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1. Introduction

Let $N_{p}^{2+p}(c)$ be a $(2+p)$-dimensional connected indefinite Riemannian mani-
fold of index $p$ and of constant curvature $c$ , which is called an indefinite space
form of index $p$ . According to $c>0,$ $c=0$ or $c<0$ , it is a pseudo-Riemannian

sphere $S_{p}^{2+p}(c)$ , a pseudo-Euclidean space $R_{p}^{2+p}$ or a pseudo-Hyperbolic space
$H_{p}^{2+p}(c)$ , respectively. A surface $M$ of an indefinite space form $N_{p^{+p}}^{2}(c)$ is said

to be space-like if the induced metric on $M$ from that of $N_{p}^{2+p}(c)$ is positive

definite.
Suppose $M$ is a space-like surface with parallel mean curvature vector If

in an indefinite space form $N_{p}^{2+p}(c)$ . Let $K$ be the Gauss curvature of $M$ and
$H=|H|$ . We remark that the square norm $S$ of the second fundamental form
of $M$ satisfies the following Gauss equation (see (2.6))

(1.1) $S=2(2H^{2}-c+K)$ .

We first consider the pinching problem for the square norm $S$ of the second
fundamental form of a complete space-like surface $M$ with parallel mean curva-
ture vector $H$ in $N_{p^{+p}}^{2}(c)$ . From the results by J. Ramanathan [15], U.H. Ki,

H. J. Kim and H. Nakagawa [8], we know that for a complete space-like sur-
face $M$ with constant mean curvature $H$ in a 3-dimensional indefinite space
form $N_{1}^{3}(c)$ ,

(1.2) $2H^{2}\leqq S\leqq S_{+}\equiv\max\{2H^{2},4H^{2}-2c\}$ ,

where $S\equiv 2H^{2}$ iff $M$ is totally umbilic, and this estimated value $S_{+}$ is the best

possible. For the higher co-dimensional case, we have already known that the
following result by Q.M. Cheng [4] and Q. M. Cheng and S.M. Choi [5],

(1) $2H^{2}\leqq S,$ $S\equiv 2H^{2}$ iff $M$ is totally umbilic,
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(2) if $c>0$ and $H^{2}\leqq c$ , then $S\equiv 2H^{2}$ ,

(3) in the other case of (2), $S\leqq-2pc+2(p+1)H^{2}+2(p-1)H\sqrt H^{2}-c-$ .
In section 3 of this paper, we show that the estimate (1.2) still holds for

the higher codimensional case, that is, we prove the following

THEOREM 3.1. Let $M$ be a complete space-like surface with parallel mean
curvature vector $H$ in an indefinite space form $N_{p^{+p}}^{2}(c)$ and $H=|H|$ . Then the
square norm $S$ of the second fundamental form of $M$ satisfies

$2H^{2}\leqq S\leqq\max\{2H^{2},4H^{2}-2c\}$ ,

where $S\equiv 2H^{2}$ if and only if $M$ is totally umbilic.

Next, we consider estimating the Gauss curvature of a conformal metric on
a space-like surface $M$ with parallel mean curvature vector $H$ in $N_{p^{+p}}^{2}(c)$ , while
the similar problem for minimal surface $M$ in Riemannian space form $N^{2+p}(c)$

has been studied by Barbosa-Do Carmo [2], Lawson [9] and the first author
[10]. Here Riemannian space form $N^{2+p}(c)$ means one of Euclidean sphere
$S^{2+p}(c)$ , Euclidean space $R^{2+p}$ or Hyperbolic space $H^{2+p}(c)$ , according to $c>0$ ,

$c=0$ or $c<0$ , respectively. In section 4, we prove the following theorem for
space-like surfaces in an indefinite space form $N_{p^{+p}}^{2}(c)$

THEOREM 4.1. Let $M$ be a space-like surface with parallel mean curvature
vector $H$ in $N_{p^{+p}}^{2}(c)$ and $K$ be the Gauss curvature of $M$ with the induced metric
$ds_{M}^{2}$ . At non-umbilt $c$ points in $M,$ $H^{2}-c+K>0$ . So we can define the conformal
metric

(1.3) $\overline{ds}^{2}=(H^{2}-c+K)^{b}ds_{M}^{2}$

for any real number $b$ . Then the Gauss curvature $\overline{K}$ of this metric $\overline{ds}^{2}$ satisfies

(1.4) $\overline{K}\leqq-\frac{(2b-1)K}{(H^{2}-c+K)^{b}}$ ,

and the equality holds in (1.4) if there exists a complete 3-dimensional totally
geodesic submanifold $N_{1}^{3}(c)$ in $N_{p}^{2+p}(c)$ such that $M\subset N_{1}^{3}(c)$ .

On the other hand, in [9], H. B. Lawson has studied the case which an
isometric immersion $f:M\rightarrow N^{3}(c)$ has constant mean curvature $H$ and Gauss
curvature $K$ with induced metric $ds_{M}^{2}$ , in this case we get $K\leqq H^{2}+c$ , and for
the conformal metric

$\overline{ds}^{2}=\sqrt H^{2}+c-Kds_{l1}^{2}$ ,
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the Gauss curvature $\overline{K}$ is zero. Conversely, for a simply connected Riemannian
surface $(M, ds_{M}^{2})$ and any non-negative real number $(\overline{H})^{2}$ satisfying $K<(\overline{H})^{2}$ and

flatness of the metric $\overline{ds}^{2}=\sqrt{(\overline{H})^{2}-K}ds_{M}^{2}$ , there exists a family of isometric
immersion $M\rightarrow N^{3}(c)(c\leqq(\overline{H})^{2})$ with constant mean ourvature $H=\sqrt{(\overline{H})^{2}-c}$. In
section 4, for space-like surfaces in an indefinite space form $N_{p}^{2+p}(c)$ we establish
the counterpart of above Lowson’s result (see Theorem 4.2).

Finally, for a maximal space-like surface $M$ in an indefinite space form
$N_{p^{+p}}^{2}(c)$ , T. Ishihara introduced its Gauss map $g:M\rightarrow G$ which is defined by

carrying each point $x\in M$ to the totally geodesic space-like surface tangent to
$M$ at $x$ in $M$, where $G$ is the Grassmannian manifold (definition of $G$ see sec-
tion 4). Let Gauss curvature of $M$ be $K$ with induced metric $ds_{M}^{2}$ , then the
induced metric of $g$ is $ds_{g}^{2}=g*(ds_{G}^{2})=(K-c)ds_{M}^{2}$ . We prove the following result

THEOREM 4.3. Let $M$ be a maximal space-like surface in $N_{p}^{2+}(c)$ and $K$ be
the Gauss curvature of M. At non-umbilic points in $M$, the Gauss curvature $K_{g}$

of the Gauss image $g(M)$ satisfies

(1.5) $K_{g}\leqq-1-\frac{c}{K-c}$ ,

and $tke$ equality holds in (1.5) if and only if there exists a complete 3-dimensional

submanifold $N_{1}^{3}(c)$ in $N_{p}^{2+p}(c)$ such that $M\subset N_{I}^{3}(c)$ .

2. Preliminaries

Let $M$ be a 2-dimensional space-like surface of $N_{p^{+p}}^{2}(c)$ . We choose a local
field of pseudo-Riemannian orthonormal frames $e_{1},$ $\cdots,$ $e_{2+p}$ in $N_{p^{+p}}^{2}(c)$ in such
that, at each point of $M,$ $e_{1},$ $e_{2}$ spans the tangent space of $M$ and forms an
orthonormal frame there. We make use of the following convention on the
ranges of indices:

$1\leqq A,$ $B,$ $C\leqq 2+p$ ; $1\leqq i,$ $j,$ $k\leqq 2$ ; $3\leqq\alpha,$ $\beta,$ $\gamma\leqq 2+p$ .

We shall agree the repeated indices are summed over the respective ranges.
Let $\omega_{1},$

$\cdots$ , $\omega_{2+p}$ be its dual frame field so that the pseudo-Riemannian metric of
$N_{p^{+p}}^{2}(c)$ is given by $ds_{N}^{2}=\sum_{i}\omega_{i}^{2}-\sum_{\alpha}\omega_{\alpha}^{2}=\epsilon_{A}\sum_{A}\omega_{A}^{2}$ , where $\epsilon_{i}=1$ for $1\leqq i\leqq 2$ and $\epsilon_{\alpha}=$

$-1$ for $3\leqq\alpha\leqq 2+p$ . Then the structure equations of $N_{p}^{2+p}(c)$ are given by

(2.1) $\left\{\begin{array}{l}d\omega_{A}=\sum_{d\omega_{AB}=^{B}}\epsilon_{B}\omega_{AB}\wedge\omega_{B},\omega_{\frac{AB1}{2}\sum_{C.D}\epsilon_{C}\epsilon_{D}K_{ABCD}\omega_{C}\wedge\omega_{D}}\Sigma\epsilon_{C}\omega_{AC}\wedge\omega_{CB^{-}}+\omega_{BA}=0,\\K_{ABCD}=\epsilon_{A}\epsilon_{B}(\delta_{AC}\delta_{BD}-\delta_{AD}\delta_{BC})c.\end{array}\right.$
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We restrict these forms to $M$, then

(2.2) $\omega.=0$ , $3\leqq\alpha\leqq 2+p$ ,

and the Riemannian metric of $M$ is written as $ds_{M}^{2}=\omega_{1}^{2}+\omega_{2}^{2}$ . We may put

(2.3)
$\omega_{ia}=\sum_{j}h_{ij}^{\alpha}\omega_{j}$

, $h_{ij}^{\alpha}=h_{ij}^{\alpha}$ .

Then $h_{ij}^{\alpha}$ are components of the second fundamental form of $M$ . From (2.1),

we obtain the structure equations of $M$

(2.4) $\left\{d\omega_{i}=\sum_{d\omega_{ij}=\sum_{k}^{j}}\omega_{ij}\bigwedge_{\omega_{ik}}\omega_{j}\wedge\omega_{kj}-\frac{1}{2}\sum_{k.l}R_{ijk\iota}\omega_{k}\wedge\omega_{l},\right.$

and the Gauss equation

(2.5) $R_{ijkl}=c(\delta_{ik}\delta_{jl}-\delta_{il}\delta_{fk})-\sum(h_{ik}^{\alpha}h_{jl}^{\alpha}-h_{ll}^{a}h_{jk}^{\alpha})$ .

Let $S$ be the square norm of the second fundamental form of $M,$ $H$ denote
the mean curvature vector of $M$ and $H$ the mean curvature of $M$ :

$S=\sum_{\alpha,i,j}(h_{ij}^{\alpha})^{2}$ , $\vec{H}=\frac{1}{2}\sum_{\alpha}(\sum_{i}/\iota_{ii}^{\alpha})e_{\alpha}$ , $H=|H|$ .

From the Gauss equation (2.5), we know that the Gauss curvature $K$ of $M$

satisfies

(2.6) $2K=2c-4H^{2}+S$ .
We also have

(2.7) $\{d\omega_{n\beta}=-\sum_{\gamma}\omega_{n\gamma}\wedge\omega_{\gamma\beta}-\frac{1}{2}\sum_{ij}R_{\alpha\beta tj}\omega_{i}\wedge\omega_{j}$
,

$R_{a\beta ij}=\sum_{l}(1_{l_{il}^{\alpha}}h\beta_{j}-h_{jl}^{\alpha}h_{l}^{\beta_{i}})$ .

We call $M$ a surface with parallel mean curvature vector if $DH\equiv 0$ on $M$,

where $D$ is the normal connection of $M$ in $N_{p}^{2+p}(c)$ . $M$ is said to be maximal
if $H\equiv 0$ on $M$ . Let $h_{ijk}^{\alpha}$ (resp. $h_{ijkl}^{a}$ ) denote the coveriant derivative of $h_{if}^{\alpha}$ (resp.

$h_{ijk}^{\alpha})$ , we have (see [7]) the following Codazzi equation and Ricci formula

(2.8) $h_{ijk}^{a}=h_{ikj}^{\alpha}$ ,

(2.9) $/l_{ijkl}^{\alpha}-h_{ijlk}^{a}=\sum_{m}h_{im}^{\alpha}R_{mjkl}+\sum_{m}h_{mj}^{\alpha}R_{mikl}+\sum_{\beta}h_{ij}^{\beta}R_{\alpha\beta kl}$ .

We need the following generalized maximum principle (see Omori [14] or
Yau [16]) in order to prove our results.

LEMMA 2.1 (Omori-Yau). Let $M$ be a complete Riemannian manifold uith
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Ricci curvature bounded from below. Let $f$ be a $C^{2}$ function which bounded from
below on M. Then there is a sequence of points $\{p_{k}\}$ in $M$ such that

$\lim_{k\rightarrow\infty}f(p_{k})=\inf(f)$ , $\lim_{k\rightarrow\infty}|\nabla f(p_{k})|=0$ , $\lim_{k\rightarrow\infty}\inf\Delta f(p_{k})\geqq 0$ .

3. The square norm of the second fundamental form

In this section, we prove

THEOREM 3.1. Let $M$ be a complete space-like surface with parallel mean
curvature vector fi in an indefinite space form $N_{p^{+p}}^{2}(c)$ and $H=|H|$ . Then the
square norm $S$ of the second fundamental form of $M$ satisfies

$2H^{2}\leqq S\leqq\max\{2H^{2},4H^{2}-2c\}$ ,

where $S\equiv 2H^{2}$ if and only if $M$ is totally umbilic.

COROLLARY 3.1 ([1] or [8]). Let $M$ be a complete space-like surface with
constant mean curvature $H$ in $N_{I}^{3}(c)$ . Then $2H^{2}\leqq S\leqq\max\{2H^{2},4H^{2}-2c\}$ .

COROLLARY 3.2. Let $M$ be a complete maximal space-like surface in $H_{p}^{2+p}(c)$

$(c<0)$ . Then $0\leqq S\leqq-2c$ . $S\equiv 0$ if and only if $M$ is totally geodesic, and $S\equiv-2c$

if and only if there exists a complete 3-dimensional totally geodesic submanifold
$N_{1}^{3}(c)$ such that $M$ is the hyperbolic cylinder $H^{1}(2c)\times H^{1}(2c)$ in $N_{1}^{3}(c)$ .

REMARK 3.1. Corollary 3.2 improves Theorem 1.2 of [7] in case $n=2$ .

REMARK 3.2. Let $M$ be a complete space-like surface in $N_{p}^{2+p}(c)$ with
parallel mean curvature vector $H$. We know that $M$ must be one of the fol-
lowing surfaces: (1) maximal space-like surfaces in $N_{p^{+p}}^{2}(c),$ (2) maximal space-
like surfaces of a totally umbilical hypersurfaces $N_{p-1}^{2+p-1}(c^{\prime})$ in $N_{p^{+p}}^{2}(c)$ , or (3)

space-like surfaces with constant mean curvature of a totally umbilic 3-dimen-
sional submanifold $N_{1}^{3}(c^{\prime})$ in $N_{p^{+p}}^{2}(c)$ , (This can be proved by use of the same
method as in [3]). Therefore it is easy to see that Theorem 3.1 is equivalent
to the combination of Corollary 3.1 and Corollary 3.2.

PROOF OF THEOREM 3.1. Making use of the parallelism of $H$ and the equa-
tions (2.7), (2.8) and (2.9), we can compute the Laplacian $\Delta S$ of $S$ as follows:

(3.1) $\frac{1}{2}\Delta S=|\nabla h|^{2}+\sum_{\alpha,i,j,m,k}h_{ij}^{\alpha}(h_{km}^{\alpha}R_{mijk}+h_{mi}^{\alpha}R_{mkjk})+\frac{1}{2}\sum_{\alpha.\beta,j.k}(R_{\beta\alpha jk})^{2}$ .

Since $M$ is 2-dimensional, $R_{mijk}=K(\delta_{mj}\delta_{ik}-\delta_{mk}\delta_{ij})$ . Therefore we get



146 Li HAIZHONG and Li ZHIZO

(3.2) $\frac{1}{2}\Delta S=|\nabla h|^{2}+2K(S-2H^{2})+\frac{1}{2}$

a
$\sum_{\beta.Jk}(R_{8ajk})^{2}$

$\geqq(2c-4H^{2}+S)(S-2H^{2})$ .

From (2.6), we know that the Gauss curvature $K$ of $M$ is bounded from
below. For any given positive constant $\delta$ , define the positive smooth function
$u$ on $M$ by $u=(S-2H^{2}+\delta)^{-1/2}$ . Through a simple calculation by use of (3.2),

the Laplacian $\Delta u$ of $u$ satisfies

(3.3) $u\Delta u\leqq 3|\nabla u|^{2}-\frac{(2c-4H^{2}+S)(S-2H^{2})}{(S-2H^{2}+\delta)^{2}}$

Now we know that Omori and Yau’s generalized maximum principal (Lemma

2.1) can be apllied to the function $u$ on $M$ . Then there is a sequence of points
$\{p_{k}\}$ in $M$ such that

$\lim_{k\rightarrow\infty}u(p_{k})=\inf(u)$ , $\lim_{k\rightarrow\infty}|\nabla u(p_{k})|=0$ , $\lim_{k\rightarrow\infty}\inf\Delta u(p_{k})\geqq 0$ .

Suppose $\inf(u)\neq 0$ and then $\lim_{k\rightarrow\infty}S(p_{k})=\sup S<\infty$ . Approching limit of
the both sides of inequality (3.3), we get

(3.4) $0\leqq\lim_{k\rightarrow\infty}\inf u(p_{k})\Delta u(p_{k})$

$\leqq-\frac{c-4H^{2}+\sup S)(\sup S-2H^{2})}{(\sup S-2H^{2}+\delta)^{2}}\underline{(}2$ .

Since $S\geqq 2H^{2}$ , this inequality implies that $\sup S=2H^{2}$ or $\sup S\leqq 4H^{2}-2c$ .
If $\inf(u)=0$ , from (3.3), we conclude a contradiction $0\leqq-1$ .
We have completed the proof of Theorem 3.1.

PROOF OF COROLLARY 3.2. We only need to prove the last statement of
Corollary 3.2. It is enough to show maximal surface $M$ in $N_{p^{+p}}^{2}(c)$ satisfying
$S\equiv-2c$ is contained in a 3-dimensional totally geodesic submanifold $N_{1}^{3}(c)$ of
$N_{p}^{2+p}(c)$ , because it is already proved by T. Ishihara [7] that the hyperbolic
cylinder $H^{1}(2c)\times H^{1}(2c)$ is the only complete maximal surface in $N_{1}^{3}(c)$ satisfying
$S\equiv-2c$ .

Since $H\equiv 0$ and $S\equiv-2c$ , it follows from (3.2) that the second fundamental
form $h$ is parallel and the normal connection is flat. In this case, we can
choose a local field of orthonormal frames $\{e_{1}, e_{2}\}$ on $M$ such that

$(h_{ij}^{\alpha})=(0^{\alpha}\lambda$ $-\lambda^{\alpha}0$ for $\alpha=3,$ $\cdots$ , $2+p$

for some functions $\lambda^{\alpha}$ $(\alpha=3, \cdots , 2+p)$ on $M$ . This means that the first normal
space $N_{1}$ $:=\sup$ { $h(X,$ $Y)|X,$ $Y$ are any tangent vectors on $M$ } at any non-umbilic
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point of $M$ is l-dimensional, because $N_{1}=span\{\sum_{\alpha}\lambda^{\alpha}e_{\alpha}\}$ . Since $h$ is parallel, the

first normal space at non-umbilic points of $M$ are parallel. We also note that
the umbilic points of $M$ are isolated even if they exist. Thus, applying the
well-known theorem of reducing codimension (see, for example [3] or [12]),

there exists a complete 3-dimensional totally geodesic submanifold $N_{1}^{3}(c)$ in
$N_{p^{+p}}^{2}(c)$ such that $M\subset N_{1}^{3}(c)$ .

We have completed the proof of Corollary 3.2.

4. The Gauss curvature of a conformal metric

Let $M$ be a space-like surface with parallel mean curvature vector in $N_{p^{+p}}^{2}(c)$

and $ds_{M}^{2}$ be the induced metric from $N_{p^{+p}}^{2}(c)$ . From Gauss equation (2.6), we
can write the following nonnegative function

(4.1) $\sigma=\frac{1}{2}S-H^{2}=H^{2}-c+K$ ,

where $K$ is the Gauss curvature of $M$ . Obviously, $\sigma(p)=0$ if and only if $p$ is
umbilic.

We consider non-umbilic points in $M,$ $\sigma=(1/2)S-H^{2}>0$ . In this section,

we estimate the Gauss curvature $\overline{K}$ of the conformal metric $\overline{ds}^{2}=\sigma^{b}ds_{M}^{2}$ , where
$b$ is an arbitrary real number. In fact, we prove

THEOREM 4.1. Let $M$ be a space-like surface with parallel mean curvature
vector $\vec{H}$ in $N_{p^{+p}}^{2}(c)$ and $K$ be the Gauss curvature of $M$ with induced metric
$ds_{M}^{2}$ . For non-umbilic points in $M$, the Gauss curvature $\overline{K}$ of the conformal
metric $\overline{ds}^{2}=(H^{2}-c+K)^{b}ds_{M}^{2}$ satisfies

(4.2) $\overline{K}\leqq-\frac{(2b-1)K}{(H^{2}-c+K)^{b}}$ ,

and the equality holds in (4.2) if there exists a complete 3-dimensional totally

geodesic submanifold $N_{1}^{3}(c)$ in $N_{p}^{2+p}(c)$ such that $M\subset N_{1}^{3}(c)$ .

COROLLARY 4.1. Let $M$ be a space-like surface with parallel mean curvature
vector $H$ in $N_{p^{+p}}^{2}(c)$ . For non-umbilic points in $M$, the Gauss curvature $\overline{K}$ of the

conformal metric $\overline{ds}^{2}=(H^{2}-c+K)ds_{M}^{2}$ satisfies

(4.3) $\overline{K}\leqq-1+\frac{H^{2}-c}{H^{2}-c+K}$ ,

and the equality holds in (4.3) if there exists a complete 3-dimensional totally

geodesic submanifold $N_{1}^{s}(c)$ in $N_{p}^{2+p}(c)$ such that $M\subset N_{1}^{3}(c)$ .
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COROLLARY 4.2. Let $M$ be a space-like surface with parallel mean curvature
vector $H$ in $N_{p^{+p}}^{2}(c)$ . For non-umbilic points in $M$, the Gauss curvature $\overline{K}$ of the

conformal metric $\overline{ds}^{2}=\sqrt{H^{2}-c+}K\overline{d}s_{M}^{2}$ satisfies $\overline{K}\leqq 0$ , and the equality holds

if there exists a complete 3-dimensional totally geodesic submanifold $N_{1}^{3}(c)$ in
$N_{p^{+p}}^{2}(c)$ such that $M\subset N_{1}^{3}(c)$ .

REMARK 4.1. The counterparts of Corollary 4.1 and 4.2 for surfaces with
constant mean curvature in $N^{s}(c)$ can be found in Li [11].

We need the following Lemma 4.1 in order to prove Theorem 4.1

LEMMA 4.1. Let $M$ be a space-like surface with parallel mean curvature
vector If in $N_{p}^{2+p}(c)$ . Then

(4.4) $|\nabla S|^{2}\leqq 2(S-2H^{2})|\nabla h|^{2}$ ,

and equality holds in (4.4) if there exists a complete 3-dimensional totally geodesic

submanifold $N_{1}^{3}(c)$ in $N_{p}^{2+p}(c)$ such that $M\subset N_{1}^{3}(c)$ .

PROOF. Since $M$ is 2-dimensional, by use of the symmetry of the second
fundamental form and the parallelism of $H$, each term in (4.4) can be computed

as follows:

(4.5) $2(S-2H^{2})|\nabla h|^{2}=4\sum_{\alpha}[(h_{11}^{\alpha}-h_{22}^{\alpha})^{2}+4(h_{12}^{\alpha})^{2}][\sum_{\alpha}[(h_{111}^{\alpha})^{2}+(h_{112}^{\alpha})^{2}]$ ,

(4.6) $|\nabla S|^{2}=4\{\sum_{a}[(h_{11}^{\alpha}-h_{22}^{\alpha})h_{111}^{\alpha}+2h_{12}^{\alpha}h_{112}^{a}]\}^{2}+4\{\sum_{a}[(h_{11}^{\alpha}-h_{22}^{\alpha})h_{112}^{\alpha}-2h_{12}^{a}h_{111}^{\alpha}]\}^{2}$ .

We can define the functions $p_{a},$ $q_{\alpha},$
$\phi_{a},$ $\psi_{\alpha}$ and $\theta_{\alpha}$ on $M$ by

$\{\frac{1}{2}(h_{11}^{\alpha}-h_{22}^{\alpha})=p_{a}\cos\phi_{a}$

$p_{a}^{l_{12}^{\alpha}}\geqq 0/=p_{\alpha}\sin\phi_{\alpha}$

$\left\{\begin{array}{l}h_{111}^{\alpha}=q_{\alpha}cos\psi_{a}\\h_{112}^{a}=q_{\alpha}sin\psi_{a},\\q_{a}\geqq 0\end{array}\right.$ $\theta_{a}=\phi_{a}-\psi_{\alpha}$ .

Combining with these notations, we follows from (4.5) and (4.6) that

(4.7)
$2(S-2H^{2})|\nabla h|^{2}=16\sum_{\alpha.\beta}p_{\alpha}^{2}q_{\beta}^{2}$ ,

(4.8)
$|\nabla S|^{2}=16\sum_{a.\beta}p_{\alpha}p_{\beta q_{\alpha}q\beta}\cos(\theta_{a}-\theta_{\beta})$ .

Thus we get

$|\nabla S|^{2}-2(S-2H^{f})|\nabla h|^{2}$

$=-8\sum_{\alpha.\beta}(p_{a}q\beta-p_{\beta}q_{a})^{2}-16\sum_{a,\beta}p_{Ct}p_{\beta q_{\alpha}q\beta}[1-\cos(\theta_{\alpha}-\theta_{\beta})]$

$\leqq 0$ .
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We have completed the proof of Lemma 4.1.

PROOF OF THEOREM 4.1. It is well known that the Gauss curvatures $\overline{K}$

and $K$ associated with the metric $\overline{ds}^{2}$ and $ds_{M}^{2}$ are related by the equation

(4.9) $\overline{K}=\sigma^{-b}(K-\Delta\log\sigma^{b/2})=\sigma^{-b}[K-\frac{b}{2}(\frac{\Delta\sigma}{\sigma}-\frac{|\sigma|^{2}}{\sigma^{2}})]$ .

Since $\Delta\sigma=(1/2)\Delta S$ , it follows from the equation (3.2) and the estimate (4.4)

(4.10) $\Delta\sigma=|\nabla h|^{2}+(2c-4H^{2}+S)(S-2H^{2})+\frac{1}{2}\sum_{(\iota,\beta,jk},(R_{\alpha\beta jk})^{2}$

$\geqq\frac{|\nabla\sigma|^{2}}{\sigma}+4\sigma(\sigma+c-H^{2})$ ,

where the equality holds if there exists a complete 3-dimensional totally geodesic

submanifold $N_{1}^{3}(c)$ in $N_{p^{+p}}^{2}(c)$ such that $M\subset N_{1}^{3}(c)$ .
Combining (4.9) with (4.10) completes the proof of Theorem 4.1.
Let $M$ be a space-like surface with constant mean curvature $H$ in $N_{1}^{3}(c)$ , by

Corollary 4.2, we know that the Gauss curvature $\overline{K}\equiv 0$ of the conformal metric
$\overline{ds}^{2}=\sqrt{H^{2}-c+K}ds_{M}^{2}$ . Now we prove that the converse of this result still holds,
$i.e$ . we have

THEOREM 4.2. Let $M$ be a space-like surface with constant mean curvature
$H$ in $N_{1}^{3}(c)$ and $K$ be the Gauss curvature of M. For the conformal metric $\overline{ds}^{2}=$

$\sqrt{H^{2}-c+K}ds_{M}^{2}$ (well-defined at non-umbilic points on $M$), the Gauss curvature $\overline{K}$

is zero.
Conversely, let $ds_{M}^{2}$ be a $C^{3}$-Riemannian metric defined over a simply-connected

surface $M$ with the Gauss curvature $K$ and let $\overline{H}^{2}$ be any non-negative real num-
$ber$ . Suppose $\overline{H}^{2}+K>0$ and that the metric $\overline{ds}^{2}=(\overline{H}^{2}+K)^{1/2}ds_{M}^{2}$ is flat, then for
each constant $c\geqq-H^{2}$ there exists a differentiable, $ 2\pi$ -periodic family of isometric
space-like immersions

$\Psi_{c.\theta}$ : $M-N_{1}^{3}(c)$

of constant mean curvature $H=(\overline{H}^{2}+c)^{1/2}$ .

REMARK 4.2. The counterpart of Theorem 4.2 for surfaces with constant
mean curvature in $N^{3}(c)$ can be found in Lawson [9].

REMARK 4.3. It is interesting to note that the Euclidean case and Min-
kowski’s case are dual to each other. That is, if $\sqrt{|K|}ds_{M}^{2}$ is flat for a Rie-
mannian surface $(M, ds_{M}^{2})$ , then it can be realized as a minimal surface in $R^{\theta}$

or a maximal surface in $R_{1}^{3}$ depending on $K<0$ or $K>0$ .
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PROOF OF THEOREM 4.2. Because Theorem 4.2 is the counterpart of Theo-
rem 8 of Lawson [9], we can prove it by use of the same method as Lawson’s.
We omit it here.

Similar to Obata’s Gauss map [13] for a minimal surface $M\rightarrow N^{n}(c)$ , T.
Ishihara [6] introduced the Gauss map for a space-like surface $M$ in $N_{p}^{2+p}(c)$ as
follows: the Gauss map $g:M\rightarrow G$ is defined by carrying each point $x\in M$ to
the totally geodesic space-like surface tangent to $M$ at $x$ in $M$, where $G$ is a
Grassmannian manifold with the structure of $0(3, p)/o(3)\times o(p),$ $ 0(2, p)/o(2)\times$

$o(p)$ , or $0(2, p+1)/o(2)\times o(p+1)$ according to $c>0,$ $c=0$ or $c<0$ , respectively,
where $o(n, q)$ is the orthogonal group consisted of all linear isometries on in-
definite Euclidean space $R_{n}^{n+q}$ and $o(n)$ is the orthogonal group consisted of all
linear isometries on Euclidean space $R^{n}$ . Then Gauss map $g:M\rightarrow G$ describes
a maximal immersion with singularities occuring precisely at the points where
the Gauss curvature $K$ of $M$ is $c$ , the induced Riemannan metric of $g$ is

$ds_{g}^{2}=g*(ds_{G}^{2})=(K-c)ds_{M}^{2}$ .

We establish the following result

THEOREM 4.3. Let $M$ be a maximal space-like surface in $N_{p^{+p}}^{2}(c)$ and $K$ be
the Gauss curvature of M. At non-umbilic points in $M$, the Gauss curvature $K_{g}$

of the Gauss image $g(M)$ satisfies

(4.11) $K_{g}\leqq-1-\frac{c}{K-c}$ ,

and the equality holds in (4.11) if and only if there exists a complete 3-dimensional

submanifold $N_{1}^{3}(c)$ in $N_{p^{+p}}^{2}(c)$ such that $M\subset N_{1}^{3}(c)$ .

PROOF OF THEOREM 4.3. Let $(M, ds_{H}^{2})$ be a maximal surface in $N_{p}^{2+p}(c)$

with the Gauss curvature $K$. The first part of Theorem 4.3 comes from Theo-
rem 4.1 directly. We only need to show the last part of Theorem 4.3, that is,

we only need to prove that if the Gauss curvature $K_{g}$ of the Gauss image $g(M)$

$K_{g}=-1-(c/K-c)$ , then there exists a complete 3-dimensional totally geodesic

submanifold $N_{1}^{3}(c)$ in $N_{p^{+p}}^{2}(c)$ such that $M\subset N_{1}^{3}(c)$ .
In this case, since the equality in (4.10) holds, the normal connection of $M$

is flat. Then, by the same argument in the proof of Corollary 3.2, the first
normal space $N_{1}$ of $M$ is l-dimensional. Thus we can choose a local field of
frames $e_{1},$ $\cdots,$ $e_{2+p}$ on $M$ such that
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(4.12) $(h_{ij}^{3})=(\lambda 0$ $-\lambda 0$ $(h_{ij}^{4})=\cdots=(h_{ij}^{2+p})=0$

for some function $\lambda\neq 0$ (at non-umbilic points) on $M$. Using the same notations
in the proof of Lemma 4.1, we get $ p_{3}=\lambda$ and $p_{4}=\cdots=p_{2+p}=0$ . Since the
equality in (4.4) holds, $p_{\alpha}q\beta=q_{\alpha}p_{\beta}$ for any $\alpha$ and $\beta$ . This implies that $ q_{4}=\cdots$

$=q_{2+p}=0$ and then $h_{ijk}^{\mu}=0(\mu=4, \cdots, 2+p)$ . But by

$h_{ijk}^{\mu}\omega_{k}=dh_{ij}^{\mu}+h_{kj}^{\mu}\omega_{ki}+h_{ik}^{\mu}\omega_{kj}+h_{ij}^{3}\omega_{3\mu}$ ,

we have

(4.13) $\omega_{3\mu}=0$ , $\mu=4,$ $\cdots,$ $2+p$ ,

Combining (4.12) with (4.13), we know that the first normal spaces are
parallel and $M$ is contained in a 3-dimensional totally geodesic submanifold
$N_{1}^{3}(c)$ of $N_{p^{+p}}^{2}(c)$ . We have completed the proof of Theorem 4.3.

We appreciate referee’s valuable suggestions.
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