,S-Jt—cmd—cln(s)lG;z(s, 6, x5)|*dsd0dxs,

-d

where B;={x;|x|<d} and X, denotes the characteristic function of the
interval [a, b]. The last integral tends to zero when t{—oco by Lebesgue’s
dominated convergence theorem. Thus

Eim u(t, ey =0 as {—oo,

From [(3.20), [(3.22) and [(3.30), it follows that

G311 +erty Torps %)
Vx|

An integration by parts in (3.19) gives

(3.31) u(t, x)=

+ai(t, x), x'=ré.

b J— 1 1 ® —-ivr-vcg| ﬁ_ __
Gy(r, 0, x5)= =27 —(z'r-{-c,,lxsl)goe " SIav(vgb( v0))dv .

From this we deduce the estimate

Ga(lx, ! +clty %/I) xa)

where
M
7 = for |x’|=1,
(3.33) 2(x)= (ei+1x II\;—czIxsl)«/lx |
for |x'|<1,

(er+calxs])/ [ 27}
and M is a suitable constant. From [(3.18), [(3.31) and [(3.32) with we see
that holds for this u(¢, x).

Now we show for general g= L%(R?). For arbitrary ¢>0, there exists
b= D(R?) such that [[¢—dollL2re) <&, because D(R?) is dense in L*(R?). Then
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lwg(t, ) —w3E, lizewrs
Slwy(t, )—wy (t llzewn HlwgE, )—wg (& )l zars
Hlwg (& )—wG@ e
2
:?/2;;‘|1¢_¢0||L2(R2)+”w¢o(t: D—wg (& Hlzews

2¢

= '\/C~2>+Hw¢(’(t’ .)—_w‘;o(t’ lz2rs -

Since ¢,= D(R?), there exists £,>0 such that for any =,

lwgo(t, )—w3,(t e <e.

Thus holds for any ¢<L%R?. This completes the proof of
3.6. O

In order to state our main theorem in this section, we recall some relations.
When fe4 and geD(A™Y?), h=f+iA V*ge 4. Let f5 and g5 be the Fourier
transforms of f and g with respect to the generalized eigenfunction ¢} of A,
respectively. Then

~ » o1 .

hif(n)=fif(n)+i o] g (n)e LA R?, C?)
and the Stoneley components vif(t, -)= L*(R?, C®) (j&M) of the solution v(f, x)
of the elastic wave propagation problem defined by [1.12) and [1.13) can be
represented in the form [3.5):

vif(t, x):l.i.m.(_L>S @i (x - n' ~tesin’ D =Cos1n" 1123l
Row \2T In'IsR

XU ) CPF ()P0 )Q(n )V [ [kif(n")dy', jeM,

where ¢3#(n’) and k$/(5’) be the functions defined by and [(3.3), respectively,
i.e.,

gbfj‘(Xa, ﬂ):.sw:gcyij:n/l e—cojlvy'l113|¢,1gj;(1],)Pj(77)’
R (xs n>=$¢\;%_l] RS-
By (3.4)
kif(n)e LAR?, C?),
and

U (@5 (" )P0:1x)Q(n ki (p)e LAR?, C*).
Taking as ¢ in each component of the matrix function
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U(p")C (6570 )DO01)Q( VASHR")

then we obtain the following main theorem in this section.

THEOREM 3.7. We assume that

feDA™NJI, geHND(A'?), Dis(ci)>0.
Let v¥f=(t, x) (jEM) be the functions defined by

GSt(r_cSl_t’ 0} xs)_r
Vr

(3.34) viie(t, x)= x'=rf, r=1x'120, 08",

where

- \—1 3 ;__,lw__ B tvr—Coi¥| Tyl
(3.35) Gz, 0, x)=1.i.m. \/Esoe 0¥ 12

— 1
X

X U(w@)C(@5}(v0)DO1,1)Q(0)~ v k(1) o(xs) dv.

Then we have
(3.36) lti»mnllvigf(l‘, D—vifet, lle=0.

viEe(t, x)E I is called asymptotic wave function for Stoneley component vij(t, x)

of the solution v(t, x).

§4. Transient Free (P, SV, SH) Waves

This section deals with the P, SV components vij(¢{, x) (€M) and the SH
components vi(?, x) (k€ N) defined by [2.19) and [2.22), (2.21) and [2.24), respec-
tively. It is shown in Section 5 below that each such components are transient
and free in the sense that they behave like a diverging cylindrical wave when

t—co. The proof of these statements are based on asymptotic approximations
of vi(t, x) (M) and vi(¢, x) (keN) for large ¢t which are derived in this

section.

In this section it is assumed as in Section 3 that the initial data f(x) and
g(x) are real-valued functions. We study mainly the asymptotic behavior for
large times of the component vip (¢, x), because the other components v, (2, x),
vi(t, x) (JE {s1, ps, S2}) and vi(t, x) (kEN={s,, s,}) can be handled in a quite
similar way.

If fed, geD(A™"?), the component vf, (f, x) has the following spectral
integral representation
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- l 3 ’ r— /
4.1) z)i*'pl([, x):l_}e;lg.(.é;r,,,ﬁlméRez(x -y chllr/l)U(77 )
X C(Pip (x5, 7)B0)Aty, (9)d7 .

Here U(yp’), C are the matrices defined by Afpl(n) is defined by and
¢ip (x5, ) is a generalized eigenfunction of Ai(n’).
We now recall that ¢f, (x5 %) has the following form:
I+ (.X ) x <0
1p 35 n ’ 3 ’
42  dhx, n)z{ .
¢{p-*1—(x8: 77)) x3>0)
e, (n)+e ¥Tsay(n)+e ¥ Aa)Tay(y), €0,
4.3) 1P (x5, 9)=
0, §<0,
eiepz(ﬂ'zpl)x8a4(n)+ei582(77"Zpl)x}}aa(n), E>0,
4.4) Pl (xs, )=
0, £<0.

Here a,(y) (=1, ---, 5) are bounded continuous 2X2 matrix functions of 5=
(’, §)=(n1, N2, §) and

2
i\/%’i«lnlz—ln’lz, Co lml>es In'l,
(4.5) &, (1, Ap)= e
i\/ln’iz—é’l’hﬂz, cp Il <es In'l,
(cf. [8, (4.9), 4.10)]).
Then v{, (¢, x) has for x,<0 the form
(4.6) vip (t, x)=Lli.m. —1—>S et 0 Ttep inh
1Pt ) 2 IpIsSR.£>0

R-—oo

XUy YC(Ps (%3, DDAty ()d7,
and the decomposition

. 1 Cemt o A
(4.7) =lim. —~)SI7]I§R_6>Oe“” 'Rt 11D U(n ) C(au()B0:x) Ay, (9)dy

R—co 2r

o 1 i(x'! n'—-&xe-LcC ’ A
+1.l.m.(_)gmswoeu n'=¢z3=te 5 10U (" )C(aa(7)B01 ) Tp, (7)d 7

Roc \2T

R—oo

. 1 i’ -n!— Ta—1cC / A
+l.1.m.(§;)g‘m§&£>oe( 7' =85 (1 App@s=icp 11D (y) )C(as(n)DB01x)hitp, (n)dy

=V, x)+V.(t, x)+V,({, x) if x,<0.

Since we can decompose v{p (¢, x) (x;>0) into a sum of integral expression of
type V4(¢, x) using we consider vip,(t, x) only in Ri={x=(x’, x;), x'ER?,
X3 ‘<0} .
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First we consider V,(¢, x). Let Y (¢) be the Heaviside function of & (i.e.
Y(&)=1 for £€>0 and =0 for £<0) and put

(4.8) D(n)=Y ©U(")Clar(n)D0s)hip, () -

Then @d= L¥R:, C?). As in Section 3, we can extend the result obtained for
= (R, C?) to the result for @<= L*(R%, C*) by using the fact that (RS, C?)
is dense in L*(R:, C?. Therefore it suffices to consider the integral

@9) Wit D= | e 7 msiieinogin)dy, pe 9R)=(RY, C)COR?, ).

Then
—a-—(x’qy’—{—x §—te,V | |2+E)=1x.—tc ~:-—‘5—~=—--——:<0
85 8 1 8 1\/l7],[2+$2
if x4<0, §>0 and t>0.

This means that the phase function has no stationary point on supp ¢(y) and
therefore we can see integrating by parts with respect to & that W (¢, x) tends
to zero when t—oo for fixed x and uniformly an each compact set KCR:. In
order to find the asymptotic behavior of W, x) as |x|—oo, we introduce
spherical coordinates

p=ww, v=|7|=20, &S

We find

(4.10) WL, x):é—r-S:yZe-“xw J(x, vyd,
where

4.11) J(x, »)=Ss2e‘”"”¢(uw)dw.

By we have

@12) I = (22 e gt (n Yo (bt a(x, ),

where
x=rf, r=|x{=0, 60&S?

and

4.13) lg(x, VI |11/\7/{0|2 for |vx|>0.

Note that if xeR2, ¢(v8)=0 because 6,<0 and supp pCR%?. Now we define
following Wilcox’s procedure [10]

(4.14) Giz, 0)=S:e*‘”'(iiy)¢(iu0)dv,
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then we have

_ Gi(rteat, 0)

(4.15) W, x)= r +ag.(t, x),
where

(4.16) ol x):—z—l;r—S:uze’“l‘”q(x, V)dy .
From we get the estimate

(4.17) (2, x)lg%é, for |x|=1.

By the same argument as in Section 3 which is due to Wilcox, one shows that

(4.18) Lim |W:(2, )l 222, =0.
As for V,(t, x), it suffices to consider W,(¢, x’, —x;) for x,<0. In fact,
(4.19) Wo(t, x)z_l.g ei(z:.?]l-zgf-tcll7)l)¢(7])d7}’ ¢EQ(R1)

2w RS

1

iy €Ty, — £

=W, x/, —xs).
Note that if x=R?® i.e. x=r0, 6,<0, then ¢(—vl’, —(—v0;)=0. Hence we
find

H(p—
(4.20) W(t, x)=—qg(i—;3££)—+ql(t, x/, —Xg),
where
(4.21) Gi(r, 0)=S:e‘"’(—z'v)¢(u0’, —v8y)dy.
In this case, we can also show that
(4.22) &EE”WZ(L D—=Wgt, Il 2xs,=0,
where

p—
(4.23) =(1, x):f—”(’—rfit’—ﬁ—), x=r0.
Next we consider the following integral
1 R -

(4.24) W (t, x):ﬂ_gnie“z st ~xgl () zc1|n|)¢(1])d77’ ¢E£D(Ri),

where
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/eI P—19" 1% clpl>I9'l,
(4.25) c<r;>={ S
iV Ip P=cilnl® cinl<in’l.

We take a C= partition of unity {X;, X,, Xs} in a neighborhood of supp ¢ (2CR2)
such that

(4.26) 0=X,(p<l (j=L,2,3), X%eC¥2y,
xl(ﬂ)+xz(7})+xs(7])=1 on &,

91:{77 ;1 lz>‘(‘l*;];|:) } ,

A e I01°
QZ_{U’ c2+2¢ <Ipl*< c2—2¢ }’

2i={n;1gr<-0)

ci+te
where ¢ is a sufficiently small positive constant. Using this partition of unity,
we decompose W,(t, x) as follows:

4.27) Ws(t, x)= jé Q}&_ngei(x' syt -zgl(p)—tey iy l)xj(,})¢(,7)d7]

3
=Z}1W3j(t, x), respectively.
First consider

(4.28) Wi, x)= «zl,;S,, gieet n s Vefini= =D, () (g)d 7
1

Making the change of variables (7, £)—(y’, 2), A=+/ci[n|*— (9[>, we get

(4.29) Wit D= | P2y 1L T T

(9" 2); p'eR2, 2>0

X J(np', D', E(p’, D)e(n’, &(n’, D)dn’'dA,
where

_6(7]1; 7]2’ 5) :_2___
a(ﬂl) nZ) 2) C%e ’

This transformation is non-singular on a suitable neighborhood of supp X,¢.
Noting that

J', Dy, &y’ NPy, E(p’, ED{(y’, V); n’€R?, A>0}),

we see that [(4.29) is an integral of the same type of (4.9) and (4.19). Therefore
we can show that

@30 JOy, D= E=8(y', D= B D7’ I".
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(4-31) 1}_{2”W§1(t, ')HLZ(Rs_):O;
and
(4.32) ltigloll Wat, - )—Wa(t, )llz2ws,=0.
Here
)
(4.33) Waelt, x)= ” 2 ., x=r0,
and .
(4.34) Gz, 0>=§:°ef”f<——z'»>f<v0', —104)

XX (v8’, EWO’, —vl))P(vl’, §vE’, —vls))dy.
Next consider

(4.35) Was(t, ’“):“z‘l&“gni e n'mtertn D3 iy 2= BY () () d 7 .
Making use of spherical coordinates in (¢, x)-space :

(4.36) 1=r8,, x;=rf; (j=1,2,3), r=+2+[x[2=20, 6&S*
We write the integral in as follows :

(4.37) W, x):%&nie“("’"i"clﬂoln|)+rﬁavw——cmxs(77)¢(77)d7].
Then

(4.38) b, P=0"-9"—c.0,1n| —ib:,v 19’ T°—EI91%, n=(y’, &),

is a complex phase function such that Im p(8, 7)>0 on supp Xs(n)@(n) when
0.<0. Since

Z§ 610°|§1+’034|n16fc|n12'
We find that
(4.39) bl aafk +| kél(ak—cloo-l’j?—k,)erc%azlszlz
+62 ((11—222))2|I7:7,||2 +i$2 =35>0

on a suitable neighborhood of supp Xg¢. Then for the operator L
l 3 0p d ap 0

k= 1377k aﬂk aE 65

-1

(4.40)
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we have

(4.41) eiTP(o-ﬂ):_l_L[eirp(0,7])],
Y

where p denoteés the complex conjugate of p. Using repeatedly this relation,
we find

Wa(l, x)=

AR AV O

:g;hs et7P @ L(As()P(n))dy

1 Sks e"p(o'm(tL)l(xs('l?)gﬁ(r]))dn .

2rrt Jr3
Here ‘L denotes the transpose operator of L. From this expression, we get
the estimate

M, 4.
(4.42) | Wss(t, x)| é_(ﬁTf)'xl—z)z/T’

where M, s, is a positive constant. Taking (>[n/2]+1, we deduce from the

estimate that
(4.43) Lim [[Was(2, -l 22 re)=0.
Now consider W,(¢, x). From we see that the linear operator
LR, C*)2Y (©)hty (9)—vip (¢, -)E LXRE, C)
is continuous uniformly in t=R. From (4.9) and we have
[Wi(t, Il L2rd)=~2x||e” 1" 7' d(n)ll L2(R%)
IWa(t, M i2rs)=~2rle 117 d(n)|l 2R3 -
From these relations, it follows that the linear operators
L¥RS, CHDhtp (n)—Vi(t, Y LARL, CY),
LY R, Cehty ()—Vt, )ELARL, CY),
are continuous uniformly in tR. Hence the linear operator
LY R, CH)2htp(n)— Vs, )€ LAR, C?)
is also continuous uniformly in tR and we have
Vit, ©)=Wa(t, x) for ¢(n)=2(nU(")C(as(mPBO1x)hip (7).

Thus for arbitrary >0, there exists a R>0 for which
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[Waalt, )l L2RS Aiz; 1212, cH <O for VIER.
Taking ¢ small enough, we have from [4.26) and [(4.27)

[Was(t, ) 2R niz; 1215y, €5 <O

Note that

D(p)=Y ©U(5)C(a(n)D0ix)htp () ED({nERY ; 7’0}, C*)
when
hto (DED({nERL; 7' +0}, C*),

and define v{g (¢, x) by

Gilr—cpt, 0) | Ghitr—cut, 0)
v v

vig(t, x)= , x€R:,

where Gf and G%, are the functions defined by [(4.2I) and [4.34) for ¢(n)=9D(x)
e9({neRs; p’#0}, C*). Then we conclude that

(4.44) im gy, ¢, =0t s, cv =0

when ht, (p)ED({neR:; 7’ #0}, C*).
For general ﬁfpl(p)eL2(R1, C?), we can show that also holds. In
fact, from the continuity of linear operators

LARS, C)>hty (n)—vip,(t, Y€ LARS, C3),
L¥R3, C*)20(n)—vig (@, - )€ LYRL, C?),
LYRS, C*)3 hiy ()~ (n)
=Y OU(")C(a:(nP0s)hip, (n)E L¥RE, C*),
and from the fact that 9({p=R%; »’+#0}, C*) is dense in L*R3, C°) by the
same argument in Section 3.
Therefore, the principal result of this section states as follows:
THEOREM 4.1. We assume that
feDAY™NI, geHNDA?).

Let vi°(t, x) (jEM) be the functions defined by

G;’l(?’—cs,t: 0) + G;I(r—cplt, 0) 5 x3<0,
7 v
(4.45) vizQ, x)=
v Gi(r—cs,t, 0) 4 G (r—cp,t, 0) , x3>0,
r Y

for teR, x=r0, r=|x]20, =S?, where if l=j, then
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(4.46) Gi, 0):1.g;m.gfefvr(—z'y)Y(—paa)U@o')c

R 1
X(a(vor’ _”03)@0”1)}1 }*j(vﬂ’, ‘—Ues)'mdv ’

and if l+], then
(4.47) Gi(r, 0)=l.’iz;m.S:e‘”’(——iv)_](vé?’, —v0 )X, (107, £(0’, —105))

XY (&0 —v0,))U(Wl )Cla(yvl’, £E08’, —v8,))P0,,,)

h ’ r 1
X hi;(b8’, E(vE’, —vby)) o(xs) dy

for n=vw, v=0, wS*. Here a’s are bounded continuous 2X2 matrix functions,

c,l

c,«/i”——(i—?—l)ln'!z

(4.48) Iy, D=

’

and X, satisfies

712
(4.49) 0st(psl, LeCy@y), le{n;|m2>—g'—}.
——¢
i

Then we have

(4.50) limljoi(t, )—viF(t, )a=0.

vi(t, x)EH are called asymptotic wave functions P, SV components vij(t, x) of
the solution v(t, x).
Moreover let v (t, x) (k& N) be the functions defined by

u(r—eyt, 0)

r x8<07
(4.51) viRt, =1
G;z(r—rcszt, 0) , xs >0’

for teR, x=r8, r=\x|=0, §=S% where if |=Fk, then
(4.52) Gi(r, 0):1.;.m.gfef~f<—ip)Y(—uas)U(yo')c
X (0 DBWE’, —vBNAHLE’, —ws)ﬁd»
and if l+k, then
R
0

(4.53) Gi(z, 0)=l.lie;r°r}.g e (—iv) J(vl’, —vl3,)X,(00’, §8’, —18,))

XY (O, —v03))U(00")C(0:x.PBWE’, £(0O’, —18,)))

A 1
X h#H(v0’, (067, —vas))—{"‘(x—s)dv
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for p=vw, v=0, wES*. Here B’s are bounded continuous functions, and | and
X, are defined by (4.48) and [(4.49), respectively. Then we have

(4.54) limlvgi(t, ) —vi° @, lla=0.

v3(t, X)E X are called asymptotic wave functions for SH component vii(t, x) of
the solution v(t, x).

REMARK. As to vi(t, x) (€M) and v*(t, x) (keN), we obtain similar
asymptotic wave functions by obvious modification.

Proof of is the same as the proof of [Theorem 3.7.

§5. The Asymptotic Energy Distributions for Large Times

In this section we calculate asymptotic energy distributions of the solutions
of the elastic propagation problem when t—oo, by using the asymptotic wave
functions vf<(t, x), vip(t, x) (jeM), v#>(t, x) (keN) which constructed in
Section 3 and 4.

In this section, as in Section 3 and 4, it is assumed that f(x) and g(x) are
real-valued functions.

THEOREM 5.1. Suppose that the solution u(t) of (1.12) and (1.13) defined by
(1.14) has the property
lim | () «=0,

for any initial data feD(AY)N\IH, g HND(A?). Then, for the solution u(t)
of (1.12) and (1.13) with initial data

(5.1) feDAVYNK, geIdND(A™E),
we have
(5.2) lz{m E(u, R?, t)=ltiigllu(t)lla=0.

PrROOF. From the condition and [2.8),
A”zu(t)zA“ze‘“‘”z(f+z'A“/2g)=e‘““”z(A”zf+z'g)e3[,
d
E—;u
Thus (d/d#)u(?) is the solution of for f/=AY*fe 4 and g’'=A"2ge D(A-"?).
Then by assumption

()= —i Al2e 14V (f L i A-112g)= —je AN AVf Yig)e A .
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. 1 d =
lim| A"*u(®)l«=0 and lim| 3 u(] =0.
Hence

d 2
3 — 1/2 2 ) —
lim E(u, R?, )=1im( “ - u(t)HﬁnA u®l%)=0. O

Let feD(AYYNK, ge HND(A?), Dis(c%,)>0, and v(¢, x) be the corre-
sponding solution of and [(1.13). We define the asymptotic wave functions
v, x) (1=0, 1, 2, 3) by

’

X
G.lg (x —Cszt, I /l’ xs)

17 ’

(5.3 v, x)= x"+0,

R
(5.4) G% (7, 0, rg)-lxm \/2 Se’”f‘cw”"”s'(—z’cscy)

x UwO)C(o3) PO, )RV v h (v0) ) dy,
1 R ivr—CoviT3gl(,

(55  Ghr, 0, x)=1im. \/27:5 PRERTIENTEN B

X Uw8)C($5 (v0)BO,,)QwO)IV v h$H(v0) ( )dv,

(=1, 2)
3 3 1 R tvr—Co v gl

(5.6) G%i(t, 8, xa)ZL}sz’Vﬁ"S e 0J (Gcosv)

x U(w®)C(5 (vﬁ)@lel)Q(vﬂ)\/-h f(v0) ( )du,

where ¢ is 1 or —1 according as x3<0 or x;>0. Then we have

THEOREM 5.2. Assume that
feDA™NHK, geIHND(A '), Dis(c})>0.

Then
G.7) %im” 0 oS, ) —uSke, )H =0, jeM,
.8) girg‘)—a-‘z—kvf,4(z, N— e, q”ﬂ:o I=1,2 3 jeM.

The proof of is the same as that of Theorem 3.2 except for
obvious modifications.
The calculation of asymptotic energy distributions are based on the next

lemma.
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LEMMA 5.3. Assume that

febA"*)Nx, gedNDA?), Dis(ci)>0.
Let

(5.9) B, $@)={x=R?*; csd—IW)= | x" | cset+I(), xgéR},
where 9(t) is any functions of t€R which satisfy

(5.10) 0=9(t)=  for ViER.

Then we have

(6.11) E(@iy=, B, 91), 1)

)
:SRS_M 1G%e(7, «, xo)li2sdrp(xs)dx,
3

9(t)
—SRS S Y M Ghi(r, 0, x,)-Gh(r, 6, x5)dbBdrdx;.

-I(JS! k,1=1

PROOF. From the definition of the energy (1.15)

3
(5.12) E@$>, B, z):SB(lvf;mp(x3)-— ) M“vf}?-vfff)dx.

k 1

By the change of variable »—cs,=7’, the first term of the right-hand side of
is

||Uisjt6”(t, ')Hz.ﬂ(a(c,f)(t))

o (egit+?
:S Ssat (t)SS].ng't(r_cslt) 0} x3)\2d0dr‘0(x3)dx3

—eoJegpt-9(0)

oo 19(“
:S S Ssx'G?‘”(” 0, x3)|2d0dro(xs)dxs.

~00) -9 (1)

By introducing the spherical coordinates x'=7@, r=|x’| =0, §S’, and by the
change of variable »—cs,t=7’, the second term of the right-hand side of is

3

§ MowSie(t, 1) oS, x)dx
k,l=1J)B(t, 9(t))

M-

o 9
IS S ) SsleszSt(r_cS‘t’ 0, x3)-Ghi(r—csit, 0, x,)d@drdx,

k! cgpt-odegyt—9(D)

I

== 5 (7" [ MuGh(r, 0, x9-Gir, 0, x)dfdrdx,.
k.1=1 s1

—-o0) =9 (¢)

Thus we have (5.11). O

The following theorem shows that asymptotic energy distributions concern
the asymptotic concentration of energy in expanding spherical region B(t, 9(1)).
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THEOREM 5.4. Assume that
feD A )NI, gedND(A™?), Dis(c})>0.
Let 9(t) satisfy and also

(5.13) lth” J(t)=o0.

Then

(5.14) lim E@i, B(t, 9@), )=E@i}, R?, 0),
and hence

(5.15) lcl.EB E(vf, R\B(, 39()), t)=0.

Proof. From the triangle inequality
| E(vif, B, )"*—E@S$}=, B, t)"*| < E(wf—vif=, B, t)2.
implies
ltim E@$i—vi>, B, t)"zéltimllvff —vif~llz=0.
implies

lim E@3f=, B, t={ " 163(r, -, xlizsndrp(xadz,

_SRS“’ S é11M“G"§‘(r’ 0, x5)-G(r, 0, x5)d0drdx,

- JS! k. 1=
=E®@sf~, R®, 0).
This gives [(5.14) and [(5.15). O

The next corollary shows the transiency of the Stoneley components v§i(¢, x)
(M) in the sense that the energy in any bounded region tends to 0 for t—co.

COROLLARY 5.5. Assume that
feDAN%, gedND(A™'?), Dis(c;)>0.
Let KCR?® be any bounded set. Then we have

(5.16) lim Evff, K, =0.

Proof. By the boundedness of KCR?®, there exists »>0 such that
KCc,={xeR? |x|<r}.
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In theorem 5.4, if we take

—IW)=r—csit=—csut,
then
KcR,CcR)\B(, 9() for VieR.
Hence

OgE(vlSjc) Ks l)éE(viS‘Jz: RS\B(t, g(t)); t)’
) follows from [Theorem 5.4. [

The main result of this paper is the following theorem. This theorem
shows that the energy of the Stoneley components vif(t, x) (€M) of v(t, x)
is asymptotically concentrated along the interface x,=0.

THEOREM 5.6. Assume that

feDAYYNL, geHND(A'?), Dis(c,)>0.
Then we have

(6.17) lim Evif, (C™(0)JCH(ONNB(E, J(D), H=E@if, R 0), jEM,

where

(5.18) C(O)={xsR:; —0(|x'|)<x,<0},

(5.19) C*(@)={xR%; 0<x,<0(|x" D},

(5-20) B(t, @)= {xER®; cst—IO= |’ | Scsit+90), x.ER},
(6.21) (@) ltiﬁrES(t):oo, [ 9()| <2cs:t,

(5.22) 0(|x’1):lI1§1;13w0([x’[)=oo, monotone increasing function.

Proof. 1t suffices to show that
(5.23) E.IE E@$=, R\((C~(@)\C*(@)NB(@, 9@), H)=0.
Because the triangle inequality and imply
ltiﬂrglE(vISf, K, )'*—E@sf>, K, H)''*|=0
for any KCR®. Note that

(5.24) RA\(((C(8)\UCHONNB({, @), 1)
={({xeR, x:,<—0(|x' DU {xeRs, (] = x:})NB(, W)}
Ul x| Sesit—I(), csit+IW=|x'], x,ER}
=G,\UG,,
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and

3
625  EwS, Gy 0= (18 pGr— 33 Miwsfevifr)dx, i=1 2.

k.l1=1

We consider the first term of the right-hand side of (5.25). By the change of
variable »'=r—cs.t,

cget+I() o0 -6
1035, Miiop=\. ) eilbae F) ) IGBr—cait, 8, x9)*p(xs)dxsd0dr

cget-9(0) 6(r)

= AT G 6, kaltex)dxadodr.

-9 Oir+egetd —o0

The conditions and (5.22) implies
lzl_fn 0(7'+CStt)ZE.m O(—I3(t)+25,t)=00.

Hence
liml vt g, =0-

By the change of variable »'=r—cs:t,

cget-6(r

oSk, )“3‘<Gz>=SB(S;M<»+S-« N C3itr—esit, 0, x1%d0dro(x)dx,

oo -0 ()
=SR(S_0(”+S_°° )SSIIG?;;(r, 0, x;)|?d0drp(xg)dx,.
From the condition we have
lim |03f5°(2, ) (g =0
The second term of the right-hand side of (5.25) can be treated similarly. This

completes the proof of O

Finally, we consider the P, SV, SH components vi(t, x) (J€eM) and vi(t, x)
(k=N). The next theorem shows that the P, SV, SH components behave like
free waves.

THEOREM 5.7. Assume that

feDAYVYNI, geIHND(A?E).
Then we have

(5.26) lim E@i, Suy(t, DUSp,(t, 9)USult, HUS,L, 9), 1
—_—_E(Ufj, Rs’ O)’ ]EM,
(6.27) lim E(vg,, Ss,(t, :USs,(1, 9), )=E (i, R, 0), keN,
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where
(5.28) Se(t, )= {xERS; ¢, t—IW = | x| Zco t-+IB)},

(5.29) Sp,(t, )= {xERL; ¢, t—IO | x| Scp t+ID)},
(5.30) Ssy(t, IO)={xERS; o)t —IDO S| x| St +ID)},

(5.31) Sp,(t, W= {x =R ; cp,t—IWO= | x| Scp,t+IB},
(5.32) 9(): lim 9(t)=oo.

The proof of this theorem is obtained by using Theorem 4.2 and modified
|

The next corollary shows the transiency of the P, SV components vij({, x)
(M) and the SH components vs(t, x) (kN) in the sense that the energy in
any bounded region tends to 0 for {—co.

COROLLARY 5‘.8. Assume that
feDAYHYNK, geHNDAYE).

Let KCR® be any bounded set. Then we have

(5.33) , lcirn E@ws, K, H)=0,
(5.34) ltim E(s, K, t)=0.
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