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§ 0. Introduction

The purpose of this paper is to give a direct proof of the Schwartz kernel
theorem for the Fourier hyperfunctions. The Schwartz kernel theorem for the
Fourier hyperfunctions means that with every Fourier hyperfunction K in
F(R™ X R™) we can associate a linear map

K F(R™) —> F/(R™)
and vice versa, which is determined by
(Ko, P>=K(PQ¢p), peF(R™), pcF(R"?).

For the proof we apply the representation of the Fourier hyperfunctions as the
initial values of the smooth solutions of the heat equation as in [3] which im-
plies that if a C~-solution U(x, t) satisfies some growth condition then we can
assign a unique compactly supported Fourier hyperfunction u(x) to U(x, t) (see
Theorem 1.4). Also we make use of the following real characterizations of the
space F of test functions for the Fourier hyperfunctions in [1, 3, 5]

[0%p(x)|expk|x|
sup

EF:{gDEC“

<o for some A, k>0}

= {peC=| Isup|p(x) exp k| x| <oo, sup|¢(&)| exp hl§| <o
for some h, £>0}

Also, we closely follow the direct proof of the Schwartz kernel theorem for
the distributions as in Hérmander [2].

§ 1. Preliminaries

We denote by x=(x,, x,)€R™ for x,&R™ and x,=R"2, and use the multi-
index notation; |a|=a,+ --- +a,, 0%=0% --- 9°» for a=(ay, -, a,)=N? where
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N, is the set of nonnegative integers.
For fe L'(R") the Fourier transform f is defined by

fO=[e=triax, ecke.

We first give two equivalent definitions of the space & of test functions for
the Fourier hyperfunctions in [1, 3, 5] as follows:

DEFINITION 1.1 ([3]). An infinitely differentiable function ¢ is in F(R") if
there are positive constants 4 and % such that Q©ET s, Where

6“ expklx
g’l,k:{SDECmI ISDIh_k: i‘.‘l_‘? I w(;?l]al') |A,l <OO}

DEFINITION 1.2 ([1]). The space F of test functions for the Fourier hyper-
functions consists of all C* functions such that for some A, 2>0

sup|o(x)|exp kx| <o,

sup| p(§)|exp h|§] <oo.
We denote by E,(x) the n-dimensional heat kernel;
(4zmt)y ™2 exp (— | x|%/4t), >0,
0, t=0.

E;(X)I{

We now need the following Proposition 1.3 and Theorem 1.5 to prove the
Main theorem in § 2.

PROPOSITION 1.3 ([4]). There are positive constants C and a such that
[02E (x)| S Clar+ig-rianid(g )2 exp (—a| x |2/4t),

where a can be taken as close as desired to 1 and 0<a<1.
From Proposition 1.3 we can easily obtain the following

COROLLARY 1.4. There exist positive constants C, C'>0 such that for every
e>0 and sufficiently small t>0

| Eo(x)] ge-1r2, 6= C’e™ ™/ exp [e(1/t+]x|)] .

PrROOF. By Proposition 1.3 we can easily see that there exist positive con-
stants C, C’>0 such that for every >0

sup |03E(x—y)|lexpe|y]|

(CeThyiaig] < C’e™*exp (¢/2t) exp (2e’t) exp e| x|.
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In fact, we have
[0SE(x—y)|
gc1a|+lt-—(n+|a|)/2a !1/2 exp(__a | x____y 12/4t>

SCir(grityiaigmnizexp g /2t[(n+ | a|) ] a2 exp (—a | x—y |2/4L)
S(V2Ce )| a|C’alexp (—a|x—y |2/4t).

Thus, we obtain that for every ¢>0 and small t>0
|Eo(x— )| ce-1/2, e =C’e "% exp [e(1/t+|x])],

which completes the proof.

THEOREM 1.5 ([3]). Let usF’ and T>0. Then U(x, t)=u,(E(x—y, 1)) s
a C* function in R"X(0, T) and satisfies the following:

(i) (9/ot—A)U(x, )=0 in R*x(0, T).

(ii) For every >0 there exists a constant C>0 such that

|U(x, )| <C exp [e(1/t+]x1)] in R*x (0, T).

(i) limoe U(x, =1 in F' i.c.,
u(p)=lim (UG, De0)dx,  peg.

Conversely, every C= function U(x, t) in R*X(0, T) satisfying (i) and (1i) can
be expressed in the form U(x, t)=u,(E(x—y, t)) with a unique element usdJ’.

THEOREM 1.6 ([3]). If o=F(R™) then it follows that ¢xE, converges to ¢
in F(R™) when 1—0".

We shall prove the associativity for convolution in F(R™).

THEOREM 1.7. If usIF’'(R") and ¢, p=F(R™) then

(ux@)xp=ux(*¢).

The proof is an easy consequence of the following

THEOREM 1.8. If ¢&TF s, ,(R"), ¢En, 1,(R"), then the Riemann sum

(1.1) > p(x—78)s™P(js)
jezn
converges to ox(x) in Fp, » when s—0 for h>max{h,, hy, 24/2}, k< min {k,, k;}.

Before proving we show the following refinement of Definition
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1.2 which is the main theorem in [I].

LEMMA 1.9. Let h>2+/2 and k>0. Then the following conditions are
equivalent :
(1) @ETFn. s
(ii) sups lp(x)lexp kx| <eco
sup: 10%@(x)| < C(h/24/2) *'a .
(iii) There exists an integer a>2+/2 such that

(L.2) sup|¢p(x)|exp kx| <o,
1.3) Sgpl¢(€)19Xp(2\/“2]$|/ah)<°0 :
PROOF. It follows from [Theorem 2.1 in that (ii) is a sufficient condition

for g%, .. So it suffices to prove the implications (i)=(iii) and (iii)=(ii)
(i)=(iii): It suffices to show [(1.3). We obtain from (i) that

185p©) =] |etr07p(x)dx |
<Coh'*'a !Sexp(—klx Ndx

<Cah/2/2)al(24/2/a)'*' for all a

where a>2+/2. Hence
gl/a!@\/mél/ah)'“' P8 = Cx§(2~/2/a)'“'<°°

Therefore we obtain [1.3).
(iii)=(ii): By Héolder’s inequality we have

197(x) |4 = o

= @y

1
(zx)hln

Jer=seeprae|”

1

S(!$| 'a‘|¢(51/2)4ad5(s|¢(6)|2a“a_ld$>4a_

[
exp(24/2 |&|/h)

< C/(h/2+4/2) 1= (al)te.

nggp

Thus we obtain (ii).

LEMMA 1.10. Let k>0 and j=(j1, =, Ja), JiEN,, and let 0<s<A for
some fixed A. Then
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2 stexp(—Rrsij)<C

jen?p
where C is independent of s and |j| is a Euclidean norm.
PrROOF. Note that +/n|j|=3);j: for j&N? and that the function x/(1—

exp (—kx)) is strictly increasing for x>0. If 0<s<A then

> stexp(—ks|jl)

JjeN?y
< 3 sexp(—ksji/AV/n)X - X 3 sexp(—ksi.//n)
jIENO anNO

2 n
:(1w¥~exp (—Sk s/ x/h;)f>

24 n
<<1—exp<—kA/¢"1T)) '

PROOF OF THEOREM 1.8. Choose h, >0 such that A>max{h,, hs, 2+/2}
and k<min{k,, k}. Let fy(x)=23; ¢(x—7s)s*P(js), s>0. By we
shall show that for any >0 there exists a constant 6>0 such that if s<d then

(1.4) Sliplfs(x%—go*sb(x)lexp kix|<e,
” P .
(1.5) sup| f«(§)— (&) lexp (2v2|§]/ah)<e

where ¢ >2+/2. From now on we take a=4+/2. Choose k£’ such that k<k’/<
min {k,, k,}.
If s<A then f;&€%, by Lemma 1.10. In fact,

[ fslnw= ?Laago(x_js) |s™ |§b(]_3_)[

hi*'a!

= CXsmexp (—(k,—k)js))
J

expk’'lx—jslexpk’|ss]|

=M,

where M, is independent of s<A. Similarly we obtain ¢*¢p&%F, ... For any
e>0 choose R=R.>0 such that

Thus for all s<A we obtain

(1.6) sup | fo(x)—px(x)|exp k| x| < sup (| fo(x) |+ |px¢(x)|)exp k| x|

1z|zR 1z |2R

<Csupexp(—Fk/|x|)exp k|x|

1z12R
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<Cexp(—(k'—k)R)
<Ce.

Note that for any s>0 the function f4(x) is continuous on the compact set
{x]]x] <R} and the sequence {f,|0<s<A} is bounded and equicontinuous. In
fact, for |x| <R we have

(L.7) | fs|=C" Zexp(—ki|x—js|)s" exp (—kq|js])

<C’e* 1R exp(—(ki+ka)ljs|)s™
J

=M,

where M, is independent of s<A. The last inequality is also obtained by
Lemma 1.10. Also, for any &>0 there exists 4,>0 such that if |x,—x.| <0,
then

(1.8 | fo(x)—fs(x2)|= D lp(x1—7s)—@(x2—7s)Is™|¢(5s)]
=2 V@) | 21— x| s" (S s)|

< Mix,—x.|

where the second inequality is obtained from [(1.7). Thus, by Arzela-Ascoli’s
theorem we obtain that for |x|<R the sequence {f;} converges uniformly to
o*d(x), i.e., for any ¢>0 there exists 0,>0 such that if s<d, then

(1.9) sup | fo(x)—p*d(x)|exp kx| <e

1Zz|IsR

If d=min{A, d,} then is obtained from (1.6) and [1.9). On the other hand,
if g.(6)=3);s™exp (—i(js)-&)¢(sjs) we obtain for some B>0 the sequence {g,|0<s
< B} is bounded and equicontinuous as and [(I.8). Thus for |§|<R the
sequence {gs;} converges uniformly to ¢(§), i.e., for any €>0 there exists ;>0
such that if s<d, then

(1.10) sup 1£:(&)—¢(&) | <e.

1&1sR
From the above fact we obtain [I1.5). In fact, if s<d=min {d;, B} then
(11D syp | &) —prdl®lexp(1€1/2h)
= sup | z]‘_,‘ P& exp(—i(js-E)s"P(1s)—p(&)P(&) lexp(|&]/2h)

= sup|g(§)lexp(1§1/2h)18:&)— ()|
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=Csupexn (—5 (i —7)1€1) 12— g®
+Cgupexp (—3 ()18 )12@1+19@D)

=C" sup g~ O +C eX"(_%(hl_l_?z")R)
<M., |

which completes the proof.
THEOREM 1.11. If usF’(R") then uxE, converges to u in F'(R™) as t—0".

PROOF. We note that u(d)=uxg(0) if Pp=F(R") and J(x)=¢(—x). This
gives |
(uxE)(P)=(uxE)x$0)=ux(E x$)0)=u(E*¢) .

By E ¢ converges to ¢ in F(R") as t—0*. So it follows that
(uxE.)(¢) converges to u(¢) as claimed.

§2. Main Theorem

We are now in a position to state and prove the Schwartz kernel theorem
for the space ¥’.

THEOREM 2.1. If KeJ'(R™XR") then a linear map KX determined by
(2.1 (Ko, &O=K(PQR¢p), PEF(R™), p=TF(R")

is continuous in the sense that K¢; converges to 0in F'(R™) if ¢; converges to 0
in F(R"™). Conversely, for every such linear map X there is one and only one
Fourier hyperfunction K such that (2.1) is valid.

ProOOF. If Keg/(R*1 X R"2) then deflnes a Fourier hyperfunction ¢,
since the map ¢—K (¢&X¢) is continuous. Also K is continuous, since the map ¢—
K(¢Q¢) is continuous. ’

Let us now prove the converse. We flrst prove the uniqueness, i.e., if

u(PRQp)=0 for g F(R™), p=F(R™),

then u=0 in F'(R"1 X R"2),

It follows from [Theorem 1.11] that uxE. converges to u in F’(R™) as {—0*.
However, uxE;=0, since E.(x,—:, xo—Yy,) is the product of a function of y,
and one of y,. Hence u=0 in ".
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We now prove the existence. Since KX is continuous, the bilinear form on
Fry o) (RM)X F py, 4, (R2)
(¢, @) —> Ko, ¢>

is separately continuous, therefore continuous, since ¥, . is a Fréchet space for
all h, k>0. Hence we obtain that there is a constant C(h,, k,, hs, k,) such that

(2-2) |<J<§0, ¢>l§cl¢|hl,k1|§0’h2,k2-
Set for (x,, xo)€R™ X R™ and small t>0

(2.3 Ki(x1, x)={KE: o(x2—"), Ec.'(x1—+))

where E. j(x;) is the n;-dimensional heat kernel.

We now show that K, has a limit in ¥/(R®*1 X R"?) as t—0, and then show
that is also satisfied by the limit. It follows from and Corollary 1.4
that for every ¢>0 there exists a constant C.>0 such that

| Ke(xy, x2)| SC.expe(l/t+|x ).
Since
JdE./0t=A.E., t>0
we have
o0K./ot=A.K, .

It follows from [Theorem 1.5 that there exists a limit K,=9’ such that K, con-
verges to K, in F'(R"1 X R"2).
Let ¢,=F(R"), j=1, 2 and form
(K., 901®(P2>’——SSKz(X1, xz)QDl(xl)(Pz(xz)dxldxz .
We have

SSK,(xl, X2)1(X1)pa(%2)d x1d X,

:§S<J<Et,2<-~xz>¢2<x2>, Eoa(-—x)ps(x)>dx,dxe.

Approximating the above integral by the Riemann sum we obtain from Lemma
1.8 that
(Ky, 901®§Dz>:<~7(((/>2*Ez,2), SDl*Ec.1> .

Since ¢*E. ; converges to ¢; in F(R") as t—0, it follows from that the
right hand side converges to (K¢, ¢,> as t—0. Thus

<Ko, ¢1®§02>:<J{§02, §01>

which completes the proof.



(17
L2]
[3]

L4]

[5]

Schwartz kernel theorem for Fourier hyperfunctions 385

References

J. Chung, S.Y. Chung and D. Kim, A characterization for Fourier hyperfunctions,
Publ. RIMS, Kyoto Univ. 30 (1994), 203-208.

L. Hérmander, The Analysis of Linear Partial Differential Operators I, Springer-
Verlag, Berlin-New York, 1983.

K.W. Kim, S.Y. Chung and D. Kim, Fourier hyperfunctions as the boundary values
of smooth solutions of the heat equation, Publ. RIMS, Kyoto Univ. 29 (1993),
289-300.

T. Matsuzawa, A calculus approach to hyperfunctions II, Trans. Amer. Math. Soc.
313 (1989), 619-654.

J.W. de Roever, Hyperfunctional singular support of ultradistributions, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 31 (1984), 585-631.

Soon-Yeong Chung

Department of Mathematics

Sogang University

Seoul 121-742

Korea

E-mail address: sychung@ccs.sogang.ac.kr

Dohan Kim

Department of Mathematics

Seoul National University

Seoul 151-742

Korea

E-mail address: dhkim@math.snu.ac.kr

Eun Gu Lee

Department of Mathematics

Dongyang Technical Junior College
Seoul 152-714

Korea

E-mail address: eglee@orient.dytr.ac.kr.



	SCHWARTZ KERNEL THEOREM ...
	\S 1. Preliminaries
	THEOREM 1.5 ...
	THEOREM 1.6 ...
	THEOREM 1.7. ...
	THEOREM 1.8. ...
	THEOREM 1.11. ...

	\S 2. Main Theorem
	THEOREM 2.1. ...

	References


