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PARABOLIC EQUATION IN CONICAL DOMAINS
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1. Introduction.

Let D be an unbounded domain in R” and T>0. In this paper we study
the initial-boundary value problem

ur=Au-+|x|u? in Dx(0, T),
P) u(x, )=0 on oDx(0, T),
u(x, 0)=1u,x) in D,

where 620, p>1, uy=0, (x> Dy, (x>=+/T+]x]%) is continuous and bounded
in D and u,=0 on aD.

When D=R? and ¢=0, Fujita and Weissler [2] proved that if 1<p<
14+2/N, there is no nontrivial nonnegative global solution of (P).

When D is a cone with vertex at the origin, that is D={xeR"\0; x/| x|
=2}, where QCSV"! is an open connected subset with smooth boundary,
Levine and Meier, and [4], proved that if 1<p<14+(240)/(N+7,) and ¢=0,
or p=142/(N+7,) and ¢=0, there is no nontrivial nonnegative global solution
of (P), where 7, is the positive root of y(y+N—2)=w,;, and w, is the smallest
Dirichlet eigenvalue for the Laplace-Beltrami operator on £.

In this paper we shall prove that there is no nontrivial global solution of
(P) if >0 and p=1+(2+0)/(N+y,) are valid. Moreover we can prove that
when D=R?" there is no nontrivial global solution if 1+¢/(N—2)<p=<1+
(2406)/N and ¢>0.

DEFINITION 1.1. For T>0, u=u(x, t) is called a solution of (P) in (0, T'), if
(A) wu is continuous in DX[0, T),

(B) e, uy, and u,,., (4, j=1, .-+, N) are continuous in DX (0, T),

) Nu@®lsscp-1y is finite for each t<[0, T),

(D) u satisfies (P),

where [|u(®)llg/p-1) 1= supplx>7/ P~V | u(u, t)|.
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Similarly, u is called a subsolution of (P) in (0, T'), if u satisfies (A), (B),
(C) and

w<Au+|x|°u? in DX, T),
(B) u(x, t)=0 on aDx(0, T),
u(x, 0)=uq(x) | in D.
DEFINITION 1.2. T :=sup{T>0; [[u(®)lls/cp-1, is finite for 0<t<T)} is called

the nontrivial existence time of u. If T=+oo, then u is called a global solu-
tion of (P).

REMARK. If 0<T <o and [[u(t)|ls/p-1) is finite on (0, T'), the solution » can
be extended beyond 7T (see Theorem 1.1).

We begin with stating the local existence theorem for (P).

THEOREM 1.1. Let D be a cone in RY. Then for any nonnegative function
uy in CAD) satisfying ||uollsrp-1y<co and u,=0 on 0D there is a solution u(x,t)
of (P) in (0, t,) such that |[u(t)|s/cp-1y ts finite in (0, t,) where t,>0 depends only
on o, p, N and ||uolls/p-1>-

The main two theorem in this paper are the following.

THEOREM 1.2. Let D be a cone in RY, N=3. If u,=0 and u,%0, p=1+
(2+0)/(N+7,) and 0<o<2(N—2)/(y.+2), there is no global solution.

THEOREM 1.3. Let D=RY, N=3. If ue=0 and u,%0, 14+0/(N—-2)<p<
1+@2+06)/N and 0<oe<N—2, there is no global solution.

To prove Theorem 1.2 and Theorem 1.3, we need the following estimate

v(x, H<(p—1)| x| ¢y~ D for 0<t<T,

where T >0 is the maximum existence time of the solution of (P) and v(x, t) is
the solution of the heat equation with the same initial and boundary condition

as (P).
The above inequality is true provided 0<a/(p—1)<N—2 (see Lemma 3.2).

2. Proof of Theorem 1.1.

Throughout this paper we take advantage of the following proposition
proved by Protter and Weinberger (Theorem 10, p.p. 183-184).
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PROPOSITION 2.1. Let D be an unbounded domain in RY. If wu, and Uziz,
@, =1, ---, N) are exist and continuous in DX (0, T) and u=u(x, t) satisfies the
following inequalities
u,<Au-+hu in DX, T),
2.1) | u(x, H<0 on 8Dx (0, T),
u(x, 0)<0 in D,

where h=h(x, t) is bounded in DX [0, T). If there exist ¢>0 such that lim,... e ¢"*
: {maxlxl=1‘,OStSTu(x; t)}éo, then u(x) t)go in DX(O’ T)'

REMARK. In the case D=R?", we can eliminate the boundary condition of u.

We introduce the Green’s function G(x, y; )=G(r, 0, p, ¢;t) (r=|x|, p=|yl,
O0=x/1x1€8, ¢=y/|y|=), for the linear heat equation in the cone.

Let {¢.(0)}%-: be a normalized orthogonal system for Ay on £ correspond-
ing to the sequence {w,} of Dirichlet eigenvalues for this problem, especially
we take ¢, >0 in 2 and SQ¢1(0)dS(,=c,.

Here

G(x, y, )=G(r, 0, p, ¢; 1)

:flf(r‘o)_(N—Z)/z exp (__ pzz;ﬂ)né Ipn(fz%>¢n(0)¢n(¢),

where v,={(N—2)/2)*+w,} /%, and

—(ZY < (z/2)** (z/2)/T"(v+1) z—0*
Iy(z)—(z) k% ! I'y+k+1) N{ e‘/\/z—ﬂ-'z Z— 4o

(see Watson [6]).

LEMMA 2.2. Let D be a cone in RN. Assume that v, is a bounded continuous
function in D and vanishes on 0D. Then there exist a unique solution of the heat
equation

ve=Av in DX (0, o),

(2.2) v(x, ©)=0 on dDX (0, =),
v(x, O)=vx) in D,

in C(DX[0, coNNCADX(0, =)), which has the form

2.3) o(x, = GGz, 33 wir)dy .

Especially, if vo(x)=0 in D, then v(x, )=0 in DX (0, o).
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LEMMA 2.3. Let v=uv(x, t) be a solution of (2.2) and a :=max{0, —(a/2(p—1))
"((N=2—a/(p—1))}. If |vllosp-1y <0, then for 0<t<oco

v llos -1 = vollorp-1) €XP (@)

REMARK. Moreover if we take 0<¢,<(log 2)/a, then for 0<t<t,

lw@®llarp-1=2l1Vollo/p-1) -

PROOF OF LEMMA 2.3. Let w(x, t):=v(x, t)—|vollos(p_1n<{x> /P~ exp (at),
then we have

Aw—w,={a|x|4+{2a+55:—l(N—2— p‘il)}|xl2+%+a}

Xvollorp-1:<x>77/ P14 exp (at)

v

0.
Combining this with Proposition 2.1, we get w(x, )<0 for DXx[0, o). This

shows Lemma 2.3.

PROOF OF THEOREM 1.1. Define @ := max{0, —(¢/2(p—1))(N—2—a/(p—1))}
and ¢, := min {(log 2)/a, 4*(|uolls/p-1>)'"P}.
First, we consider the following initial-boundary value problem
0.V,=AV,+|x|°V2 in DX(0, t,),
Py) Vi(x, t)=0 on 0D X% (0, t,),
Vix, 0)=uqx) in D,
where V, is a solution of (2.2) with the initial condition v,=u,.

The solution of (P,) is

t
Vs, =Vux, 0+{ | G(x, 3;1-01317V20, Ddyde
for (x, )e D x(0, t,).
Since V(x, t: f);zgpc(x, y;t—1)|y|°VE(y, r)dy is a solution of (2.2) with

the initial condition v,=|x|’V3(x, ) for arbitrarily fixed r<(0, t), so we have
Vs Dlorcn-=2Q2||tollo/p-1))? for 0<r<t, by using the above remark.
The solution V, of (P,) satisfies
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t
HVl(t)Haup_léIlVo(t)IIa/<p_1>+SOII Vt; Olorw-ndr

t
<2lutollorp-o+ | 2@Usollrp-0)7de

<4 uollosp-1y for 0<t<t,.
Next we consider the following problem
0:Vi(x, D=AV (x, )+ 1x|°VE(x, t) in DX(O0, t,),
(Pya) Vin(x, =0 | on aDx (0, t,),
Vialx, 0)=uqx) in D,

where /=1, 2, ---.
Then
IV illorp-n=4ltollorp-»  for 0L, .

As can be seen from the argument to obtain the estimate of V,, the above
inequality is true for V...
Moreover we can obtain

IV sV Ollrp-1> S| 261 ollrcp0)?~ D)7,

where M;(7) 1= suPo<s<r | Vi($)—Vioi(orcp-1y G=1, 2, -+-), because
L= Olx |V ER(x, T)— | x| VI(x, 7)|
S2p@ N uollsrcp-13)? KxDI PNV (x, T)—V (%, T)]

=2pAlwollesp-1))P Mi(7).
So,

t
O 20 allosp )7 I(D)dT i=1,2, -

Note that M,(t)<22|%olls/p-1))"t.

Thus,

22 Pl s p-1) 2P Clhollor p-1))P 1)
ilp

We conclude that there is a solution u of (P) such that {V;} converges to

M=

i=1,2, .

u uniformly in DX(0, ¢,). It is clear that u is the unique solution of (P).

3. Proof of Theorem 1.2.

LEMMA 3.1. Let T>0 be the existence time of u, and u a subsolution in
0, Ty) for some T,>0. Then we have
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E(x: t)§u<x; t) Z.n DXEO; TZ);

where Ty;=min{T,, T}.

PROOF. Let
U(x; t) = u(x, t)_u(xy t) ’

then U, AU+ | x|°(uP—ur).
By using the mean value theorem, there exist 0<{<1 such that

| x| 7(u?—u?)=h(x, tX(u—u)
where,
h(x, )=p| x| {1—-Lu+Lu}?*

spmax{llulercp-1, lu®lloscp-1r} P!
Combining this and Proposition 2.1, we get
Ulx, )<0 in DX[O0, T,).

LEMMA 3.2. We assume 0<a/(p—1)<N—2. Let T be the maximal existence
time of u, and v be the solution of the linear heat equation with the same initial-
boundary condition as u.

Then

v(x, H<(p—Dlx|°t)~V @D in Dx(0, T).

PrOOF. If T<T,:= (luoll;/&=2)/(p—1), then by Lemma 2.3

v(x, t)g|Iu0"a/(p-1)<x>_a/(p-l)
S((p—DT)uw-xy=a/(r=1
<({(p—=D|x|°t)-tP-b for 0<t<T .
Now we assume T >T, and let
u(x, )={w(x, )" P D—(p—1)| x|t} "1/ *~D,

We shall prove [|[u(t)|s/p-1y is finite for 0<t<T.
When 0<t<T,, from Lemma 2.3, we see that

lu@®llarco-n= Nuolla/&=—(p—1)t} 7V PP oo,

We assume that there exists <7 such that lullsrcp-1y—c as t1z, and let
t, be the smallest one of all such .

On the other hand, let ¢, be an arbitrary constant with 0<?¢,<?,. Then u
satisfies for t<t,,
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Au-+|x]7u?—u,
=0(N=2—0a/(p—1)| x| 7 2t{o~ P D—(p—1)| x|t} ~2/P7D

- N g X
(p+1) 4 .
+p(p— w0 1 S (vt 2 T s

0.

v)z{v—m—l) —(p—1)| x|t} C-2p+OIP=D

%

So u is a subsolution for 0<t<¢t,<t,, it follows from Lemma 3.1 that u(x, )<
u(x, t) in DX[O0, t,). Hence we see from the definition of ||u()|s/cp-1)»

lu®llorco-v=lu@llorcp-1 for 0<t<t,.

On the other hand,
lut)lorcp-1y —> o© as t, 14, .

We have reached the contradiction.

PROOF OF THEOREM 1.2. We assume that there exists a global solution of
(P), then from Lemma 3.2 we have

(p—1)"HP-D> | x| o/ @=L P-Dy(x 1) in Dx(0, ).

Integrating the above both sides over £ with respect to ¢,(8)dSs, we can esti-
mate by use of (2.3),

60> ro1oDp1P-D0(r, 6 1,(6)dS,
:SQr‘”"’ SRS 1>S S G(r, 6, o, & oo, )oY dSsd pehs(8)dS,

— o/ (P-LpLI D= “S S:)Zt (rp)-¥-»ri2], ( )exp(—— 2+‘0 )uo(p, &)h(P)
XSQ¢»§(0)p”“d59dS¢dp

2
> ¢,p 7/ (P=D- (V-0 7241/ (P-D~1 gy (_Z}{)

x (7 orer-mrmrra(T0Yhexp (— CVugtp, ($)dSsdp

where ¢;, ¢, and ¢; are constants and r=|x|, §=x/|x].
Let r=t"2. Then v,=y,4+(N—2)/2, there exists ¢,>0 independent of ¢t such
that

oo
c4>t(0'/(P‘l)"(N—‘Z)IZ-H)/Z"’II(P"I)—IS
0

[0+ exp (=G )uato, @S,

= o exo (—)uato, 9190)dS,do.

0
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Since u is a global solution, we can replace u,(p, ¢) by u(r, 8 ;1t,) for any
to>0. Thus, for t>¢,

c4>S:SQrf+“”“exp(— Yur, 0 thu(6)dSodr .

4(t— to)
Here let t 1 o and replace ¢, by ¢. Then there exists ¢;>0 such that

L L (oo
+N-1 . F_
¢ ggo S!)rr+ SoSoSQG(r’ 6,0, ¢;t=s)
XN ur(r, 0, s)dpdSsds¢(0)dSedr

> CSS:S:SauP(p’ G, S)Pi(P)(t—s) T++NID grasosN -1

xexp (- 4(:5 S rexp (= = ))drdS¢dpds

From Holder’s inequality, it follows that there exists ¢¢>0 such that

Cs%g:g:(ggu((’: 4, s)¢l(¢)d5¢)pﬂr++“N_l exp (—4(t€is))dpds .

Moreover since we see u(x, t)=v(x, t) from Lemma 3.1, we can estimate

[gue. 8, 0u9)ds,

=( vo, 6, H0u(P2S,

2
=cysTTHHNID pT+ exp (-— ‘%)

X S:Sgrnw-l exp (—%)uo(r, 0).(0)dSdr

2
ZC,s™T+NID pT+ eXP (—f;—s)

for 0<t’'<s.
Thus we obtain

t oo
S QR

pPHITLTIHN-1 expy (_ g(p+t%s))dpds .

Since p>1, we can see that for (0, 1) such that p—1+1/6>0. Noting that
p+s/t—s)=p+t/(t—s)—1=<p+1/0—1, for s[t/, (1—0)t], we have ¢;>0, such
that
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Cs

v

(1-0)t
S SUPHDTL+a+NY 2=+ N/2) ¢
tl

(1-at 1
S —ds —> oo
L’ S

as t—oo,

This is a contradiction. Thus we have proved Theorem 1.2.

4. Proof of Theorem 1.3.
In this section we consider next problem
U=Au—+|x|°u? in R¥x(0, T),

u(x, 0)=1uy(x) in RV,

(4.1)

where N=3 and [|u(#)lls/(p-1y is finite and not zero.

REMARK 4.1. If D=R", the statements of Lemma 3.1 and Lemma 3.2 are
also true without the boundary condition of (P).

PROOF OF THEOREM 1.3. We assume that there exists a global solution
u=u(x,t) of (4.1) such that |u(®)|s/(p-1» is finite for any ¢>0. Moreover, let
v=v(x, t) be a solution of the heat equation with an initial datum u,(x). Since
|x—y1?<2(|x|*+|y|®) we have

v(x, t) =SRN(§$§)Nexp (—— I x;y lz)uo(y)a’y

e e e O

By use of Lemma 3.2 we have

(4.2)

(p—1)"1®=1| x| -o/(P=1y-1/(P=D) ;(2 \I/Ei>NeXp(~%E)SRNeXp<— | gtl z)uo(y)dy-

Therefore, for |x|=t'? we have

I 2

zN(p__l)—l/(p—l)n-N/Z exp (_%_)t(N~(z+a>/(p-1))/2gSRNeXp (__ l%’t )uo(y)dy,

If p<14+@2+0)/N, the left side of the above inequality goes to 0 as {—oo.
This is a contradiction.

Next, we assume p=1-+4(2+0)/N and let c,=2¥(p—1)"VP-bgN/izexp(1/2).
Then

2

|y
¢

Co zSRNeXp (— 5 )uo(y)dy .
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As we discussed in the proof of Theorem 1.2 we can replace u,(y) by u(y, t,)
for arbitrarily ¢,>0. Thus,

lyl?
Co ;SRNexp (— 2i—t0) )u(y, tydy for t>1¢,.
The right side of the above inequality goes to
SRNu(y, t)dy as t—oo
Replace t, by t. Then we have

62, 1y, Dy
SRNS:SRN<2_§7{(1?"“——S)>N‘3XP(— I;z;_tl;)ly |7u?(y, s)dydsdx
2 217070 9, Grmy) oo (— gy Jedras

=§ZSMw|”uv<y, s)dyds

v

0

By Hoélder’s inequality we have c;, such that,

{004 945, 50

Moreover, by using Lemma 3.2 and (4.2) we get

[, o, 6, 5245,

2 2
NN N2 _p _ 1=
=22 Ng-N/ gSN_ls ! exp( 2S)vaexp( D )uo(x)dde¢.
Since u,#0, for any #'>0 there exists ¢;;=c;,(#,; t’)>0 such that
¢ <2'”7r'”/’g S exp(——'—x—lz)u (x)dxdS for s=>t’
1 SN-1JRN 2s 0 ¢ =

Hence we get

Clo>S:'S:(Cns'N/2 exp (—%))ppd+N—1dpds

— N o+N-1 . ppz -(N
—(Cll)pgt'gop exp( —ES—')dpS (Npyitd g

=(Cu)”—;—(%)w+mml" ﬁ;—g S:IS(G+N)/2—(NP)/2dS.
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Since p=1+N/(6+2), the right side of the above inequality goes to oo as t—oco.
This is a contradiction. Thus we have proved Theorem 1.3.
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