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\S 1. Introduction.

Relative to Takahashi’s theorem [9] for minimal submanifolds, the idea of
submanifolds of finite type in a Euclidean space was introduced by Chen [2]

and the theory is recently greatly developed. Let $x:M\rightarrow R^{n+1}$ be an isometric
immersion of n-dimensional Riemannian manifold into an $(n+1)$-dimensional
Euclidean space $R^{n+1}$ and $\Delta$ the Laplacian on $M$. As a generalization of Taka-
hashi’s theorem for the case of hypersurfaces, Garay [4] considered the hyper-

surface satisfying the condition $\Delta x=Ax$ , where $A$ denotes the constant diagonal

matrix of order $n+1$ .
On the other hand, let $x;M\rightarrow R^{m}$ be an isometric immersion of a compact

oriented n-dimensional Riemannian manifold into $R^{m}$ . For a generalized Gauss

map $G:M\rightarrow G(n, m)\subset R^{N}(N=\left(\begin{array}{l}m\\n\end{array}\right)$ of $x$ , where $G(n, m)$ is the Grassmann

manifold consisting of all oriented n-planes through the origin of $R^{m}$ , Chen and
Piccinni [3] characterized the submanifold satisfying the condition $\Delta G=\lambda G$

$(\lambda\in R)$ . For a hypersurface $M$ in $R^{n+1}$ and a unit vector field $\xi$ normal to $M$,

we can regard $\xi(p)(p\in M)$ as a point in an n-dimensional unit sphere $S^{n}(1)$ by

translating parallelly to the origin in the ambient space $R^{n+1}$ . The map $\xi$ of
$M$ into $S^{n}(1)$ is called a Gauss map of $M$ in $R^{n+1}$ . Recently for the Gauss map

of a surface in $R^{3}$ the following theorem is proved by Baikoussis and Blair [1].

THEOREM. The only ruled surfaces in $R^{3}$ whose Gauss map $\xi$ satisfies
(1.1) $\Delta\xi=A\xi$ , $A\in Mat(3, R)$

are locally the plane and the circular cylinder.

It seems to be interesting to investigate the Lorentz version of the above

theorem. Now, let $R_{1}^{m+1}$ be an $(m+1)$-dimensional Minkowski space with standard
coordinate system $\{x_{A}\}$ whose line element $ds^{2}$ is given by $ds^{2}=-(dx_{0})^{2}+$
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$\Sigma_{i=1}^{m}(dx_{i})^{2}$ . Let $S_{1}^{m}(c)$ (resp. $H^{m}(c)$ ) be an m-dimensional de Sitter space (resp.

a hyperbolic space) of constant curvature $c$ in $R_{1}^{m+1}$ . We denote by $M^{m}(\epsilon)$ a
de Sitter space $S_{1}^{m}(1)$ or a hyperbolic space $H^{m}(-1)$ , according as $\epsilon=1$ or $\epsilon=-1$ .
Let $M$ be a space-like of time-like surface in $R_{1}^{3}$ and $\xi$ a unit vector field normal
to $M$. Then, for any point $p$ in $M$, we can regard $\xi(p)$ as a point in $H^{2}(-1)$

or $S_{1}^{2}(1)$ by translating parallelly to the origin in the ambient space $R_{1}^{3}$ , accord-
ing as the surface $M$ is space-like or time-like. The map $\xi$ of $M$ into $M^{2}(\epsilon)$ is
called a Gauss map of $M$ into $R_{1}^{3}$ . Then we prove the following

THEOREM. The only space-like or time-like ruled surfaces in $R_{1}^{3}$ whose Gauss
map $\xi:M\rightarrow M^{2}(\epsilon)$ satisfies (1.1) are locally the following spaces:

$i$ . $R_{1}^{2},$ $S_{1}^{1}\times R^{1}$ and $R_{1}^{1}\times S^{1}$ if $\epsilon=1$ ,

ii. $R^{2}$ and $H^{1}\times R^{1}$ if $\epsilon=-1$ .

In \S 2 we define a space-like or time-like ruled surface $M$ in $R_{1}^{3}$ . Roughly
speaking, non-degenerate ruled surfaces are divided into two types: Cylindrical
surfaces, non-cylindrical surfaces. The main theorem is proved for each case
in \S 3 and \S 4, \S 5.

The author would like to express her gratitude to Professor Hisao Naka-
gawa for his useful advice.

\S 2. Ruled surfaces.

First of all, we recall one of fundamental properties in a 3-dimensional
Lorentz vector space. Let $V=V^{3}$ be a 3-dimensional vector space with scalar
product $\langle, \rangle$ of index 1. Then $V$ is called a Lorentz vector space. In the rest
of this paper, we shall identify a vector $X$ with a transpose ${}^{t}X$ of $X$ . For any
vectors $X=(X_{A})$ and $Y=(Y_{4}4)$ in a Lorentz vector space $V$ the scalar product of
$X$ and $Y$ is defined by \langle X, $ Y\rangle$ $=-X_{0}Y_{0}+X_{1}Y_{1}+X_{2}Y_{2}$ , which is called a Lorentz
product. Let $V$ be a 3-dimensional Lorentz vector space with Lorentz product
$\langle, \rangle$ . Then a Lorentz cross product $X\times Y$ is defined by

$(-X_{1}Y_{2}+X_{2}Y_{1}, X_{2}Y_{0}-X_{0}Y_{2}, X_{0}Y_{1}-X_{1}Y_{0})$ .

Then it is easily seen that the Lorentz cross product satisfies the following.

LEMMA 2.1.

(2.1) $X\times Y=0\Leftrightarrow X$ and $Y$ are linearly dependent,

(2.2) $X\times Y=-Y\times X$ ,
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(2.3) $\langle X\times Y, X\rangle=\langle X\times Y, Y\rangle=0$ ,

(2.4) $\langle X\times Y, Z\rangle=\langle Y\times Z, X\rangle$ ,

(2.5) $X$ or $Y:time- like\Rightarrow X\times Y$ : space-like,

(2.6) $\langle X\times Y, X\times Y\rangle=\langle X, Y\rangle^{2}-\langle X, X\rangle\langle Y, Y\rangle$ .

A time-like or null vector in the Lorentz vector space $V$ is said to be causal.
For the Lorentz vector space the next two lemmas are given. See Greub [6].

LEMMA 2.2. There are no causal vectors in $V$ orthogonal to a time-like
vector.

LEMMA 2.3. Two null vectors are orthogonal if and only if they are linearly
dependent.

Throughout this paper, we assume that all objects are smooth and all sur-
faces are connected, unless otherwise mentioned. Now, we define a ruled sur-
face in $Rg$ . Let $I$ and $J$ be open intervals containing $0$ in the real line $R$ .
Let $\alpha=\alpha(u)$ be a curve on $J$ into $R_{1}^{3}$ and $\beta=\beta(u)$ a vector field along $\alpha$ ortho-
gonal to $\alpha$ . A ruled surface $M$ in $R_{1}^{3}$ is defined as a semi-Riemannian surface
swept out by the vector field $\beta$ along the curve $\alpha$ . Then $M$ always has a
parametrization

(2.7) $x(u, v)=\alpha(u)+v\beta(u)$ , $u\in J,$ $v\in I$,

where we call $\alpha$ a base curve and $\beta$ a director curve. In particular, if $\beta$ is
constant, then it is said to be cylindrical, and if it is not so, then the surface
is said to be non-cylindrical. Since our discussion is local, we may assume that
we always have $\beta^{\prime}(u)\neq 0$ in the non-cylindrical case. That is, the direction of
the rulings is always changing.

The natural basis $\{x_{u}, x_{v}\}$ along the coordinate curves are given by

$x_{u}=dx(\frac{\partial}{\partial u})=\alpha^{\prime}+v\beta^{\prime}$ , $ x_{v}=dx(\frac{\partial}{\partial v})=\beta$ .

Accordingly we see

$g(x_{u}, x_{v})=g(\alpha^{\prime}, \alpha^{\prime})+2vg(\alpha^{\prime}, \beta^{\prime})+v^{2}g(\beta^{\prime}, \beta^{\prime})$ ,

$g(x_{u}, x_{v})=0$ ,

$g(x_{v}, x_{v})=g(\beta, \beta)$ .

Since $M$ is a semi-Riemannian surface, it suffices to consider the case that $\alpha$ is
a space-like or time-like curve and $\beta$ is a unit space-like or time-like vector
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field. The ruled surface $M$ is said to be of type $I$ or $t\gamma peII$, according as the
base curve $\alpha$ is space-like or time-like. First, we divide the ruled surface of
type $I$ into three types. In the case that $\beta$ is space-like, it is said to be of
type $I_{+}^{0}$ or $I_{+}$ , according as $\beta^{\prime}$ is null or non-null. If $\beta$ is time-like, it is said
to be of type $I_{-}$ . Since we have $g(\beta, \beta^{\prime})=0$ , if $M$ is of type $I_{-}$ , then $\beta^{\prime}$ is to

be space-like by Lemma 2.2. On the other hand, for the ruled surface of type

II, it is also said to be of type $II_{+}^{0}$ or $II_{+}$ , according as $\beta^{\prime}$ is null or $\beta^{\prime}$ is non-
null. Notice that in the case of type II the director curve $\beta$ always is space-
like. Then the ruled surface of type $I_{+}$ or $I_{+}^{0}$ (resp. $I_{-},$ $II_{+}$ or $Il_{+}^{0}$) is space-

like (resp. time-like).

Thus we can consider these kinds of ruled surfaces in $R_{1}^{3}$ .
Let $M$ be a space-like or time-like hypersurface in $R_{1}^{m+1}$ with local coordi-

nate system $\{x_{i}\}$ . For the components $g_{ij}$ of the Riemannian metric $g$ on $M$

we denote $(g^{ij})$ (resp. $\mathfrak{g}$ ) the inverse matrix (resp. the determinant) of the matrix
$(g_{ij})$ . Then the Laplacian $\Delta$ on $M$ is given by

(2.8) $\Delta=-\frac{1}{\sqrt{|\mathfrak{g}}1}\sum\frac{\partial}{\partial x^{i}}(\sqrt{|\mathfrak{g}|}g^{ij}\frac{\partial}{\partial_{X^{j}}})$ .

In particular, for a Gauss map $\xi$ of a hypersurface $M$ in $R_{1}^{m+1}$ , it satisfies

(2.9) $\Delta\xi=mgradH+\epsilon S\xi$

where $gradH$ denotes the gradient of the mean curvature $H$ and $S$ denotes the

trace of the square of the shape operator.

\S 3. Cylindrical ruled surfaces.

In this section we are concerned with cylindrical ruled surfaces. Let $M$ be

a cylindrical ruled surface swept out by the vector field $\beta$ along the base curve
$\alpha$ in $R_{1}^{3}$ . That is, $\alpha=\alpha(u)$ is a space-like or time-like smooth curve and $\beta=\beta(u)$

is a space-like or time-like unit constant vector along $\alpha$ orthogonal to $\alpha$ . Then
the cylindrical ruled surface $M$ is only of type $I_{+}$ , I-or $II_{+}$ . And $M$ is para-

metrized by

$ x=x(u, v)=\alpha(u)+v\beta$ , $u\in J,$ $v\in I$ .

It is space-like, provided that the base curve $\alpha$ is space-like and the director
curve $\beta$ is space-like. In the other case, the surface is time-like. Let $\xi$ be a
unit normal to $M$. It is defined by $ f^{-1}\alpha^{\prime}\times\beta$ , where $f$ is the norm of the vector
$\alpha^{\prime}\times\beta$ . Then we get $g(\xi, \xi)=\epsilon(=\pm 1)$ . Let $M^{2}(\epsilon)$ be a 2-dimensional space form
as follows:
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$M^{2}(\epsilon)=\left\{\begin{array}{l}S_{1}^{2}(1)inR_{1}^{3}, \epsilon=1.\cdot\\ H^{2}(-1)inR_{1}^{3}, \epsilon=-1.\end{array}\right.$

Then, for any point $x$ in $M,$ $\xi(x)$ can be regarded as a point in $M^{2}(\epsilon)$ and the
map $\xi:M\rightarrow M^{2}(\epsilon)$ is the Gauss map of $M$ into $M^{2}(\epsilon)$ .

We give here examples of ruled surface of type $I_{+}$ and $II_{+}$ whose Gauss
map satisfies

(3.1) $\Delta\xi=A\xi$, $A\in Mat(3, R)$ .

EXAMPLE 3.1. A hyperbolic cylinder

$H^{1}(c)\times R=\{(x_{0}, x_{1}, x_{2})\in R_{1}^{3}|-x_{0}^{2}+x_{1}^{2}=\frac{1}{C}=-r^{2},$ $r>0\}$

is a cylindrical ruled surface of type $I_{+}$ with base curve $\alpha(u)=(r\cosh u/r$,

$r\sinh u/r,$ $0$) and director curve $\beta(u)=(O, 0,1)$ . The Gauss map is given by

$\xi=(-\sinh\frac{u}{r},$ $-\cosh\frac{u}{r},$ $0)$ ,

and the Laplacian $\Delta\xi$ of the Gauss map $\xi$ can be expressed as

$\Delta\xi=-\frac{1}{r^{2}}\xi$ .

Hence the hyperbolic cylinder satisfies (3.1) with

$A=($ $-\frac{1}{r_{0}0^{2}}$

$-\frac{1}{r^{2}}00$
$a_{a_{3^{3}3}^{2^{13}}}^{a}$ ).

EXAMPLE 3.2. A Lorentz circular cylinder

$S_{1}^{1}(c)\times R=\{(x_{0}, x_{1}, x_{2})\in R_{1}^{3}|-x_{0}^{2}+x_{1}^{2}=\frac{1}{C}=r^{2},$ $r>0\}$

is a cylindrical ruled surface of type $II_{+}$ with base curve $\alpha(u)=(r\sinh u/r$ ,
$\cosh u/r,$ $0$) and director curve $\beta(u)=(O, 0,1)$ . The Gauss map is given by

$\xi=(-\cosh\frac{u}{r},$ $-\sinh\frac{u}{r},$ $0)$ ,

and the Laplacian $\Delta\xi$ of the Gauss map $\xi$ can be expressed as

$\Delta\xi=\frac{1}{r^{2}}\xi$ .

Hence the Lorentz circular cylinder satisfies (3.1) with
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$A=(\frac{1}{r_{0}0^{2}}$
$\frac{1}{r_{0^{2}}}0$

$a_{23}aa_{33}^{13}$ ).
PROPOSITION 3.1. The only cylindrical ruled surfaces of type $I_{+}$ (resp. $II_{+}$ )

in $R_{1}^{3}$ whose Gauss map satisfies the condilion (3.1) are locally the plane and the
hyperbolic cylinder (resp. the Minkowski plane and the Lorentz circular cylmder).

PROOF. Let $M$ be a cylindrical ruled surface of type $I_{+}$ or $II_{+}$ parametrized
by

$ x=x(u, v)=\alpha(u)+v\beta$ ,

where $\beta$ is a unit space-like constant vector along the curve $\alpha$ orthogonal to it.
That is, it satisfies $g(\alpha^{\prime}, \beta)=0,$ $g(\beta, \beta)=1$ . Acting a Lorentz transformation,

we may assume that $\beta=(0,0,1)$ without loss of generality. Then $\alpha$ may be
regarded as the plane curve $\alpha(u)=(\alpha_{0}(u), \alpha_{1}(u),$ $0$) parametrlzed by arc-length;

$ g(\alpha^{\prime}, \alpha^{\prime})=-\alpha_{0}^{J2}+\alpha_{1}^{J2}=-\epsilon$ .

The Gauss map $\xi$ is given by $\xi=(-\alpha_{1}^{\prime}, -\alpha_{0}^{\prime}, 0)$ . It is the space-like or time-like
unit normal to $M$, according as $\epsilon=1$ or $-1$ . Since the induced semi-Riemannian
metric $g$ is given by $g_{11}=\epsilon,$ $g_{12}=0$ and $g_{22}=1$ , the Laplacian of $\xi$ is given by
$\Delta\xi=(-\epsilon\alpha_{1}^{\prime\prime\prime}, -\epsilon\alpha_{0}^{\prime\prime\prime},0)$ from (2.8). Thus, from the condition (3.1) we have the
following system of differential equations:

(3.2) $\left\{\begin{array}{l}\epsilon\alpha_{1}^{\prime\prime\prime}=a_{11}\alpha_{1}^{\prime}+a_{12}\alpha_{0}^{\prime},\\\epsilon\alpha_{0}^{l//}=a_{21}\alpha_{1}^{\prime}+a_{22}\alpha_{0}^{\prime},\\0 =a_{31}\alpha_{1}^{\prime}+a_{32}\alpha_{0}^{\prime},\end{array}\right.$

where $A=(a_{ij})$ is the constant matrix.
Now, in order to prove this proposition we may solve this equation and

obtain the solution $\alpha_{0}$ and $\alpha_{1}$ . First we consider that the surface $M$ of type
$I_{+},$ $i.e.$ , the plane curve $\alpha$ is space-like $(\epsilon=-1)$ . So we get $g(\alpha^{\prime}, \alpha^{\prime})=-\alpha_{0^{2}}^{\prime}+\alpha_{1^{2}}^{\prime}$

$=1$ . Accordingly we can parametrize as follows:

(3.3) $\alpha_{0}^{\prime}=\sinh\theta$ , $\alpha_{1}^{\prime}=\cosh\theta$ ,

where $\theta=\theta(u)$ . Differentiating (3.3), we obtain

$\alpha^{;_{0^{\prime}}}=\theta^{\prime}\cosh\theta$ , $\alpha_{0}^{\prime\prime\prime}=\theta^{\prime\prime}\cosh\theta+\theta^{\prime 2}\sinh\theta$ .
(3.4)

$\alpha_{1}^{\prime\prime}=\theta^{\prime}\sinh\theta$ , $\alpha_{1}^{\prime\prime\prime}=\theta^{\prime\prime}\sinh\theta+\theta^{\prime 2}\cosh\theta$ .
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By (3.2), (3.3) and (3.4) we have

$-(\theta^{\prime\prime}\sinh\theta+\theta^{\prime 2}\cosh\theta)=a_{11}\cosh\theta+a_{12}\sinh\theta$ ,

$-(\theta^{\prime\prime}\cosh\theta+\theta^{;2}\sinh\theta)=a_{21}\cosh\theta+a_{22}\sinh\theta$ ,

which give

(3.5) $\theta^{\prime\prime}=(a_{11}-a_{22})$ slnh $\theta\cosh\theta+a_{12}\sinh^{2}\theta-a_{21}\cosh^{2}\theta$ ,

(3.6) $\theta^{\prime 2}=(a_{21}-a_{12})\sinh\theta\cosh\theta+a_{22}\sinh^{2}\theta-a_{I1}\cosh^{2}\theta$ .
Differentiating (3.6), we get

$2\theta^{\prime}\theta^{\prime\prime}=\theta^{\prime}\{(a_{21}-a_{12})(\cosh^{2}\theta+\sinh^{2}\theta)+2(a_{22}-a_{11})\sinh\theta\cosh\theta\}$ .
Substituting (3.5) into this equation, we get

(3.7) $\theta^{\prime}\{4(a_{11}-a_{22})\sinh\theta\cosh\theta+(3a_{12}-a_{21})\sinh^{2}\theta+(a_{12}-3a_{21})\cosh^{2}\theta\}=0$ .

We suppose that $\theta^{\prime}\vee\neq 0$ . By (3.2) and (3.7) we get

(3.8) $a_{11}=a_{22}$ , $a_{12}=a_{21}=a_{31}=a_{32}=0$ ,

because $\sinh\theta\cosh\theta,$ $\sinh^{2}\theta$ and $\cosh^{2}\theta$ are linearly independent functions of
$\theta=\theta(u)$ . Combining the above equations with (3.6) gives

$\theta=\pm\frac{1}{r}u+b$ ,

where

$-\frac{1}{r^{2}}=a_{11}=a_{22}$ , $r>0,$ $b\in R$ .

Accordingly we have
$\alpha_{0}=\pm r\cosh\theta+c_{0}$ , $c_{0}\in R$ ,

$\alpha_{1}=\pm r\sinh\theta+c_{1}$ , $c_{1}\in R$ .

This representation gives us to

$-(\alpha_{0}-c_{0})^{2}+(\alpha_{1}-c_{1})^{2}=-r^{2}$, $r>0$ .

We denote by $H^{1}(r, (c_{0}, c_{1}))$ the hyperbolic circle centered at $(c_{0}, c_{1})$ with radius
$r$ in the Minkowski plane $R_{1}^{2}$ (the $(x_{0}x_{1})$-plane). By the above equation the
curve $\alpha$ is contained in $H^{1}(r, (c_{0}, c_{1}))$ and hence the ruled surface $M$ is contained
in the hyperbolic cylinder $H^{1}\times R$ .

On the other hand, let $J_{0}$ be a set $\{u\in J|\theta^{\prime}(u)=0\}$ . We claim that if $J_{0}$

is not empty, then $J_{0}$ is to be $J$ itself. In fact, we suppose that $J_{0}\neq J,$ $i.e.$ ,

$ J-J_{0}\neq\emptyset$ . Then (3.8) is satisfied on $J-J_{0}$ . Since $A$ is constant matrix, (3.8)

is satisfied on $J$ . So, (3.5) leads that $\theta^{\prime\prime}=0$ on $J$ , $i.e.$ , $\theta^{\prime}$ is constant on $J$ .
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By assumption, there exists $u_{0}\in J_{0}$ and $\theta^{\prime}(u_{0})=0$ . Thus $\theta^{\prime}$ is zero on $J$ , a con-
tradiction. So in this case $\theta$ is constant on $J$ , and hence we obtain that the
normal vector $\xi$ is the time-like constant vector by (3.3). It shows that $M$ is
contained in $R^{2}$ .

Next we are concemed with the cylindrical ruled surface $M$ of type $II_{+}$ ,
$i.e.$ , the plane curve $\alpha$ is time-like $(\epsilon=1)$ . Then the surface $M$ is time-like and
we get $g(\alpha^{\prime}, \alpha^{\prime})=-\alpha_{0^{2}}^{\prime}+\alpha_{1^{2}}^{\prime}=-1$ . Accordingly we can parametrize as follows:
$\alpha_{0}^{\prime}=\cosh\theta,$ $\alpha_{I}^{\prime}=\sinh\theta$ , where $\theta=\theta(u)$ . By the similar discussion to that of the
above ruled surface of type $I_{+}$ we can get

(3.9) $\theta^{\prime}$ { $4(a_{11}-a_{22})$ slnh $\theta\cosh\theta+(3a_{12}-a_{21})\cosh^{2}\theta+(a_{12}-3a_{21})\sinh^{2}\theta$ } $=0$ .

We suppose that $\theta^{\prime}\simeq 40$ . By (3.2) and (3.9) we get

$a_{11}=a_{22}$ , $a_{12}=a_{21}=a_{S1}=a_{2}=0$,

which yields that

$\theta=\pm\frac{1}{\gamma}u+b$ , $\frac{1}{\gamma^{2}}=a_{11}=a_{22}$ , $r>0,$ $b\in R$ .

Accordingly we have
$\alpha_{0}=\pm r\sinh\theta+c_{0}$ , $c_{0}\in R$ ,

$\alpha_{1}=\pm r\cosh\theta+c_{1}$ , $c_{1}\in R$ .
This representation gives us to

$-(\alpha_{0}-c_{0})^{2}+(\alpha_{1}-c_{1})^{2}=r^{2}$, $r>0$ .
We denote by $S_{1}^{1}(r, (c_{0}, c_{1}))$ the pseudo-circle centered at $(c_{0}, c_{1})$ with radius $\gamma$ in
the Minkowski plane $R_{1}^{2}$ (the $(x_{0}x_{1})$-plane). By the above equation the curve $\alpha$

is contained in $S_{1}^{1}(r, (c_{0}, c_{1}))$ and hence the ruled surface $M$ is contained in the
Lorentz circular cylinder $S_{1}^{1}\times R$ .

On the other hand, if a set $\{u\in J|\theta^{\prime}(u)=0\}$ is not empty, then $\theta$ is con-
stant on $J$ by the similar discussion to that about the surface of type $I_{+}$ . So
we get that the normal vector $\xi$ is the space-like constant vector. It shows
that $M$ is contained in $R_{1}^{2}$ . $\square $

Next, we consider a cylindrical ruled surface of type $I_{-}$ in $R_{1}^{3}$ . We first
give an example of the ruled surface of type I-whose Gauss map satisfies (3.1).

EXAMPLE 3.3. A circular cylinder of index 1

$R_{1}^{1}\times S^{1}(c)=\{(x_{0}, x_{1}, x_{2})\in R_{1}^{3}|x_{1}^{2}+x_{2}^{2}=\frac{1}{c}=r^{2},$ $r>0\}$
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is a cylindrical ruled surface of type $I_{-}$ with base curve $\alpha(u)=(O,$ $r\cos u/r$ ,

$r\sin u/r)$ and director curve $\beta(u)=(1,0,0)$ . The Gauss map is given by

$\xi=(0,$ $\cos\frac{u}{r},$ $\sin\frac{u}{r})$ ,

and the Laplacian $\Delta\xi$ of Gauss map $\xi$ can be expressed as

$\Delta\xi=\frac{1}{r^{2}}\xi$ .

Hence the circular cylinder of index 1 satisfies (3.1) with

$A=\left(\begin{array}{lll}a_{11} & 0 & 0\\a_{21} & \frac{1}{r^{2}} & 0\\a_{31} & 0 & \frac{1}{r^{2}}\end{array}\right)$ .

PROPOSITION 3.2. The only cylindrical ruled surfaces of type $I_{-}$ in $R_{1}^{3}$

whose Gauss map satisfies (3.1) are locally the Minkowski plane and the circular
cylinder of mdex 1.

PROOF. Let $M$ be a cylinderical ruled surface of type $I_{-}$ . Then $M$ is para-
metrized by

$ x=x(u, v)=\alpha(u)+v\beta$ ,

where $\beta$ is a unit time-like constant vector along the space-like curve $\alpha$ ortho-
gonal to it. That is, it satisfies $g(\alpha^{\prime}, \beta)=0,$ $g(\beta, \beta)=-1$ . Acting a Lorentz
transformation, we may assume that $\beta=(1,0,0)$ without loss of generality.
Then $\alpha$ is the plane curve $\alpha(u)=(O, \alpha_{1}(u),$ $a_{2}(u))$ parametrized by arc-length;

(3.10) $g(\alpha^{\prime}, \alpha^{\prime})=\alpha_{1}^{J2}+\alpha_{2}^{J2}=1$ .
The Gauss map $\xi$ is given by $\xi=$ ($0,$ $\alpha_{2}^{\prime}$ , -a\’i). It is the space-like unit normal
to $M$. The Laplacian of $\xi$ is given by $\Delta\xi=(0, -\alpha_{2}^{l//}, \alpha_{1}^{\prime\prime\prime})$ . Thus, from the con-
dition (3.1) we have the followlng system of differential equations:

(3.11) $\left\{\begin{array}{l}0=a_{12}\alpha_{2}^{\prime}-a_{13}\alpha_{1}^{\prime},\\\alpha_{2}^{\prime\prime\prime}=a_{22}\alpha_{2}-a_{23}\alpha_{1}^{\prime},\\\alpha_{1}^{\prime\prime}=a_{32}\alpha_{2}-a_{33}\alpha_{1}^{\prime}.\end{array}\right.$

Now, we solve this equation and obtain the solution $\alpha_{1}$ and $\alpha_{2}$ . From (3.10)

we can parametrize as follows:

(3.12) $\alpha_{1}^{\prime}=\cos\theta$ , $\alpha_{2}^{\prime}=\sin\theta$ ,

where $\theta=\theta(u)$ . Then, differentiating (3.12), we obtain
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$\alpha_{1}^{\prime\prime}=-\theta^{\prime}\sin\theta$ , $\alpha_{1}^{\prime\prime\prime}=-\theta$
“ $\sin\theta-\theta^{J2}\cos\theta$ ,

$(3.1^{q})$

$\alpha_{2}^{\prime\prime}=\theta^{\prime}\cos\theta$ , $\alpha_{2}^{\prime\prime\prime}=\theta^{\prime\prime}\cos\theta-\theta^{\prime 2}\sin\theta$ .

By (3.11), (3.12) and (3.13) we have

$-(\theta‘‘ \cos\theta-\theta^{\prime 2}\sin\theta)=a_{22}\sin\theta-a_{2},$ $\cos\theta$ ,

$-(\theta^{\prime}\sin\theta+\theta^{Jl}\cos\theta)=a_{32}\sin\theta-a_{33}\cos\theta$ ,

which give

(3.14) $\theta^{\prime\prime}=-a_{32}\sin^{f}\theta+a_{23}\cos^{2}\theta-(a_{22}-a_{33})\sin\theta\cos\theta$ ,

(3.15) $\theta^{\prime 2}=a_{22}\sin^{2}\theta+a_{33}\cos^{2}\theta-(a_{23}+a_{32})\sin\theta\cos\theta$ .

Differentiating (3.15), we get

$2\theta^{\prime}\theta^{\prime}=\theta^{\prime}\{2(a_{22}-a_{33})\sin\theta\cos\theta-(a_{23}+a_{32})(\cos^{2}\theta-\sin^{2}\theta)\}$ .

Substituting (3.14) into this equation, we get

(3.16) $\theta^{\prime}\{4(a_{22}-a_{3S})\sin\theta\cos\theta+(a_{23}+3a_{32})\sin^{2}\theta-(3a_{23}+a_{32})\cos^{2}\theta\}=0$ .

We suppose that $\theta^{\prime}\neq 0$ . Then by (3.11) and (3.16) we get

$a_{12}=a_{13}=a_{23}=a_{32}=0$, $a_{22}=a_{33}$ ,

which yields that $\theta=\pm u/r+b$ , $1/r^{2}=a_{22}=a_{33},$ $r>0,$ $b\in R$ . Accordingly we
have

$\alpha_{1}=\pm r\sin\theta+c_{1}$ , $c_{1}\in R$,

$\alpha_{2}=\mp r\cos\theta+c_{2}$ , $c_{2}\in R$ .

This representation gives us to

$(\alpha_{1}-c_{1})^{g}+(\alpha_{2}-c_{g})^{2}=r^{2}$ , $r>0$ .
We denote by $S^{1}(r, (c_{1}, c_{2}))$ the circle centered at $(c_{1}, c_{2})$ with radius $r$ in the
plane $R^{2}$ (the $(x_{1}x_{2})$-plane). By the above equation the curve $\alpha$ is contained in
$S^{1}(r, (c_{1}, c_{2}))$ and hence the ruled surface $M$ is contained in the Lorentz circular
cylinder $R_{1}^{1}\times S^{1}$ .

On the other hand, if a set $\{u\in J|\theta^{\prime}(u)=0\}$ is not empty, then $\theta$ is con-
stant on $J$ by the similar discussion to that in Proposition 3.1. So we get that
the normal vector $\xi$ is the space-like constant vector. It shows that $M$ is con-
tained in $R_{1}^{2}$ . $\square $
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\S 4. Non-cylindrical ruled surfaces of type $I_{+}$ , I-or $II_{+}$ .
In this section we are concerned with non-cylindrical ruled surfaces of type

$I_{+},$ $I_{-}$ or $II_{+}$ in the 3-dimensional Minkowski space $R_{1}^{3}$ . Let $M$ be a non-
cylindrical ruled surface of type $I_{+}$ , I-or $II_{+}$ with the base curve $\alpha$ and the
director curve $\beta$ . That is, $\alpha=\alpha(u)$ is a space-like or time-like curve and $\beta=$

$\beta(u)$ is a space-like or time-like unit vector field along $\alpha$ orthogonal to $\alpha$ . Then
$M$ is parametrized by

(4.1) $x=x(u, v)=\alpha(u)+v\beta(u)$ , $u\in J,$ $v\in I$,

where $g(\beta, \beta)=\epsilon_{2}=\pm 1$ and $g(\alpha^{\prime}, \beta)=0$ . Here we can regard $\beta$ as a curve in
$M^{2}(\epsilon_{2})$ parametrized by arc-length $u,$ $i.e.,$ $g(\beta^{\prime}, \beta^{\prime})=\epsilon_{3}=\pm 1$ . And we have the
natural frame $\{x_{u}, x_{v}\}$ given by

(4.2) $x_{u}=\alpha^{\prime}+v\beta^{\prime}$ , $ x_{v}=\beta$ .
Let $\xi$ be a unit normal to $M$. It is defined by $f^{-1}x_{u}\times x_{v}$, where $f$ is a positive

smooth function defined by $f^{2}=\epsilon_{4}g(x_{u}, x_{u})$ . Then we get

$g(\xi, \xi)=\epsilon=-\epsilon_{2}\epsilon_{4}(=\pm 1)$ .
Accordingly $\xi$ can be regarded as a Gauss map of $M$ into the 2-dimensional
space form $M^{2}(\epsilon)$ .

THEOREM 4.1. The only non-cylindrical ruled surfaces of type $I_{+}$ (resp. $I_{-}$

or $II_{+}$ ) in $R_{1}^{3}$ whose Gauss map satisfies
(4.3) $\Delta\xi=A\xi$ , $A\in Mat(3, R)$

are locally the plane (resp. the Minkowski plane).

PROOF. Let $M$ be a non-cylindrical ruled surface of type $I_{+}$ , I-or $II_{+}$

parametrized by
$x=x(u, v)=\alpha(u)+v\beta(u)$, $u\in J,$ $v\in I$ ,

where $\beta$ is a curve in $M^{2}(\epsilon)$ parametrized by arc-length. The Gauss map
$\xi:M\rightarrow M^{2}(\epsilon)$ of the surface $M$ is given by

$\xi=f^{-1}(x_{u}\times x_{v})=f^{-1}(\alpha^{\prime}+v\beta^{\prime})\times\beta$ .

We define smooth functions $h,$ $k$ and vector fields $X,$ $Y$ as follows:

$h=g(\alpha^{\prime}, \beta^{\prime})$ , $k=g(\alpha^{\prime}, \alpha^{\prime})/2$,
(4.4)

$ X=\alpha^{\prime}\times\beta$ , $ Y=\beta^{\prime}\times\beta$

Then we have
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$f^{2}=-\epsilon\epsilon_{2}(\epsilon_{\theta}v^{2}+2hv+2k)$ ,
(4.5)

$g(X, X)=-2\epsilon_{2}k$ , $g(X, Y)=-\epsilon_{2}h$ , $g(Y, Y)=-\epsilon_{2}\epsilon_{S}$ ,

where we have used (2.6). Then $\xi$ is represented as $\xi=f^{-1}(X+vY)$ . It is easy

to show that the Laplacian $\Delta$ of $M$ can be expressed as

(4.6) $\Delta=\epsilon\epsilon_{2}(-\frac{f_{u}}{f^{s}}\frac{\partial}{\partial u}+\frac{1}{f^{2}}\frac{\partial^{2}}{\partial u^{2}})-\epsilon_{2}(\frac{f_{v}}{f}\frac{\partial}{\partial v}+\frac{\partial^{2}}{\partial v^{2}})$ .

Since we get

$\frac{\partial\xi}{\partial u}=-\frac{f_{u}}{f^{2}}(X+vY)+\frac{1}{f}(X^{\prime}+vY^{\prime})$ ,

$\frac{\partial^{2}\xi}{\partial u^{2}}=-\frac{ff_{uu}-2f_{u^{2}}}{f^{3}}(X+vY)-2\frac{f_{u}}{f^{2}}(X^{\prime}+vY^{\prime})+\frac{1}{f}(X^{\prime\prime}+vY‘‘)$ ,

$\frac{\partial\xi}{\partial v}=-\frac{f_{v}}{f^{2}}(X+vY)+\frac{1}{f}Y$ ,

$\frac{\partial^{2}\xi}{\partial v^{2}}=-\frac{ff_{vv}-2f_{v^{2}}}{f^{s}}(X+vY)-2\frac{f}{f^{2}}Y$ ,

we obtain by (4.6)

$\epsilon_{2}\Delta\xi=(-\epsilon\frac{ff_{uu}-3f_{u^{2}}}{f^{6}}+\frac{ff_{vv}-f_{v^{2}}}{f^{3}})(X+vY)$

$-3\epsilon\frac{f_{u}}{f^{4}}(X^{\prime}+vY^{\prime})+\epsilon\frac{1}{f^{3}}(X^{\prime\prime}+vY^{\prime\prime})+\frac{f_{v}}{f^{2}}Y$ .

By the assumption (4.3) and the above equation we get the partial differential
equation

$\{-\epsilon(ff_{uu}-3f_{u^{2}})+f^{2}(ff_{v},-f_{v^{2}})\}(X+vY)$

(4.7) $-3\epsilon ff_{u}(X^{\prime}+vY^{\prime})+\epsilon f^{2}(X^{\prime\prime}+vY^{\prime\prime})+f^{3}f_{v}Y$

$=\epsilon_{2}f^{4}A(X+vY)$ .
By (4.5) we have

$\epsilon ff_{u}=-\epsilon_{2}(h^{\prime}v+k^{\prime})$ , $\epsilon ff_{v}=-\epsilon_{2}(\epsilon_{3}v+h)$ ,

$\epsilon(ff_{uu}+f_{u^{2}})=-\epsilon_{2}(h^{\prime}v+k^{\prime\prime})$ , $ff_{vv}+f_{v^{l}}=-\epsilon\epsilon_{2}\epsilon_{s}$ .
Using the above equations, we can eliminate $f_{uu}$ and $f_{vv}$ in (4.7), and then $f_{u}$

and $f_{v}$ . Then we have the following equation:

$\{(h^{\prime\prime}v+k^{\prime})+4\epsilon_{2}f^{-2}(h^{\prime}v+k^{\prime})^{2}-\epsilon\epsilon_{s}f^{2}-2\epsilon_{2}(\epsilon_{S}v+h)^{2}\}(X+vY)$

$+3(h^{\prime}v+k^{\prime})(X^{\prime}+vY^{\prime})+\epsilon\epsilon_{2}f^{2}(X^{\prime\prime}+vY^{\prime\prime})-\epsilon f^{2}(\epsilon_{s}v+h)Y$

$=f^{4}A(X+vY)$ ,
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which can be regarded as the polynomial with the variable $f$ :

$-A(X+vY)f^{6}+\{-\epsilon\epsilon_{3}(X+vY)+\epsilon\epsilon_{2}(X^{\prime\prime}+vY^{\prime\prime})-\epsilon(\epsilon_{3}v+h)Y\}f^{4}$

(4.8) $+[\{(h^{\prime\prime}v+k^{\prime\prime})-2\epsilon_{2}(\epsilon_{3}v+h)^{2}\}(X+vY)+3(h^{\prime}v+k^{\prime})(X^{\prime}+vY^{\prime})]f^{2}$

$+4\epsilon\epsilon_{2}(h^{\prime}+vk^{\prime})^{2}(X+vY)=0$ .
By the definition of the function $f(4.8)$ becomes the polynomial with the

variable $v$ whose coefficients are functions of variable $u$ . Then, by the co-
efficients of $v^{6}$ and $v^{7}$ , we have

(4.9) $AX=0$, $AY=0$,

where $A$ is the matrix, and $X$ and $Y$ are vectors. Suppose that $A$ is non-
singular. Then (4.9) means that $X=Y=0$ , which implies that $\xi=0$, a contra-
diction. Accordingly we see that the matrix $A$ is singular.

Next, consider the coefficients of the other powers of $v$ in (4.8) and using
(4.9) we obtaln

(4.10) $Y^{\prime\prime}=0$ ,

(4.11) $\epsilon_{2}X^{\prime\prime}+\epsilon_{3}X+4\epsilon_{2}\epsilon_{3}hY^{\prime\prime}-3\epsilon_{2}\epsilon_{3}h^{\prime}Y^{\prime}-(h+\epsilon_{2}\epsilon_{3}h^{\prime\prime})Y=0$ ,

(4.12) $4\epsilon_{2}\epsilon_{3}hX^{\prime\prime}-3\epsilon_{2}\epsilon_{3}h^{\prime}X^{\prime}+(4h-\epsilon_{2}\epsilon_{3}h^{\prime\prime})X+4\epsilon_{2}(h^{2}+\epsilon_{3}k)Y^{\prime\prime}$

$-3\epsilon_{2}(\epsilon_{3}k^{\prime}+2hh^{\prime})Y^{\prime}-(2\epsilon_{\$}h^{2}+2\epsilon_{2}hh^{\prime\prime}-4\epsilon_{2}h^{\prime 2}+4k+\epsilon_{2}\epsilon_{3}k^{\prime\prime})Y=0$ ,

$4\epsilon_{2}(h^{2}+\epsilon_{3}k)X^{\prime\prime}-3\epsilon_{2}(\epsilon_{3}k^{\prime}+2hh^{\prime})X^{\prime}$

(4.13) $+(6\epsilon_{3}h^{2}+4\epsilon_{2}h^{;2}-2\epsilon_{2}hh^{\prime\prime}-\epsilon_{2}\epsilon_{3}k^{\prime\prime})X+8\epsilon_{2}hkY^{\prime\prime}$

$-6\epsilon_{2}(hk^{\prime}+kh^{\prime})Y^{\prime}+2(4\epsilon_{2}h^{\prime}k^{\prime}-6\epsilon_{3}hk-\epsilon_{2}hk^{\prime\prime}-\epsilon_{2}kh^{\prime\prime})Y=0$ ,

$8\epsilon_{2}hkX^{\prime\prime}-6\epsilon_{2}(hk^{\prime}+kh^{\prime})X^{\prime}+2(2h^{3}+4\epsilon_{2}h^{\prime}k^{\prime}-\epsilon_{2}hk^{\prime\prime}-\epsilon_{2}kh^{\prime\prime})X$

(4.14)
$+4\epsilon_{2}k^{2}Y^{\prime\prime}-6\epsilon_{2}kk^{\prime}Y^{\prime}+2(2\epsilon_{2}k^{\prime 2}-\epsilon_{2}kk^{\prime\prime}-4\epsilon_{3}k^{2}-2h^{2}k)Y=0$ ,

(4.15) $4\epsilon_{2}k^{2}X^{\prime\prime}-6\epsilon_{2}kk^{\prime}X^{\prime}+2(2kh^{2}+2\epsilon_{2}k^{\prime 2}-\epsilon_{2}kk^{\prime\prime}-2\epsilon_{3}k^{2})X-4hk^{2}Y=0$ .

From (4.10) we have $Y=ua+b$ , where $a$ and $b$ are constant vectors. We claim
that $Y=b(\neq 0),$ $i.e.,$ $a=0$ . In fact, since $g(Y, Y)=-\epsilon_{2}\epsilon_{3}$ by (4.5), we have

$u^{2}g(a, a)+2ug(a, b)+g(b, b)=-\epsilon_{2}\epsilon_{3}$ ,

from which we conclude

$g(a, a)=0$ , $g(a, b)=0$, $g(b, b)=-\epsilon_{2}\epsilon_{3}$ .
Since the vector $Y$ is defined by $\beta^{\prime}\times\beta$ , we get $g(Y, \beta)=0$ and $g(Y, \beta^{\prime})=0$ ,

from which imply that
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$\frac{d}{du}g(Y, \beta)=g(a, \beta)=0$, $\frac{d}{du}g(a, \beta)=g(a, \beta^{\prime})=0$ .

Since $g(\beta, \beta^{\prime})=0$ , it suffices to consider the following three cases. First of all,

if $\beta$ and $\beta^{\prime}$ are space-like, then from $g(b, b)=-1,$ $g(a, b)=0$ and Lemma 2.2 $a$

is space-like. On the other hand, if $\beta$ is space-like (resp. time-like) and $\beta^{\prime}$ is
time-like (resp. space-like), then Lemma 2.2 implies that $a$ is space-like. Since
$g(a, a)=0$, we get $a=0,$ $i.e.$ , we have $Y=b(\neq 0)$ . This yields that $g(\beta, b)=0$ ,

which means that $\beta$ is contained in the plane passing through the origin in $R_{1}^{s}$ .
Without loss of generality, we may suppose that $b=(b_{0}, b_{1},0)$ and $g(b, b)=$

$-b_{0}^{2}+b_{1^{2}}=-\epsilon_{2}\epsilon_{3}$ . Then we get

$Y=(Y_{0}, Y_{1}, Y_{2})=(b_{0}, b_{1},0)$ .
Now, from (4.11) we have $\epsilon_{2}X^{\prime\prime}+\epsilon_{\theta}X-(h+\epsilon_{2}\epsilon_{3}h^{\prime\prime})Y=0$ . If we put $Z=X-\epsilon_{3}hY$ ,

then we have

(4.16) $Z^{\prime\prime}+\epsilon_{2}\epsilon_{s}Z=0$,

(4.17) $g(Z, Z)=\epsilon_{2}(\epsilon_{3}h^{2}-2k)$ ,

where we have used (4.4) and (4.5). Using $Y_{2}=0$ and (4.16), we see that the
$x_{2}$-component of (4.12) is given by

(4.18) $h^{\prime\prime}X_{2}+3h^{\prime}X_{2}^{\prime}=0$,

where $X=(X_{0}, X_{1}, X_{2})$ . Using (4.16) and (4.18), we have from (4.13)

(4.19) $(2\epsilon_{3}h^{2}-4k+4\epsilon_{2}h^{\prime 2}-\epsilon_{2}\epsilon_{3}k^{\prime\prime})X_{2}-3\epsilon_{2}\epsilon_{S}k^{\prime}X_{2}^{\prime}=0$ .

By making use of (4.16), (4.18) and (4.19), equations (4.14) and (4.15) can be
written as
(4.20) $h^{\prime}(k^{\prime}-\epsilon_{3}hh^{\prime})X_{2}=0$,

(4.21) $(k^{\prime 2}-2\epsilon_{3}h^{J2}k)X_{2}=0$ .

Now, using the equation $(4.17)\sim(4.21)$ , we will prove that $Z=0$ on $J$ . We
first prove that $X_{2}$ vanishes on $J$ . In fact, we suppose that there exists $u_{1}\in J$

such that $X_{2}(u_{1})\neq 0$ . Let $J_{1}$ be an open interval containing $u_{1}$ in $\{u\in J|X_{2}(u)$

$\neq 0\}$ . Then, from (4.20) and (4.21), we obtain

(4.22) $h^{\prime}(k^{\prime}-\epsilon_{s}hh^{\prime})=0$ on $J_{1}$ ,

(4.23) $k^{\prime 2}-2\epsilon_{3}kh^{\prime 2}=0$ on $J_{1}$ .

Differentiating (4.23), we get

(4.24) $k^{\prime\prime 2}+k^{\prime}k^{\prime\prime\prime}-\epsilon_{s}(k^{\prime\prime}h^{J2}+4k^{\prime}h^{\prime}h^{\prime\prime}+2kh^{\prime\prime 2}+2kh^{\prime}h^{l//})=0$ on $J_{1}$ .
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Let $J_{1}^{0}$ be a set $\{u\in J_{1}|h^{\prime}(u)\neq 0\}$ and $J_{1}^{1}$ a complement of $J_{1}^{0}$ . On $J_{1}^{0}$ we get
$g(Z, Z)=0$ by (4.22) and (4.23). By (4.18) and (4.23) we have that $h^{\prime\prime}=0$ and
$k^{\prime}=0$ on $J_{1}^{1}$ . Since we have $k^{\prime\prime}=0$ on $J_{1}^{1}$ by (4.24), (4.19) leads that $\epsilon_{3}h^{2}-2k$

$=0$ , $i$ . $e.$ , $g(Z, Z)=0$ on $J_{1}^{I}$ . Since $\xi$ and $\beta$ are orthonormal vectors and both
orthogonal to $Z$ on $J_{1}$ , if the plane spanned by $\xi$ and $\beta$ is space-like (resp.

time-like), then the vector $Z$ is time-like or $0$ (resp. space-like) and hence $Z=0$

on $J_{1}$ . This means that $X_{2}=0$ on $J_{1}$ , a contradiction. Thus $X_{2}=0$ on $J,$ $i.e.$ ,

$Z$ is contained in the $x_{0}x_{1}$-plane. We claim that $X$ and $Y$ are linearly dependent

on $J$ . In fact, if there exists $u_{1}\in J$ such that $X(u_{1})$ and $Y(u_{1})$ are linearly

independent, then there exists a positive number $\epsilon$ such that $X$ and $Y$ are
linearly independent on $J_{\epsilon}=(u_{1}-\epsilon, u_{1}+\epsilon)$ . The plane spanned by $X$ and $Y$ is
to be $x_{0}x_{1}$ -plane on $J_{\epsilon}$ . Since $g(X, \beta)=0$ and $g(Y, \beta)=0,$ $\beta$ is parallel to the
$x^{2}$-axis on J., $i.e.,$ $\beta=\gamma(u)e_{2}$ on $J_{\epsilon}$ , where $e_{2}=(0,0,1)$ . Thus we have $b=$

$\beta^{\prime}\times\beta=0$ on $J_{\epsilon}$ , a contradiction. Thus $X=qY$ , where $q$ is a non-zero smooth
function on $J$ . By the definition we have $(\alpha^{\prime}-q\beta^{\prime})\times\beta=0$ . Since $\alpha^{\prime}-q\beta^{\prime}$ and
$\beta$ are orthogonal, we have $\alpha^{\prime}-q\beta^{\prime}=0$ . From (4.4), we get $h=q\epsilon_{3}$ . Hence $Z=$

$X-\epsilon_{3}hY=0$ on $J$ .
By the definition we see $(\alpha^{\prime}-\epsilon_{3}h\beta^{\prime})\times\beta=0$ . Since $\alpha^{\prime}-\epsilon_{3}h\beta^{\prime}$ and $\beta$ are

orthogonal, we have by (2.1)

$\alpha^{\prime}-\epsilon_{3}h\beta^{\prime}=0$ .

By the definition of $\xi$ we obtain $\xi=f^{-1}(\epsilon_{3}h+v)b=\pm b$ . It means that if $M$ is
contained in $R^{2}$ or $R_{1}^{2}$ , according as $\epsilon=-1$ or $\epsilon=1$ . This completes the proof. $\square $

REMARK. As is seen from the proof above, Theorem 4.1 holds under the
condition that each entry of $A$ is a smooth function of $u$ . But it is not valid
provided that entries are smooth functions of $u$ and $v$ .

We can consider an example which satisfies the condition (4.3), where an
entry of $A$ is a function of $v$ .

EXAMPLE 4.1. A helicoid of 2nd kind with a base curve $\alpha(u)=(O, 0, u)$ and

a director curve $\beta(u)=(\sinh u, \cosh u, 0)$ is the non-cylindrical ruled surface of
type $I_{+}$ . The Gauss map is given by

$\xi=\frac{1}{\sqrt{1-v^{2}}}(\cosh u, \sinh u, v)$ .

The Laplacian $\Delta\xi$ of Gauss map $\xi$ can be expressed as

$\Delta\xi=\frac{-2}{(1-v^{2})^{2}}\xi$, $|v|<1$ .
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EXAMPLE 4.2. A helicoid with a base curve $\alpha(u)=(u, 0,0)$ and a director
curve $\beta(u)=(O, -\sin u, \cos u)$ is the non-cylindrical ruled surface of type $II_{+}$ .
The Gauss map is given by

$\xi=\frac{1}{\sqrt{1-v^{2}}}(v, -\cos u, -\sin u)$ .

The Laplacian $\Delta\xi$ of Gauss map $\xi$ can be expressed as

$\Delta\xi=\frac{-2}{(1-v^{2})^{2}}\xi$ , $|v|<1$ .

REMARK. Since a helicoid and a helicoid of 2nd $k_{\dot{1}}nd$ are both maximal
surfaces in $R_{1}^{3}$ , it is seen by (2.9) that the Gauss maps satisfy $\Delta\xi=f(u, v)\xi$ .
But, $\ln$ these example, $f(u, v)$ depends only on $v$ .

\S 5. Ruled surfaces of type $I_{+}^{0}$ or $II_{+}^{0}$ .
In this section we are concerned with non-cylindrical ruled surfaces of type

$I_{+}^{0}$ or $II_{+}^{0}$ in the 3-dimensional Minkowski space $R_{1}^{3}$ . Let $M$ be a ruled surface
of type $I_{+}^{0}$ or $II_{+}^{0}$ with base curve $\alpha$ and director curve $\beta$ . Then the surface
$M$ in $R_{1}^{3}$ is parametrized by

(5.1) $x=x(u, v)=\alpha(u)+v\beta(u)$ , $u\in J,$ $v\in I$ ,

where $g(\beta, \beta)=1,$ $g(\alpha^{\prime}, \beta)=0$ and $\beta^{\prime}$ is null. So $\beta$ can be regarded as a null
spherical curve in $S_{1}^{2}(1)$ parametrized by $u$ . For such ruled surface $M$ we have
the natural frame $\{x_{u}, x_{v}\}$ given by

(5.2) $x_{u}=\alpha^{\prime}+v\beta^{\prime}$ , $ x_{v}=\beta$ .
Let $\xi$ be a unit normal to $M$. It is defined by $f^{-1}x_{u}Xx_{v}$, where $f$ is a positive
smooth function defined by $f^{2}=-\epsilon g(x_{u}, x_{u})$ . Then we get

$ g(\xi, \xi)=\epsilon$ .
Accordingly $\xi$ can be regarded as a Gauss map of $M$ into the 2-dimensional
space form $M^{2}(\epsilon)$ .

THEOREM 5.1. There are no ruled surfaces of type $I_{+}^{0}$ or $II_{+}^{0}$ in $R_{1}^{3}$ whose
Gauss maps satisfies
(5.3) $\Delta\xi=A\xi$ , $A\in Mat(3, R)$ .

PROOF. Let $M$ be a ruled surface of type $I_{+}^{0}$ or $II_{+}^{0}$ parametrized by

$x=x(u, v)=\alpha(u)+v\beta(u)$ , $u\in J,$ $v\in I$ ,
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where $g(\alpha^{\prime}, \alpha^{\prime})=\epsilon_{1},$ $g(\alpha^{\prime}, \beta)=0$ and $g(\beta, \beta)=1$ . The Gauss map $\xi:M\rightarrow M^{2}(\epsilon)$

of the surface $M$ is given by

$\xi=f^{-1}(x_{u}\times x_{v})=f^{-1}(\alpha^{\prime}+v\beta^{\prime})\times\beta$

We define a smooth function $h$ and vector fields $X,$ $Y$ as follows:

$h=g(\alpha^{\prime}, \beta^{\prime})$ , $ X=\alpha^{\prime}\times\beta$ , $ Y=\beta^{\prime}\times\beta$ .

Then the vector $Y$ is null. In fact, by (2.6) and the definition of $Y$ , we get
$g(Y, Y)=-g(\beta^{\prime}, \beta^{\prime})g(\beta, \beta)=0$ . Accordingly we have that $Y=0$ or null. But
$Y=0$ if and only if $\beta^{\prime}$ is parallel to $\beta$ , a contradiction. Hence $Y$ is null. Since
the vector $\beta^{\prime}$ is null and orthogonal to $Y$ , there is a non-zero smooth function
$a$ such that $Y=a\beta^{\prime}$ from Lemma 2.3. By the property of the Lorentz cross
product, we have $Y^{\prime}=\beta^{\prime\prime}\times\beta=a^{\prime}\beta^{\prime}+a\beta^{\prime\prime}$ , which implies $g(a^{\prime}\beta^{\prime}+a\beta^{\prime\prime}, \beta^{\prime\prime})=0$ .
Because $\beta^{\prime}$ and $\beta^{\prime\prime}$ are orthogonal, $\beta^{\prime\prime}$ is the null or zero vector. Thus there
is a smooth function $b$ such that $\beta^{\prime\prime}=b\beta^{\prime}$ and we get

(5.4) $Y^{\prime}=bY$ , $Y^{\prime\prime}=(b^{\prime}+b^{a})Y$ .
It is easy to show that the Laplacian $\Delta$ of $M$ can be expressed as

(5.5) $\Delta=\epsilon(-\frac{f_{u}}{f^{3}}\frac{\partial}{\partial u}+\frac{1}{f^{2}}\frac{\partial^{2}}{\partial u^{2}})-(\frac{f_{v}}{f}\frac{\partial}{\partial v}+\frac{\partial^{2}}{\partial v^{2}})$ .

Accordingly we get

$\Delta\xi=(-\epsilon\frac{ff_{uu}-3f_{u^{2}}}{f^{5}}+\frac{ff_{vv}-f_{v^{2}}}{f^{3}})(X+vY)$

$-3\epsilon\frac{f_{u}}{f^{4}}(X^{\prime}+vY^{\prime})+\epsilon\frac{1}{f^{3}}(X^{\prime\prime}+vY^{\prime\prime})+\frac{f_{v}}{f^{2}}Y$ .

By the assumption (5.3) and the above equation we get the partial differential
equation

$\{-\epsilon(ff_{uu}-3f_{u^{2}})+f^{2}(ff_{vv}-f_{v^{2}})\}(X+vY)$

(5.6) $-3\epsilon ff_{u}(X^{\prime}+vY^{\prime})+\epsilon f^{2}(X^{\prime\prime}+vY^{\prime\prime})+f^{3}f_{v}Y$

$=f^{4}A(X+vY)$ .

Since we have $f^{2}=-\epsilon(2hv+\epsilon_{1})$ , we obtain

$ff_{u}=-\epsilon h^{\prime}v$ , $ff_{v}=-\epsilon h$ ,

$ff_{uu}+f_{u^{2}}=-\epsilon h^{\prime\prime}v$ , $ff_{vv}+f_{v^{2}}=0$ .

Using the above equations, we can eliminate $f_{uu}$ and $f_{vv}$ in (5.6), and then $f_{u}$

and $f_{v}$ . Then we have the following equation:
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$\{h^{\prime\prime}v+4\epsilon f^{-2}(h^{\prime}v)^{2}-2h^{2}\}(X+vY)+3h^{\prime}v(X^{\prime}+vY^{\prime})$

$+\epsilon f^{2}(X^{\parallel}+vY^{\prime\prime})-\epsilon f^{2}hY-f^{4}A(X+vY)=0$ ,

which can be regarded as the polynomial with the variable $f$ :
$-A(X+vY)f^{6}+\epsilon\{Y^{\prime\prime}v+(X^{\prime\prime}-hY)\}f^{4}$

(5.8) $+\{(h^{\prime\prime}v-2h^{2})(X+vY)+3(h^{\prime}Y^{\prime}v^{2}+h^{\prime}X^{\prime}v)\}f^{2}$

$+4\epsilon(h^{\prime}v)^{2}(X+vY)=0$ .
From the equation $f^{2}=-\epsilon(2hv+\epsilon_{1})$ and (5.8) we can calculate the coefficients

of $v^{4}$ . Then we have

(5.9) $h^{3}AY=0$ .
Next, considering the coefficients of the other powers of $v$ in (5.8) we obtain

(5.10) $8h^{3}AX+12\epsilon_{1}h^{2}AY+4h^{2}Y^{\prime\prime}+2(2h^{\prime 2}-hh^{\prime\prime})Y-6hh^{\prime}Y^{\prime}=0$,

$12\epsilon_{1}h^{2}AX+6hAY+4h^{2}X^{\prime\prime}-6hh^{\prime}X^{\prime}+(4h^{\prime 2}-2hh^{\prime\prime})X$

(5.11)
$+4\epsilon_{1}hY^{\prime J}-3\epsilon_{1}h^{\prime}Y^{\prime}+\epsilon_{1}h^{\prime\prime}Y=0$ ,

$6hAX+\epsilon_{1}AY+4\epsilon_{1}hX^{\prime\prime}-3\epsilon_{1}h^{\prime}X^{\prime}$

(5.12)
$+(4h^{3}-\epsilon_{1}h^{\prime\prime})X+Y^{\prime\prime}-2\epsilon_{1}h^{2}Y=0$ ,

(5.13) $\epsilon_{1}AX+X^{\prime\prime}+2\epsilon_{1}h^{2}X-hY=0$ .
Now, we prove that the function $h$ vanishes on $J$ . In fact, suppose that

$h\neq 0$ on $J$ . Then there exists $u_{0}\in J$ such that $h(u_{0})\neq 0$ . Let $J_{0}$ be the open
interval containing $u_{0}$ in $\{u\in J|h^{\prime}(u)\neq 0\}$ . Then, from (5.9), we get $AY=0$ on
$J_{0}$ , where $A$ is the matrix and $Y$ is the vector. By (5.4) and (5.10) we have
$AX\equiv 0(mod Y)$ on $J_{0}$ . Then (5.13) implies

(5.14) $X^{\prime\prime}+2\epsilon_{1}h^{2}X\equiv 0(mod Y)$ on $J_{0}$ .
Using (5.12) and (5.14) we have

(5.15) $3\epsilon_{1}h^{\prime}X^{\prime}+(\epsilon_{1}h^{\prime\prime}+4h^{S})X\equiv 0(mod Y)$ on $J_{0}$ .

Using (5.11), (5.14) and (5.15) we get

(5.16) $h^{\prime 2}X\equiv 0(mod Y)$ on $J_{0}$ .

We know here that the differentiation of the function $h$ is identically zero on
$J_{0}$ . In fact, if we suppose that $h^{\prime}\neq 0$ on $J_{0}$ , then there exists $u_{1}\in J_{0}$ such that
$h^{\prime}(u_{1})\neq 0$ . From (5.16), $X(u_{1})\equiv 0(mod Y)$ . Thus there exists a non-zero smooth
function $c$ on the open interval $J_{1}$ containing $u_{1}$ in $\{u\in J_{0}|h^{\prime}(u)\neq 0\}$ such that



The Gauss map of ruled surfaces 303

$X=cY$ . Thus we have $\xi=f^{-1}(c+v)Y$ on $J_{1}$ . This means that $\xi$ is null, a con-
tradiction. Accordingly, (5.15) yields that $h^{3}X\equiv 0(mod Y)$ on $J_{0}$ . This is a
contradiction. Thus the function $h$ is always zero on $J,$ $i$ . $e.,$ $g(\alpha^{\prime}, \beta^{\prime})=0$ on
$J$ . If $M$ is the surface of type II’, then since $\alpha$ is time-like and $h=0$ , Lemma
2.2 means that $\beta^{\prime}$ is not causal, a contradiction. On the other hand, we sup-
pose that $M$ is the surface of type $I_{+}^{0}$ . Then we know that $\alpha^{\prime}=0$ . In fact,

the differentiating $g(\alpha^{\prime}, \beta)=0$ and $g(\alpha^{\prime}, \alpha^{\prime})=1$ , we obtain that $\alpha^{\prime\prime}$ is orthogonal
to $\alpha^{\prime}$ and $\beta$ Since $\alpha^{\prime}$ and $\beta$ are space-like and orthogonal, $\alpha^{\prime\prime}$ is time-like or
0. Differentiating $g(\alpha^{\prime}, \beta^{\prime})=0$ and using the property $\beta^{\prime\prime}=b\beta^{\prime}$ , we get $g(\alpha^{\prime\prime}, \beta^{\prime})$

$=0$ . If $\alpha^{\prime\prime}$ is time-like, Lemma 2.2 means that $\beta^{\prime}$ is not causal, a contradiction.
Accordingly, we have $\alpha^{\prime\prime}=0$ . This shows that there are constant vectors $a$ and
$b$ such that $\alpha(u)=ua+b$ . Namely, the base curve $\alpha$ is the space-like straight
line in $R_{1}^{3}$ .

Since the vector $ X=\alpha^{\prime}\times\beta$ is unit time-like and $g(X, X^{\prime})=0$, Lemma 2.2
leads that $X^{\prime}=\alpha^{\prime}\times\beta^{\prime}$ is space-like. On the other hand, because $\alpha^{\prime}$ and $\beta^{\prime}$ are
orthogonal and $\beta^{\prime}$ is null, by (2.6) we have $g(X^{\prime}, X^{\prime})=0$ . Hence $X^{\prime}=0$ , $i$ . $e.$ ,
$\beta^{\prime}$ is parallel to $\alpha^{\prime}$ , a contradiction.

Thus it completes the proof. $\square $

REMARK. As is seen from the proof above, Theorem 5.1 holds under the
condition that each entry of $A$ is a smooth function of $u$ . But it is not valid
provided that entries are smooth functions of $u$ and $v$ .

We can consider an example which doesn’t satisfy the condition (5.3).

EXAMPLE 5.1. A conjugate of Enneper’s surface of 2nd kind with $\alpha(u)=$

$(u^{s}/24, u^{3}/24-u, u^{2}/4-1)$ and $\beta(u)=(-u/2, -u/2, -1)$ is the non-cylindrical

ruled surface of type $I_{+}^{0}$ . The Gauss map is given by

$\xi=\frac{-1}{\sqrt{1+v}}(\frac{u^{2}}{8}+\frac{v}{2}+1,$ $\frac{u^{2}}{8}+\frac{v}{2},$
$\frac{u}{2})$ .

The Laplacian $\Delta\xi$ of Gauss map $\xi$ can be expressed as

$\Delta\xi=\frac{-1}{2(1+v)^{2}}\xi$ , $v>-1$ .

EXAMPLE 5.2. A ruled surface with a base curve $\alpha(u)=(u^{3}/24+u,$ $u^{3}/24$ ,
$u^{2}/4)$ and a director curve $\beta(u)=(u/2, u/2,1)$ is the non-cylindrical ruled surface
of type $II_{+}^{0}$ . The Gauss map is given by

$\xi=\frac{-1}{\sqrt{1+v}}(-\frac{u^{2}}{8}+\frac{v}{2},$ $\frac{u^{2}}{8}+\frac{v}{2}+1,$ $-\frac{u}{2})$ .
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The Laplacian $\Delta\xi$ of Gauss map $\xi$ can be expressed as

$\Delta\xi=\frac{-1}{2(1+v)^{2}}\xi$ , $v>-1$ .
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