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§ 1. Introduction.

Relative to Takahashi’s theorem for minimal submanifolds, the idea of
submanifolds of finite type in a Euclidean space was introduced by Chen
and the theory is recently greatly developed. Let x: M—R"*' be an isometric
immersion of n-dimensional Riemannian manifold into an (n-+41)-dimensional
Euclidean space R™*! and A the Laplacian on M. As a generalization of Taka-
hashi’s theorem for the case of hypersurfaces, Garay [4] considered the hyper-
surface satisfying the condition Ax=Ax, where A denotes the constant diagonal
matrix of order n+1.

On the other hand, let x : M—R™ be an isometric immersion of a compact
oriented n-dimensional Riemannian manifold into R™. For a generalized Gauss

map G: M—G(n, m)CRY (N:(’Z) of x, where G(n, m) is the Grassmann

manifold consisting of all oriented n-planes through the origin of R™, Chen and
Piccinni characterized the submanifold satisfying the condition AG=21G
(AeR). For a hypersurface M in R"*! and a unit vector field & normal to M,
we can regard &(p) (p€M) as a point in an n-dimensional unit sphere S™(1) by
translating parallelly to the origin in the ambient space R"*'. The map § of
M into S™(1) is called a Gauss map of M in R"*'. Recently for the Gauss map
of a surface in R?® the following theorem is proved by Baikoussis and Blair [1].

THEOREM. The only ruled surfaces in R® whose Gauss map § satisfies
(1.1) AE=AE, AeMat 3, R)
are locally the plane and the circular cylinder.

It seems to be interesting to investigate the Lorentz version of the above

theorem. Now, let R™*! be an (m+1)-dimensional Minkowski space with standard

coordinate system {x,} whose line element ds® is given by ds*=—(dx,)*+
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3™, (dxy)®:  Let SP(c) (resp. H™(c)) be an m-dimensional de Sitter space (resp.
a hyperbolic space) of constant curvature ¢ in R**'. We denote by M™(¢) a
de Sitter space ST*(1) or a hyperbolic space H™(—1), according as e=1 or e=—1.
Let M be a space-like or time-like surface in R} and & a unit vector field normal
to M. Then, for any point p in M, we can regard &(p) as a point in H*—1)
or S%1) by translating parallelly to the origin in the ambient space R}, accord-
ing as the surface M is space-like or time-like. The map & of M into M%(e) is
called a Gauss map of M into R}. Then we prove the following

THEOREM. The only space-like or time-like ruled surfaces in R} whose Gauss
map &: M—M?(e) satisfies (1.1) are locally the following spaces:

i. R% SIXR!' and RIXS' if e=1,

ii. R® and H'XR' if e=—1.

In § 2 we define a space-like or time-like ruled surface M in R}. Roughly
speaking, non-degenerate ruled surfaces are divided into two types: Cylindrical
surfaces, non-cylindrical surfaces. The main theorem is proved for each case
in §3 and §4, §5.

The author would like to express her gratitude to Professor Hisao Naka-
gawa for his useful advice.

§2. Ruled surfaces.

First of all, we recall one of fundamental properties in a 3-dimensional
Lorentz vector space. Let V=V?* be a 3-dimensional vector space with scalar
product <, > of index 1. Then V is called a Lorentz vector space. In the rest
of this paper, we shall identify a vector X with a transpose ‘X of X. For any
vectors X=(X,) and Y=(Y,) in a Lorentz vector space V the scalar product of
X and Y is defined by <X, Y>=—X,Y +X,Y,+X.;Y,, whichis called a Lorentz
product. Let V be a 3-dimensional Lorentz vector space with Lorentz product
{,>. Then a Lorentz cross product X XY is defined by

(=X, Yo+ XoYs, XoVo—XoY,, XoV1—X1Y ).

Then it is easily seen that the Lorentz cross product satisfies the following.

LEMMA 2.1.
(2.1) XXY=0 X and Y are linearly dependent,
(2.2) XXY=-YXxX,
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(2.3) (XXY, X>=<(XXY, Y>=0,

(2.4) (XXY, Z)=<YXZ, X,

(2.5) X or Y : time-like = X XY . space-like,
(2.6) (XXY, XXY>=<(X, Y)!—<(X, X)XY,Y).

A time-like or null vector in the Lorentz vector space V is said to be causal.
For the Lorentz vector space the next two lemmas are given. See Greub [6].

LEMMA 2.2. There are no causal vectors in V orthogonal to a time-like
vector.

LEMMA 2.3. Two null vectors are orthogonal if and only if they are linearly
dependent.

Throughout this paper, we assume that all objects are smooth and all sur-
faces are connected, unless otherwise mentioned. Now, we define a ruled sur-
face in Ri{. Let I and J be open intervals containing 0 in the real line R.
Let a=a(u) be a curve on J into R} and S8=p(u) a vector field along a ortho-
gonal to a. A ruled surface M in R} is defined as a semi-Riemannian surface
swept out by the vector field B8 along the curve @. Then M always has a
parametrization

2.7) x(u, v)=a(u)+vp(u), uej, vel,

where we call @ a base curve and B a director curve. In particular, if g is
constant, then it is said to be cylindrical, and if it is not so, then the surface
is said to be non-cylindrical. Since our discussion is local, we may assume that
we always have B’(#)#0 in the non-cylindrical case. That is, the direction of
the rulings is always changing.

The natural basis {x., x,} along the coordinate curves are given by

xu——‘dx(%):a’—{-vﬁ’, xv=dx(£—)>=‘8 .
Accordingly we see
g(xu, xo)=g(@’, a")+2wg(a’, B")+v’g(f’, B),
&(xu, x5)=0,
g(xy, x0)=8(B, B).

Since M is a semi-Riemannian surface, it suffices to consider the case that « is
a space-like or time-like curve and B is a unit space-like or time-like vector
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field. The ruled surface M is said to be of type I or type II, according as the
base curve a is space-like or time-like. First, we divide the ruled surface of
type I into three types. In the case that 8 is space-like, it is said to be of
type 1 or I,, according as B’ is null or non-null. If B is time-like, it is said
to be of type I.. Since we have g(B, /)=0, if M is of type I_, then B’ is to
be space-like by Lemma 2.2. On the other hand, for the ruled surface of type
11, it is also said to be of type II} or II,, according as B’ is null or 8’ is non-
null. Notice that in the case of type I/ the director curve 8 always is space-
like. Then the ruled surface of type I, or I% (resp. I_, II, or I1%) is space-
like (resp. time-like).

Thus we can consider these kinds of ruled surfaces in R3.

Let M be a space-like or time-like hypersurface in R**' with local coordi-
nate system {x;}. For the components g,;; of the Riemannian metric g on M
we denote (g') (resp. g) the inverse matrix (resp. the determinant) of the matrix
(gi;)- Then the Laplacian A on M is given by

1 0 .. 0
—_— e SV ij__
2.8) A= Eaxf(‘/'glg ax,).
In particular, for a Gauss map & of a hypersurface M in RP**', it satisfies

(2.9) Af=m grad H+eS§

where grad H denotes the gradient of the mean curvature A and S denotes the
trace of the square of the shape operator.

§ 3. Cylindrical ruled surfaces.

In this section we are concerned with cylindrical ruled surfaces. Let M be
a cylindrical ruled surface swept out by the vector field 8 along the base curve
a in R:. That is, a=a(u) is a space-like or time-like smooth curve and B8=p8(u)
is a space-like or time-like unit constant vector along a orthogonal to a. Then
the cylindrical ruled surface M is only of type I,, I_ or II,. And M is para-
metrized by

x=x(u, v)=a(u)+vg, ue/j, vel.

It is space-like, provided that the base curve a is space-like and the director
curve B is space-like. In the other case, the surface is time-like. Let & be a
unit normal to M. It is defined by f™'a’X 3, where f is the norm of the vector
a’xB. Then we get g(§, §)=e(==1). Let M?(¢) be a 2-dimensional space form
as follows:
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1) in R, e=1;

M%s):{
H?*(—1) in Rj,

Then, for any point x in M, &x) can be regarded as a point in M%&) and the

e=—1.

map §: M—M?%(¢) is the Gauss map of M into M?*(e).
We give here examples of ruled surface of type I, and /I, whose Gauss

map satisfies

3.1 AE=AE, AeMat(3, R).
EXAMPLE 3.1. A hyperbolic cylinder

H‘(c)sz{(xo, X1, xg)eR'g'l——x%—l—xizl::—rz, r>0}

is a cylindrical ruled surface of type I, with base curve a(u)=(r cosh u/7,
rsinh u/r, 0) and director curve B(u)=(0, 0, 1). The Gauss map is given by

$:<—sinh —%, —cosh l:—, 0),

1

and the Laplacian A¢ of the Gauss map & can be expressed as

Hence the hyperbolic cylinder satisfies (3.1) with

—iz 0 (113

A=l T 1
- 0 —_2‘ a23

I's
Y0 0 Qg3

ExAMPLE 3.2. A Lorentz circular cylinder
S}(c)XR:{(xO, %1, x)ERY| — x4 xt= =1, r>o}

is a cylindrical ruled surface of type I/, with base curve a(u)=(» sinh u/7,
The Gauss map is given by

cosh u/r, 0) and director curve B(u)=(0, 0, 1).
u .U
E—(—cosh - —sinh . 0),

and the Laplacian A& of the Gauss map & can be expressed as

AEZ;IEE.

Hence the Lorentz circular cylinder satisfies (3.1) with
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iz 0 ay

|7
A= 0 ;-2- Agg
0 0 ag

PROPOSITION 3.1. The only cylindrical ruled surfaces of type I, (resp. II,)
in R} whose Gauss map satisfies the condition (3.1) are locally the plane and the
hyperbolic cylinder (resp. the Minkowski plane and the Lorentz circular cylinder).

PROOF. Let M be a cylindrical ruled surface of type I, or /I, parametrized
by

x=x(u, v)=a(u)+vl,

where B is a unit space-like constant vector along the curve a orthogonal to it.
That is, it satisfies g(a’, 8)=0, g(B, B)=1. Acting a Lorentz transformation,
we may assume that B=(0, 0, 1) without loss of generality. Then a may be
regarded as the plane curve a(u)=(a,(u), a,(u), 0) parametrized by arc-length;

gla, a’)=—a?+ai’*=—c¢.

The Gauss map & is given by §=(—ai, —ajq, 0). It is the space-like or time-like
unit normal to M, according as ¢é=1 or —1. Since the induced semi-Riemannian
metric g is given by g,,=e¢, £:.=0 and g.,=1, the Laplacian of & is given by
dé=(—ea’, —ea¥, 0) from (2.8). Thus, from the condition (3.1) we have the
following system of differential equations:

5“’;I:al1a;+alza6 ,
(3.2 eali=aai+azaq,
0 =agaitayag,

where A=(a,;;) is the constant matrix.

Now, in order to prove this proposition we may solve this equation and
obtain the solution a, and «,. First we consider that the surface M of type
I,, i.e., the plane curve «a is space-like (e=—1). So we get g(a’, a’)=—a{*+a’?
=1. Accordingly we can parametrize as follows:

3.3) as=sinh 4, ai=cosh 64,
where #=6(u). Differentiating (3.3), we obtain
a’y=8’ cosh 4, a?=80" cosh 846’2 sinh 4,

(3.4)
a’{=46" sinh 6, a’y=0" sinh 6+6"*cosh 6.
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By and (3.4) we have
—(8” sinh 8+ 6% cosh #)=a,, cosh §+a,, sinh 4,
—(0” cosh 846’2 sinh )=a,, cosh 6§ +a,, sinh 4,

which give
(3.5) 0” =(a,,— a,;) sinh @ cosh 8+ a,, sinh®*d —a,, cosh?d,
(3.6) 0’2=(a@4— a,,) sinh @ cosh 8-+ a,, sinh?d —a,, cosh®4d.

Differentiating we get
200" =0’ {(as;—a,5)(cosh?f +sinh®0)+2(as,— ay,) sinh 8 cosh 6}.
Substituting into this equation, we get
(3.7) 0’ {4(a,,— a,,) sinh 0 cosh 8+ (3a,,— a,,) sinh?@+(a,,—3a.;) cosh?4} =0.
We suppose that 6’:+0. By and (3.7) we get
3.8) a1 =0, A15=031 =03 =03,=0,

because sinh @ cosh #, sinh?f and cosh?@ are linearly independent functions of
0=0(u). Combining the above equations with gives

Hziiu—l—b,
r

where
1
"‘—‘2‘:011:022, 7>0, bER.
r

Accordingly we have
a,==+7r cosh 8 +c,, cER,

a,;==+rsinh 8+c¢,, a.<=R.
This representation gives us to
—(@y—co)*+(ar—c)*=—r?  r>0.

We denote by H(r, (co, ¢;)) the hyperbolic circle centered at (¢, ¢;) with radius
r in the Minkowski plane R? (the (x,x;)-plane). By the above equation the
curve a is contained in H(r, (¢, ¢;)) and hence the ruled surface M is contained
in the hyperbolic cylinder H'XR.

On the other hand, let J, be a set {usJ|8’(u)=0}. We claim that if J,
is not empty, then J, is to be J itself. In fact, we suppose that J,+], i.e.,
J—Jo#=®@. Then is satisfied on J—J,. Since A is constant matrix,
is satisfied on J. So, leads that 6”=0 on J, i.e., @’ is constant on ].
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By assumption, there exists u,e J, and 6’(u,)=0. Thus 6’ is zero on J, a con-
tradiction. So in this case @ is constant on J, and hence we obtain that the
normal vector £ is the time-like constant vector by [3.3). It shows that M is

contained in RZ

Next we are concerned with the cylindrical ruled surface M of type I1,,
i.e., the plane curve a is time-like (¢=1). Then the surface M is time-like and
we get g(a’, a’)=—ag*+ai*=—1. Accordingly we can parametrize as follows:
as=cosh @, a;=sinh §, where §=60(u). By the similar discussion to that of the
above ruled surface of type /., we can get

(3.9) 0’ {4(a,;—as,;) sinh @ cosh 8 +(3a,;— a,,) cosh®@+(a,;,—3a,,) sinh?*@} =0.
We suppose that 6/:20. By and (3.9) we get

a;1=0s, Q12 =05 =03 =04, =0,

which yields that
0=i—717u+b, ;];2"—'2011:022, r>0, beR.

Accordingly we have

a,==+r sinh @+c¢,, eER,

a,==rcosh 0+c,, a<eR.
This representation gives us to

—(ao—co)*+(a1—c1)*=r?, r>0.

We denote by Si(r, (¢, ¢,)) the pseudo-circle centered at (¢,, ¢;) with radius » in

the Minkowski plane R? (the (x,x,)-plane). By the above equation the curve a
is contained in Si(r, (¢, ¢,)) and hence the ruled surface M is contained in the

Lorentz circular cylinder SiXR.

On the other hand, if a set {u<J|6’(u)=0} is not empty, then @ is con-
stant on J by the similar discussion to that about the surface of type /.. So
we get that the normal vector & is the space-like constant vector. It shows

that M is contained in R2. O

Next, we consider a cylindrical ruled surface of type /. in R}. We first
give an example of the ruled surface of type I_ whose Gauss map satisfies

ExAMPLE 3.3. A circular cylinder of index 1

RixS*e)={(xs, x:, 2RI xi+xi=—=r%, r>0}
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is a cylindrical ruled surface of type I_ with base curve a(u)=(0, » cos u/,
r sin u/r) and director curve B(u)=(1, 0, 0). The Gauss map is given by

Uu . u
=(0, cos — sm——),
&=(0, cos =, sin

and the Laplacian Af of Gauss map & can be expressed as

1
Hence the circular cylinder of index 1 satisfies with
a, 0 O
1
A~—- (/P31 r“Tz‘ 0
1
agl 0 ;‘2‘

PROPOSITION 3.2. The only cylindrical ruled surfaces of type I. in R}

whose Gauss map satisfies (3.1) are locally the Minkowski plane and the circular
cylinder of windex 1.

PROOF. Let M be a cylinderical ruled surface of type /.. Then M is para-

metrized by
x=x(u, v)=a(u)+vQ,

where B is a unit time-like constant vector along the space-like curve a ortho-
gonal to it. That is, it satisfies g(a’, 8)=0, g(8, B)=—1. Acting a Lorentz
transformation, we may assume that B=(1, 0, 0) without loss of generality.
Then a is the plane curve a(u)=(0, a,(u), a,(u)) parametrized by arc-length;

(3.10) gla/, a'Yy=a’+as*=1.
The Gauss map & is given by £=(0, a;, —aji). It is the space-like unit normal

to M. The Laplacian of £ is given by A§=(0, —a¥, a%). Thus, from the con-
dition (3.1) we have the following system of differential equations:
0 =apai—aaji,
(3.1 a=apa;—asaj,
" ——

4
al=aga;—agya;.

Now, we solve this equation and obtain the solution a, and a,. From (3.10)
we can parametrize as follows:

(3.12) al=cos 6, as=sin 0,

where §=0(u). Then, differentiating (3.12), we obtain
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aj=—0"sinf, ai{=-—0"sin—6""cosb,

3.13
S a}=0"cos 8, aj=0"cos—0"sinb.

By (3.11), and (3.13) we have
—(8” cos 0 —6' sin §)=a,; Sin 6 —a,; cos 6,

—(6” sin 0+6"% cos §)=a,, sin 0 —ay; cos 6,

which give
(3.14) 0" =—as,, Sin®0+ a,; cos®0 —(a,,—ass) sin 6 cos 4,
(3.15) 0'*=a,, sin%0+ a s, cos?0 —(a,s+as,) sin 0 cos 6.

Differentiating we get
2070”7 =0’ {2(Gyy— a45) Sin @ cos § —(ay3+ a59)(c0s?0 —sin?@)}.
Substituting into this equation, we get
(3.16) 0’ {4(ass— ass) Sin 0 cos 0+ (ass+3as,) sin®0—(3a,5+as,) cos*d} =0.
We suppose that §’+#0. Then by and (3.16) we get

Q12=013=093=0g=0), A22=0Qgs,

which vyields that @=+u/r+b, 1/r*=as,=as, r>0, b&R. Accordingly we
have
a,==r sin 0+c,, . €R,

a,=Fr cos 0+c,, c.<=R.
This representation gives us to
(a;—c )P+ (az—cy)’=r?,  r>0.

We denote by S(r, (¢, ¢,)) the circle centered at (¢, ¢,) with radius » in the
plane R? (the (x,x,)-plane). By the above equation the curve a is contained in
S(r, (¢, ¢»)) and hence the ruled surface M is contained in the Lorentz circular
cylinder R}Xx S

On the other hand, if a set {usJ|6’/(x)=0} is not empty, then @ is con-
stant on J by the similar discussion to that in Proposition 3.1. So we get that
the normal vector & is the space-like constant vector. It shows that M is con-

tained in R:. dJ
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§4. Non-cylindrical ruled surfaces of type I,, I_ or I/,.

In this section we are concerned with non-cylindrical ruled surfaces of type
I., I_ or II, in the 3-dimensional Minkowski space R$. Let M be a non-
cylindrical ruled surface of type I,, I_ or II, with the base curve a and the
director curve 8. That is, a=a(u) is a space-like or time-like curve and f=
B(u) is a space-like or time-like unit vector field along a orthogonal to @. Then
M is parametrized by

@4.1) r=x(u, )=a@@)+vp(), uc], vel,

where g(8, 8)=e.==+1 and g(a’, B)=0. Here we can regard 8 as a curve in
M?*(e,) parametrized by arc-length u, i.e., g(8’, f’)=es==x1. And we have the
natural frame {x,, x,} given by

(4.2) xu=a'+vf’,  x.=0.

Let & be a unit normal to M. It is defined by f~'x,Xx, where f is a positive
smooth function defined by f?=e,g(x,, x,). Then we get

8§, §=e=—¢e(==1).
Accordingly & can be regarded as a Gauss map of M into the 2-dimensional
space form M?*(e).
THEOREM 4.1. The only non-cylindrical ruled surfaces of type I, (resp. I.
or 11,) in R} whose Gauss map satisfies
4.3) AE=AE, AsMat(3, R)

are locally the plane (resp. the Minkowski plane).

PROOF. Let M be a non-cylindrical ruled surface of type I,, I_ or II.
parametrized by
x=x(u, v)=a(u)+vp(u), ue], vel,

where B is a curve in M?e) parametrized by arc-length. The Gauss map
&: M—M?*e) of the surface M is given by

E=f"HxuXx0)=f " a'+vB")XB.

We define smooth functions 4, 2 and vector fields X, Y as follows:
h=g(a', B),  k=gla’, a)/2,
X=a’'Xp, Y=8"X%8.

4.4)

Then we have
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fi=—cey(esv®+2hv+2k),

4.5)
gX, X)=—2¢e,k, gX,Y)=—eh, g, Y)=—¢ss,,

where we have used [2.6). Then & is represented as §=f"'(X+4vY). It is easy
to show that the Laplacian A of M can be expressed as

w0 10 fo0
(4.6) A2552(_%‘a—;{ }-_2'3_1;2_) f av+av2)
Since we get

% Texoryr L xory,

ou It f

giui :_L'}’ﬁfﬁ(xww —2 fﬁ: (X'+vY’>+—jlz(X"+vY”>’
- ~Lxrory+ }Y

A ffoZL()H Y)— 2?;)/

we obtain by

uu_3 uz o0 v2
82A$=(—eff 7 f +ff fsf )(X+vY)
3e ?’j (X' 4+vY’)+e fs(X”—i—vY”) + ;;’Y
By the assumption and the above equation we get the partial differential
equation

{—e(f fuu—3F ")+ (S foo— foDHX+VY)
4.7) —3ef fu(X'+vY")Fe fAX"+VY ")+ f2fY

=&, f*AX+0Y).
By (4.5) we have

ef fu=—ex(h'v+R), ef fo=—¢x(esv+h),
e(f funt fu)=—¢es(h"v+R"),  ffoot fol=—66s8s.

Using the above equations, we can eliminate f,, and f in and then f,
and f,. Then we have the following equation:

{(h"v+k")+4e, U h'v+ k') —ees f2—2e,(esv+ h)} (X +vY)
+3(h' v+ X +vY )+ ee, fAX"+vY")—e fA(esv+h)Y
=ftAX+vY),
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which can be regarded as the polynomial with the variable f:
—AXHvY) o4 {—cee(X+vY)Fee( X" +0Y ") —e(esv+h)Y} f*

(4.8) +L{(h"v+ k") —2es(ev+ 1) H (X +0Y ) +3(hv+ k)X’ +0Y )] f?
+4dee,(h'+vR )X +vY)=0.

By the definition of the function f (4.8) becomes the polynomial with the
variable v whose coefficients are functions of variable . Then, by the co-
efficients of v® and v’, we have

4.9) AX=0, AY =0,
where A is the matrix, and X and Y are vectors. Suppose that A is non-
singular. Then means that X=Y =0, which implies that §=0, a contra-

diction. Accordingly we see that the matrix A is singular.
Next, consider the coefficients of the other powers of v in and using

we obtain

(4.10) Y”=0,
(4.11) EgX”+63X+4:5253hy,/_35283h,Y’—(h+€253h”)Y=0,
(4.12) 4e,esh X" —3es63h’ X'+ (dh —eoeh”) X +4e,(h2+e3R)Y”

—3ea(esk’ +2hh" )Y —(2e,h?+2e,h h” —Ae,h' 4k + 56,k ")Y =0,
deg(h?+eok) X" —3ey(esk’ +2h RN X'
(4.13) +(Besh?+4e,h ' —2e,hh” —ese k") X +8esh kY ”
—6ey(hb/+Eh)Y +24esh’ k' —6esh bk —esh k" — sk h")Y =0,
8esh B X" —6ey(h b/ +kh") X' +22h*+4eoh’ k' —esh k" —esk h")X
@19 +4e,k?Y " —Besk k'Y + 226k — ek k" —Ae B2 —2h2R)Y =0,
(4.15) dey k2 X" —6eok b’ X'+ 22k hP+ 26,k — ek b — 26, k)X —4h k2Y =0,

From we have Y =ua-+b, where a and b are constant vectors. We claim
that Y=b(0), i.e., a=0. In fact, since g(t, Y)=—¢e,e; by (4.5), we have

ug(a, a)+2uga, b)+g(b, b)=—-¢;¢,,
from which we conclude
g(a, a)=0, g(a, b)=0, g(b, b)=—z¢s¢;.

Since the vector Y is defined by B’Xpj, we get g(Y, 8)=0 and g(¥, 8)=0,
from which imply that
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e, p=gla, H=0, - s(a p=s(a, p)=0.

Since g(8, B’)=0, it suffices to consider the following three cases. First of all,
if B and B’ are space-like, then from g(b, b)=—1, g(a, b)=0 and Lemma 2.2 a
is space-like. On the other hand, if 8 is space-like (resp. time-like) and B’ is
time-like (resp. space-like), then Lemma 2.2 implies that a is space-like. Since
g(a, a)=0, we get a=0, i.e., we have Y=>b(+0). This yields that g(8, b)=0,
which means that S8 is contained in the plane passing through the origin in Rf.
Without loss of generality, we may suppose that b=(b,, b,, 0) and g(b, b)=
—by®+b,®2=—¢,¢e5. Then we get

Y:(YO, Yl, Yz):(bo, bly 0)'

Now, from we have e, X7+ e X—(h+¢e,6:h”)Y =0. If we put Z=X—¢;hY,
then we have

(4. 16) Z”+€zssz=o,
4.17) 8(Z, Z)=¢x(esh®—2k),

where we have used (4.4) and (4.5). Using Y,=0 and [(4.16), we see that the
xs-component of is given by

(4.18) h”X.+3h’'X3;=0,
where X=(X,, X,, X,). Using [(4.16) and [(4.18), we have from
4.19 (2esh?—4k44e,h’'2—5,83") X, — 36,65k’ X =0.

By making use of 4.18) and equations (4.14) and can be

written as
(4.20) h'/(k’—e&shh’)X,=0,
4.21) (k’2—2esh’2k)X,=0.

Now, using the equation (4.17)~(4.21), we will prove that Z=0 on J. We
first prove that X, vanishes on J. In fact, we suppose that there exists u,&J
such that X,(u,;)#0. Let J, be an open interval containing u, in {ueJ|X.(u)

#0}. Then, from and we obtain

(4.22) h'(k’—eshh’)=0 on Jy,

(4.23) k'?—2e,kh’*=0 on /.

Differentiating we get

(4.24) R"*+ k' k" —es(R”h'*+4k’h'h" +2kh"*+2kh'h")=0 on J,.
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Let /¢ be a set {usJ,|h’'(u)+#0} and J} a complement of JJ. On J} we get
g(Z, Z)=0 by and [4.23). By [4.18) and [4.23)] we have that A”=0 and
k’=0 on Ji. Since we have 2”=0 on J} by leads that ezh®—2k
=0, i.e., g(Z, Z)=0 on Ji. Since & and B are orthonormal vectors and both
orthogonal to Z on J,, if the plane spanned by & and @ is space-like (resp.
time-like), then the vector Z is time-like or 0 (resp. space-like) and hence Z=0
on J,. This means that X,=0 on J,, a contradiction. Thus X,=0 on J, i.e.,
Z is contained in the x,x,-plane. We claim that X and Y are linearly dependent
on J. In fact, if there exists u,&J such that X(u;) and Y(u,) are linearly
independent, then there exists a positive number & such that X and Y are
linearly independent on J.=(u;—e¢, u;+¢). The plane spanned by X and Y is
to be x,x;-plane on J.. Since g(X, 8)=0 and g(¥, B)=0, B is parallel to the
x®-axis on J., i.e., B=y(u)e, on J., where ¢,=(0,0,1). Thus we have b=
B’XB=0 on J. a contradiction. Thus X=gY, where ¢ is a non-zero smooth
function on J. By the definition we have (a’—gB8’)XB=0. Since a’—gp’ and
B are orthogonal, we have a’—¢gB’=0. From (4.4), we get h=ge;. Hence Z=
X—&hY =0 on J.

By the definition we see (a’—eshf’)XB=0. Since a’—e;hB" and § are
orthogonal, we have by (2.1)

a’—gsh B/ =0.

By the definition of & we obtain £=f"(e;h+v)b==+b. It means that if M is
contained in R? or R%, according as e==—1 or e=1. This completes the proof. [

REMARK. As is seen from the proof above, Theorem 4.1 holds under the
condition that each entry of A is a smooth function of u. But it is not valid
provided that entries are smooth functions of » and v.

We can consider an example which satisfies the condition where an
entry of A is a function of v.

ExAMPLE 4.1. A helicoid of 2nd kind with a base curve a(u)=(0, 0, ) and
a director curve B(u)=(sinh u, cosh %, 0) is the non-cylindrical ruled surface of
type I,. The Gauss map is given by

1 .
E= ﬁ(cosh u, sinh u, v).

The Laplacian A& of Gauss map & can be expressed as

—2 &, |vl<1.

AC=
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EXAMPLE 4.2. A helicoid with a base curve a(u)=(u, 0, 0) and a director
curve B(u)=(0, —sin u, cos ») is the non-cylindrical ruled surface of type I/,.
The Gauss map is given by

1 .
E—mt(v, —CcOoS u, —Sin u).

The Laplacian A¢ of Gauss map & can be expressed as

—2

A==y

3 lv| <1.

REMARK. Since a helicoid and a helicoid of 2nd kind are both maximal
surfaces in Rj3, it is seen by (2.9) that the Gauss maps satisfy A&=f(u, v)¢.
But, in these example, f(u, v) depends only on v.

§5. Ruled surfaces of type /2 or II9.

In this section we are concerned with non-cylindrical ruled surfaces of type
1% or II{ in the 3-dimensional Minkowski space R}. Let M be a ruled surface
of type I% or II} with base curve a and director curve 8. Then the surface
M in R} is parametrized by

6.1 x=x(u, v)=a(u)+vp(u), ues], vel,

where g(B, f)=1, g(a’, B)=0 and B’ is null. So B8 can be regarded as a null
spherical curve in S%(1) parametrized by u. For such ruled surface M we have
the natural frame {x,, x,} given by

(5.2) xu=a'+vf’, Xp=p.

Let § be a unit normal to M. It is defined by f~'x,Xx, where f is a positive
smooth function defined by f*=—eg(x,, x4). Then we get

8§, &)=e.

Accordingly & can be regarded as a Gauss map of M into the 2-dimensional
space form M?%).

THEOREM 5.1. There are no ruled surfaces of type 1% or 11 in R3 whose
Gauss maps satisfies

(5.3) As=A¢, AeMat(3, R).

PROOF. Let M be a ruled surface of type /2 or I/ parametrized by

x=x(u, v)=a(u)+vp(u), uej, vel,
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where g(a’, a’)=e¢,, g(a’, §)=0 and g(B, B)=1. The Gauss map &: M—M?*(e)
of the surface M is given by

E=fHxuXxp)=fHa'+vB")XB.

We define a smooth function 42 and vector fields X, Y as follows:

h=g(a’, B), X=a’'XB, Y=8"X8.

Then the vector Y is null. In fact, by and the definition of Y, we get
g(Y,Y)=—g(8’, B)8(8, B)=0. Accordingly we have that Y =0 or null. But
Y'=0 if and only if 8’ is parallel to §, a contradiction. Hence Y is null. Since
the vector B’ is null and orthogonal to Y, there is a non-zero smooth function
a such that Y=ap’ from Lemma 2.3. By the property of the Lorentz cross
product, we have Y’'=B"%XB=a’B’+aB”, which implies g(a’Bf’+ap”, B8”)=0.
Because 8’ and B” are orthogonal, B” is the null or zero vector. Thus there
is a smooth function b such that §”=b8’ and we get

(5.4) Y’'=bY, Y= +b%Y.

It is easy to show that the Laplacian A of M can be expressed as
_(_ Ju @ 1N (fu0

6-5) A=e f* ou +f28u ) f 8v+3v )

Accordingly we get

_ ffuu'“Bfu ffvv va
AE—-(——e 7 s )(X—}-vY)

3¢ L2 X 1oy ) e L Xy + L2y

° 7 f* f*
By the assumption and the above equation we get the partial differential
equation

{=&(f fuu=3Fu")+ f3(f foo— o} (X+0Y)
(5.6) —3ef fuX'+0Y ") +e fAX"+0Y )+ [ foY
=ftAX+vY).
Since we have f2=—¢(2hv+¢,), we obtain
ffu=—chv,  [ffo=—c¢h,
fluuwtfu*=—¢eh"v,  [fwtf"=0.

Using the above equations, we can eliminate f,, and f,, in and then f,
and f,. Then we have the following equation:
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{h"v—44def~*hv)*—2h*} (X +vY)+ 3R v( X 4+0Y)
+efUX"4vY")—e fPhY — f*A(X+vY)=0,
which can be regarded as the polynomial with the variable f:
—AX+vY) fe+e{Y v+ (X" —hY)} f*
(5.8) +A{(h"v—=2n)X+vY)+3(R Y v+ h' X" v)} f?
+4e(h’'v)X( X +vY)=0.

From the equation f?=—e&(2hv+¢,) and we can calculate the coefficients
of v*. Then we have

5.9) h*AY =0.
Next, considering the coefficients of the other powers of v in we obtain
(5.10) 8h*AX+12¢,h*AY +4h?Y " +2(2h'*— hh")Y —6hh'Y ' =0,

126, h*AX+6hAY +4h*X” —6hh X' +(@4h'*—2hh")X

(5.11)
+4e,hY” —3e,h'Y’+e,h"Y =0,
6hAX+e, AY +4e,h X" —3e,h' X’
(5.12)
+(4h3—e h")X+Y " —2¢,h%Y =0,
(5.13) 8 AX+X"+2e,h*X —hY =0.

Now, we prove that the function 4 vanishes on J. In fact, suppose that
h+0 on J. Then there exists u,=/ such that h(u,)#0. Let J, be the open
interval containing u, in {ueJ|h’(u)#0}. Then, from[5.9), we get AY =0 on
Jo, where A is the matrix and Y is the vector. By [5.4) and [5.10) we have
AX=0 (modY) on J,. Then [(5.13) implies

(5.14) X" +2e,h2X=0 (modY) on J,.
Using (5.12) and we have

(5.15) 36, X' +(e1h”"4+4h%)X=0 (modY) on J,.
Using (5.11), [5.14) and [(5.15) we get

(5.16) h’:X=0 (modY) on J,.

We know here that the differentiation of the function 2 is identically zero on
Jo. In fact, if we suppose that A’#0 on J,, then there exists u;&J, such that
h'(u)#0. From X(u,)=0 (modY). Thus there exists a non-zero smooth
function ¢ on the open interval J, containing u, in {ueJ,|h’(¥)#0} such that
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X=cY. Thus we have é=f"!(c+v)Y on J,. This means that & is null, a con-
tradiction. Accordingly, yields that A*X=0 (modY) on J,. This is a
contradiction. Thus the function i is always zero on J, i.e., g(a’, 8/)=0 on
J. If M is the surface of type /78, then since « is time-like and A=0, Lemma
2.2 means that 8’ is not causal, a contradiction. On the other hand, we sup-
pose that M is the surface of type /¢. Then we know that @’=0. In fact,
the differentiating g(a’, 8)=0 and g(a’, a’)=1, we obtain that a” is orthogonal
to @’ and 8. Since a’ and § are space-like and orthogonal, a” is time-like or
0. Differentiating g(a’, 8)=0 and using the property 8”=0b8’, we get g(a”, 5
=0. If a” is time-like, Lemma 2.2 means that 3’ is not causal, a contradiction.
Accordingly, we have a”=0. This shows that there are constant vectors a and
b such that a(u)=ua-+b. Namely, the base curve a is the space-like straight
line in Rji. ‘

Since the vector X=a’Xf is unit time-like and g(X, X’)=0, Lemma 2.2
leads that X’=a’Xp’ is space-like. On the other hand, because a’ and 8’ are
orthogonal and B’ is null, by we have g(X’, X’)=0. Hence X’'=0, i.e.,
B’ is parallel to a’, a contradiction.

Thus it completes the proof. O

REMARK. As is seen from the proof above, Theorem 5.1 holds under the
condition that each entry of A is a smooth function of u#. But it is not valid
provided that entries are smooth functions of u and v.

We can consider an example which doesn’t satisfy the condition (5.3).

ExAMPLE 5.1. A conjugate of Enneper’s surface of 2nd kind with a(u)=
(u®/24, u®/24—u, u?*/4—1) and B(u)=(—u/2, —u/2, —1) is the non-cylindrical
ruled surface of type 1. The Gauss map is given by

—1 su® v u: v ou
=5tz s 7)
The Laplacian A¢ of Gauss map & can be expressed as

A& v>—1.

—_ —1 ¢
T 2(14v)2*’

" EXAMPLE 5.2. A ruled surface with a base curve a(u)=(u®/24+4+u, u/24,
u®/4) and a director curve B(u)=(u/2, u/2, 1) is the non-cylindrical ruled surface
of type II}. The Gauss map is given by

2 2

—1 u® v u® v u
=gt 5Tatl —3)-
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The Laplacian A¢ of Gauss map & can be expressed as

Af v>—1.

—1
21 +v)25’
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