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ASYMPTOTIC BEHAVIOUR OF DENSITIES OF
MULTI-DIMENSIONAL STABLE DISTRIBUTIONS

By

Seiji HIRABA

Abstract. In one-dimension asymptotic behaviour of densities of
stable distributions is well-known. However, in multi-dimensional
cases it is very difficult to investigate asymptotic behaviour of
densities of non-degenerate stable distributions in general. In the
present paper we give the following two results: If the Lévy
measure of the stable distribution has mass at a half-line, then the
density decreases along the half-line with the same order as in
one-dimensional case. If the Lévy measure is supported only on
finitely many halflines, then we can determine asymptotic behaviour
along each direction starting at O.
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1. Introduction and results

Let pu(dx) be a stable distribution on R® with exponent 0<a<2. Then its
log-characteristic function ¥(z) is given as follows: For z=|z|§, §8S¢ 1=
{xeR?: |x|=1},

T@=—lz1°(,, 1< 0)1°[1—itan"T sgncs, 05 |i(d0)+icz, by if a1,

—~121{,,., 16 0>1[1+iZsgnce, 0>log|<z, 051 |Ka0)+icz, by if a=1,

where A(d@) is a finite measure on S¢~! and b= R?. If b=0 (a+#1) or Sﬁl(db’)

=0 (a=1), then pu satisfies the scaling property: p**(dx)=t"**p(t "*dx), in
this case p is called strictly stable. Note that the Lévy measure n(dx) of u is
given by
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n(dn={_, AdO) lasrO)r-2dr  on R\{0}.

We say that p is non-degenerate if the support of p spans R?, or equi-
valently the support of A spans R?. Write this condition Span Spt A=R:*.

Throughout the present paper we always assume that g is a non-degenerate
stable distribution on R¢. It is then well-known that u(dx) is absolutely con-
tinuous and has a density p(x) with respect to the Lebesgue measure dx on
R?, which is expressed as

(1.1) p(x)= —(%E—Skdexp[—i<x, 2D+¥(z)ldz.

Furthermore p(x) is a C=-function with derivatives of all orders vanishing at
infinity (cf. [6], [7], [8] and [9)).

If we write p(x)=p(x;b), then p(x ;b)=p(x—b; 0). Henceforth, we assume
b=0. Then note that g is strictly stable except a=1.

We are concerned with asymptotic behaviour of the density function p(x)
as |x|—+4-co. Inone-dimension it is well-known that p(x) decreases like |x| '«
as x—-+oo if A has mass at {+1}. In addition, if 4 has no mass at {—1}, then
p(x)=9 for x <0 when 0<a<1, and p(x)>0 for x<0 and decreases exponentially
fast as x——oo when 1<a<2(see §2). In multi-dimensional cases Pruitt and
Taylor give an upper estimate p(x)<K |x|~!"* for a strictly sfable density.
When 2 is absolutely continuous and has a continuous density with respect to
the uniform measure on S¢°!, Dziubanski investigates an asymptotic be-
haviour p(ra)~cr ¢ % as r—-+oco, where 68!, ¢=c(¢)=0 and a~b means
that a/b—1. Furthermore Arkhipov gives an asymptotic expansion of p(ra)
under some additional regularity condition on the density of 4. On the other
hand one can easily deduce that if A is supported only on the orthonormal
basis of R?, then p(x)=I1%-.p;(x;), where x=(x,, -, x4) and p; is a one-
dimensional density corresponding to e;. Therefore if e=8S? N {x,>0, j=1,
.-, d}, then we have p(ro)~cr ¢@*® ag 1 +co, where c=c(a)>0.

From these results it would be expected that a general a-stable density
p(ra) on R? has the following asymptotic property : For each ¢=S?%7! there
exist c=c(¢)>0 and k=k(a, 6)=14+a such that

p(ra)~cr* as r— +oco.

In this paper we first discuss a lower estimate for a general stable density
p(ro) and we show that a lower estimate coincides with that of the upper
estimate when A has mass at ¢. Furthermore we show that the above asym-
ptotic relation is valid when 4 is a discrete measure whose support consists of
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only finitely many points in S¢°1,

Our first result is the following: Let # be a non-degenerate stable distribu-
tion on R? and Con Spt 2 be the smallest convex hull in S¢-! containing all
elements of Spt A4, and Int S denotes the interior of a set S in S?°!. Recall
that b=0.

THEOREM 1. Suppose that 2 has mass at g,8%7, i.e., A({0,})>0. If 0<
a<l and o,=Int (Con Spt 2), or if 1=<a<?2, then there exist positive constants
C:=Cya, 0,) and ry=r|a, g,) such that 0<C,<r'**p(ra,) for all r=r, where
C, is independent of r=r,.

REMARK 1. By the result of [6], assuming thst gaz(da)zo when a=1, it
holds that 0<C,<r'"" *p(ro,)<C,<oo for all r=r, where the constant C, is
independent of =0 and ¢, (the upper estimate seems valid without the restric-
tion Sex(da)zo when a=1, but we have no proof for it).

Now we assume that 2 has mass at only finitely many points i S¢-! (of
course we also assume that b=0 and Span Spt 1=R%). To state the next
result we define the following subsets of R?: For each 1<k=<d

(i) S°%%k) is a union of closed convex cones with the origin as vertex,
the cones which are subtended by every linearly independent %-elements of
Spt 4,

(ii) S(k)=S%(k)NS¢ ', S(0)=@ and T(k)=S(k)—S(k—1).

Now our main result in the present paper is the following:

THEOREM 2. Let d<3. Suppose that Spt A is a finite set of S®'. Let o=
Sé-1,

a) Let O<a<l.

If eT(R)NInt S(d) for some 1<k<d, then p(ro)~c,y *1*® gs p—4oo,

If a&lInt S(d), then p(ra)=0.

b) Let 1a<<2

If aT(k) for some 1=<k=<d, then p(ra)~c,yr **® gs r—-4-oo,

If 0£S(d), then p(rg) decreases faster than any negative order of #, that
is, p(ro) is a rapidly decreasing function of »=0.
Here constants c¢;, ¢,>0 are independent of » and can be determined explicitly
by the expression of ¥'(z).

For d=4 this theorem could be also proved in a similar way to our proof.
However, it seems to be so tedious to describe the proof in general. So we
treat the case of d=2 and 3. This theorem is proved by using the rotation of
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contour of integration as is similar to the one-dimensional case. Lemmas 2
and 4 are essential to the proof of this theorem (see § 3).

In the first cases of (a) and (b) in Theorem 2 we can give more concrete
information. We say that A has mass at (m+1)-directions a,8°%7, j=0, 1, 2,
-+, m, if 1 has mass at ¢, and/or —¢; for each j=0, 1, 2, ---, m (of course we
assume g;+0, if j#k). Now suppose that 2 has mass at only (m+-1)-directions
cg;, 7=0,1,2, ---, m. When o=T(k) for some 1<k<d, we define a vertex set
V(o) of {g,, 7=0, 1, ---, m} and an index set [,(g) as follows;

{e;, -, 6;,)€V(a) if {o;, -+, 6;,} is linearly independent and ¢ is con-
tained in the interior of Span {g;, ---, 0,,},

JRY=1{y, o, et El(e) if Aoy, -, 05, EVi(0).

Moreover for j(k)eIl,(o) set H;,,=Span {g,, ---, d;,} and fix an orthonormal
basis {e;,, -+, e;,} of H;u),. Now let

(i) pjw be a k-dimensional density on Hj;,, with a log-characteristic
function qfl;,j(k),

(ii) pjw be a (d—k)-dimensional density on H ;,, with a log-characteristic
function llle;m(if k=d, set piur=1).
In particular we write p;=p;u,: a one-dimensional density on H;,,, when j(1)

={s}.

THEOREM 3. Let d<3. Suppose that e T(k)NInt S(d) in case of 0<a<
1 and that o=T(k) in case of 1=a<2 for some 1=<k<d. Then

pro)y~ X )D,-m(ro(j(k)))ﬁ(k>(0) as r— +oo,

J(RYEL p (0o

= 2 gGEN L pirhy)penr(©),

_j(k)EIk(cr
where a(j(k))=25=1h3,0;,=0 | u,,, and g(j(k))=|det Qju,| with a kXk-matrix
Qi such that Q;u,0;,—e;, for every s=1, 2, -, k.
Note that the assumption of Theorem 3 implies that there is at least one
J(R)={j1, -+, je}€L:(g) such that pjw(0)>0 and p,(ro;)~c(j)r ' * as r—
+co with a positive constant ¢(j,) for each s=1, ---, k.

REMARK 2. a) Note that S(d)=Con Spt 1 and 7(1)=Spt A.
b) In a similar way to the proof of Theorem 2 we can show that if p is
rotation invariant, that is, ¥(z)=—c|z|*(c>0), then

p<x)z§1cn|xl““"“ as |x| — 4o,
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where

¢ =gt ((n 1);): gna-1gn gin T4 f'( na—l—d>r( na>

This expansion means that
(1.2) p(x)= élcnlxl‘d“”“—i—O(lxl‘d‘(N*““) as |x]|—+co for all N.

In particular, if 0<a<1, then p(x)=m-1cn|x|"27"7
This result was shown by S.C. Port (A. 13 in [5]) by making use of a
subordination technique.

2. Some Preliminary Results

For the proof of Theorem 2, we mention some results in the one-dimensional
case which are well-known in [3].

a) a=1. In this case p(x) is expressed with some constants ¢,>0 and
[Bo| =1 as follows:

2.1 i)(x)—— Sw ex [—z‘xz-colzl“(l—z’ﬁo taniza—sgn z)]dz
=5 Sﬁmexp[—zxz clz|%e %% sgnz]dz
2.2) %2‘1( -)v,nﬂ x" "¢ [(na+1)c"sinny as 0<x — +oo,
where
(2.3) c=cosecl, 0=0(B)=rL(a)B/2 and n=n@)=0+rna/2

=n(a+L(a)B)/2 with L(@)=a(0<a<l), =a—2(1<a<?)
and pB=2r"'L(a)”! arctan (f, tan na/2).
Note that [0|<=®/2, ¢>0, 0=9p==m, [|B|=1 and

(2.4) Bo==1 if and only if B==+1 and then A has mass at only {+1}
respectively .

In particular if 8,=—1, then »=0(0<a<1), =7 (l1<a<?2) and it holds that
2.5) p(x)=0 for x=0 if O<a<l,

( Oa) 1/(2a— 2)x(2 a)y/(2a— 2)eXp|: (a 1)a—a/(a 1)6—1/(a l)xa/(a 1)]

\/271:( 1)
as 0<x— +oo if I<a<?Z.

b) a=l.
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2.6) p(x):%rwexp[—ixz—c(lzl+i%réz loglzl)] dz, ¢>0, |Bl=1,
z%_f;;l%xg”ez Im[z’(l—*—,@)——gﬂélog%]ndz as 0<x — oo

In this case (2.4) also holds. Moreover, if §=—1 (i.e., Spt A={—1}), then

1 T 2
~ ————— _ X — — —®/(2¢) — %)
2.7 p(x) 2\/ceexp[llc x po ce ] as 0<x — 4oo.

c¢) The asymptotic behaviour of each derivative of p(x) is obtained by
differentiating the above formulae.

d) Moreover (cf. [9])
(2.8) p(x)=0 if and only if 0<a<1 and either x=0, f=—1 or x<0, f=1.
In particular if a1 then

2.9) p(O)=n"1c""=(@'+1) cos (2—’;— L(@8).

REMARK 3. In the case 0>x——co, we obtain the same results by chang-
ing x, B, and B to [x|, —B, and —f (thus, 6 to —@) respectively. Because if
we write p(x; a, 8)= p(x) as p(x) depends on (a, B), then p(—x; a, B)=
p(x; a, —B) holds.

3. Proof of Results

Before proceeding to the proof of Theorem 1, we present a general fact
on multidimensional stable distributions, which is interesting in its own right.
Let p(x) be a density function of non-degenerate stable distribution g of ex-
ponent 0<a<2. Recall that b=0 in ¥(z) and S°(d) is the smallest closed con-
vex cone with vertex 0, which contains Spt 4. Note that Int S°(d)+ @ because
of Span Spt 2=R¢?, where Int V denotes interior of a set V in R¢.

LEMMA 1. p(x)=(Q if and only if 0<a<1l and x¢&Int S°(d).

ProOF. Let (X,, P) be a Lévy process on R® corresponding to g, then
P(X,edx)=p'"(dx). Of course for each t>0, p**(dx) has a C=-density p.(x)
with respect to the Lebesgue measure on R¢, and p,=p. We divide the proof
into three cases: a=1, 1<a<2 and 0<a<1, and use the Lévy-Ito decomposi-
tion of Lévy processes (see [4], [8]).

(1) a=1. In this case ¥(z) is expressed by
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.2 .
v@=—1z1],, 16 0>|[1+2;sgn<5, 0> log| <z, 0>IJ2(d0)
:Ssd_lﬂo(dﬁ)gj[e“z"0>——1—z'<z, r0>Ll () 2dr+<by, z),
where 2,=2z"'4 and bo:—2n‘160502(d0) with

oo 1
co-_—gl "2 sin rdr—l—gor‘z(sin r—r)dr.
Then by the Lévy-Ito decomposition we see that

t

x|

1z <o

0S0<lxl<lx1\~/(ds dx)—l—g:S xN(ds dx)+tb,,

where N(ds dx)=#{seds: Xs—Xs_dx} is a Poisson random measure cor-
responding to a Poisson point process with characteristic measure

ndn={_, w@d)| LirOrdr on RE{0)
and Z\NZ(ds dx)=N(ds dx)—ds n(dx). Now for each 0<e<1 we define

§=S:Ss§]xl<lﬂ\~f(ds dx)+gzglélxl<wa(ds dx)+tb,

Stg xN(ds dx)—tb*
0Jeg|z <o
with
2
b=(—log e+c) =, 0d0).
Then X§+tb* is a compound Poisson Process with Lévy measure
nedn=\_, w@o)| leoydr.

Thus, if we set Fi={0}, Fi=Spt n*, F{,,=F5+F;(n>=1), then it holds that
Spt X;+tb*=CL(\U5-,F%) for all t>0 and that 7 lim.,,CL(\U%<,F$%)=5°%d), where
Spt X; denotes a support of a distribution of X; under P and CL V denotes
closure of a set V in R?. From these results we can easily see that Spt pg

=R¢. In fact, if gaz(d(a):o then S°d)=R¢? because of Span Spt A=R“. Hence
Spt X,= 1 lim,,,Spt X;=S5°d)=R? for all t>0. Therefore Spt u=Spt X,=R".
If gﬁl(dﬁ);to then |b°|—-+oo as ¢—0 and b*<Int S°(d) for small & because of
Sﬂl(dﬁ)elnt S%(d). Thus for each x&R? we have x+bsInt S°(d) if 0<e<1

is sufficiently small. Hence there is an 0<e<1 such that x+b°€CL(\U%=0F%),
that is, x&Spt X;CSpt X, for all t>0. Therefore Spt x=Spt X,=R?. Now if
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we assume that p(x)=0 for some xR¢, then L*p(x)=(3/0:)p.(x)]:=1=0, where
L* is a Lévy generator of —X,:

Lrpn={_, 280" [p(x+70)—p(x)=<rf, Ip>lan®Ir dr-+<by, Tp(x)

d

with A¥(d8)=2,(—df). Hence noting that Vp(x)=0, we have p(x—rf)=0 for
a.e. =0 and A-a.e. §=Spt 4. By the continuity of p it holds that p(x—»8)=0
for all »=0, §=Spt 2. Furthermore we easily deduce that

p(x—r8)=0 for all =0, #=Con Spt 4.

This implies that p(x—Int S°(d))=0, but which is contrary to Spt g=R? and
Int S°(d)+@. Therefore we get p(x)>0 for all xeR?.

(2) 1<a<?2. In this case p>0 on R¢ has been already proved in [9] by
using the scaling property of p,(x). We here give an alternative proof by the
same way as in (1). In this case the previous arguments work replacing 7' (z),
n¢(dx) and L* by the following:

T

T@y=—lz1%(,,_ 1< 0>1<[1-i tan T sgnce, 05| 2a0)

={ 0 A0 e T O—1—icz, 10517 dr,

where A,=c(a)d with c(a)=2(a+1)sin(za/2)/x.

12

X,:S xN(ds dx)

0S0<III<°°
with Lévy measure

ndn={_,  4@0)| 1¢oyr-=dr on R\(o}.
For each 0<e<1,

t

X::S:S‘sm@xﬁ(ds dx):S S‘sm@xN(ds dx)—tb*

0
where
b=ca—1"| , 0a(26),
and its Lévy measure is given by
nidx)={_, 20 Le:royr-1-dr.
The Lévy generator L* of —X,:

Lep=(_, 180 p(x+r0)—p(x)—<r, Tp(x)Ir—-dr.

d
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(3) 0<a<l. We show that p(x)=0 if and only if x&Int S°(d). In this
case ¥(z) and X, are expressed by the following :

T@=—1z1°_, 1< 0>1°[1-i tan T sgn<s, 0| aca0)

— Cr i 2, T8> __ -1-a
=y @0 s T =132 ar,
where 4, is the same as in (2), and

X¢:S:SO<m<wa(ds dx).

Moreover for each 0<e<1 we define

fZS:Seszwa(ds dx),

then Spt Xi{=CL(\U%-, F%). Hence by limiting ¢é—0 we have Spt X,=S°d), that
is, p(x)=0 if x&Int S°(d). Furthermore by a similar argument to (1) we can
see that p(x)>0 if x<Int S°(d). In fact, if p(x)=0 for some x<Int S°(d), then
L*p(x)=(0/0t)p,(x)]:=1=0, where L* is given by

Lrpn=(_,  #5d0) [p(x-+76)—p(x)]r-iedr

d-1

with 2¥(d@)=24,(—d@#). Hence we have u(x—Int S°(d))=0, but this is contrary
to Spt p=S°d). Therefore we get p>0 on Int S°(d). Q.E.D.

We also mention the following result: To emphasize the dependence on 2
we write ¥(2)=¥;(z) and p(x)=pi(x). Let Q be a linear transformation on
R? and set 2,(d@)=A(Q 'df) on Q(S*'). Then by the definition of ¥(z) we
have ?Isz(z)zllfg(”Qz), where *Q denotes a transposed matrix of Q. Moreover
by using we can easily deduce that if Q is invertible, then Dag is well-
defined and

Q.1 pa(x)=|det Q| p1(Qx)
holds.

PROOF OF THEOREM 1. First assume that A({g,})>0 for some ¢,=8¢%7!,
and also that o,=Int (Con Spt 1) if 0<a<1l. For simplicity we write g,=a0.
In (3.1) let @ be an orthogonal transformation, then pi(x)=p:,(Qx). From
this we may assume that ¢=(1, 0, ---, 0). Moreover it is easily deduced that
p(ro) is expressed by

3.2) pra)=cpi(r)pa-1(0, ---, 0)
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or
(3.3) peray=|" =240, 0, -, 0)dy,

where p; is a j-dimensional density (j=1, d—1, d) and ¢>0. In fact, we define
A° by A=0s,+1° and set H=Span Spt 1°. Then dimH=d—1 or d because of
Span Spt A=R¢. If dimH=d—1, then by taking Q in such that Qo=g¢
and Q(H)={x,=0} we see that Dao(ra)=p:i(r)pa-s(0, -+, 0), where p, (resp. pqs-.)
is a one-dimensional density function (resp. (d —1)-dimensional density function)
corresponing to 0, (resp. 43). Hence we get p(ro)=|det Q| p,(*)pa-1(0, -+, 0).
If dimH=d, then we can define a d-dimensional density function p, by 2°.
Thus we have

@mep(x)=| expl—icx, 2+¥s,,(+¥ 0 (2)]dz

:Smwdy pl(y)ggd exp[—i{(x1—¥)z1+ X92o+ -+ X424} +¥ 10 (2)]dz

=@m|" p0Ipai—y, 1, -, XY
Therefore holds. Here in the second equation we use
exp[¥s,, (D]=|_pi(») exp[i y21dy.

Now noting that does not occur when 0<a<1l and Con Spt A+S?¢},
we see that py_,(0, ---, 0)>0 and pu(y, 0, ---, 0)>0 if at least y>0 by Lemma
1. Hence in the case of our claim holds. In the case of we have
p(re)=cp,(2r) for sufficiently large » with a positive constants ¢. In fact there
are a compact set K in (0, ) and a positive constant 7, such that e=
inf,expa(y, 0, -+, 00>0 and inf, exp(r—y)= p:(27) for all r=7,. Thus p(re) =
e|K |inf exp(r—y)=e| K| p:(2r) for r=r,. Since p,2r)~c'r7'% as r— +oo,
there is a constant C,>0 such that p(ro)=C,r '~ * for all r=vr,. Q.E.D.

PROOF OF THEOREM 2 AND THEOREM 3. Let d=2,3 and let ¢ be a non-
degenerate stable distribution on R?¢ with exponent 0<a<2. Recall that we
are assuming that Spt A is a finite set of S¢~!, and we say that A has mass at
(m+1)-directions ¢;&€8°"!, =0, 1, 2, ---, m, if A has mass at ¢; and/or —o¢; for
each 7=0,1, 2, ---, m (of course o;+ =g, if j#k).

Now we begin with the case d=2. The proof is divided into three cases.

CAse 1. 1 has mass at only two directions a,, ¢, (6,# +0,). By [3.I] we
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may assume that ¢,=(1, 0), g,=(a, b) and with a+1, b>0 such that a®*+5b>=1.
Then
p(ra)=b="po(rho) p:(rhy)

where, h; are defined by the decomposition ¢=h.0,+h,0:, and p;(y), yER are
defined by with some constants (cj,, fB;,0) instead of (co, Bo), /=0, 1. Here
one can easily check that b~'=g({0, 1}); which is defined in Theorem 3, and
that p5(0)=b"1p,(0) and p%(0)=b"'p,(0). Hence our claim immediately follows
by using the facts (2.2), (2.4), (2.8) and [2.9). In particular if 1<a<2 and o
Con Spt 4, then by (2.5) and (2.7),

(3.4) pro)~K,r¥zexp [ —Kyrk+] as r— +oo if 1<a<2,
(3.5) pro)~K, exp[Kir—Kiefs™] as r— +oo if a=1,

where K;, K,; are positive constants which are independent of r. For instance,
when Spt A={+a,, ¢,} with ¢,=(1, 0) and ¢,=(0, 1), let a=(s, 1),

if d=T(Q), i.e., t>0 and ¢+0,, then p(ro)~cr2?*® as r — 4o

if o€T1)NInt S2), i.e., =a,, then p(ra)~cr ** as r — +oo;

if o=T1)N0SQ), i.e., 6==+0,, then p(ro)=0 0<a<l), pra)~cr (1<
a<2) as r—+oo;

if 0£S(2), i.e., t<0, then p(ra)=0 for all »=0(0<a<1) (I<a<?2) and
(a=1) hold.

CASE 2. a=+1 and 2 has mass at only (m-+1)-directions ¢;, j=0, 1, 2, ---,
m(m=2). Then ¥(z), z=(z,, z,), is expressed by

Ta

W(z):—éocj,ol(oj, z>]“[1-—i,8j_o tan 5 sgn<o;, z>]

=— 3 ¢/I<05, |* exp [—i0; sgn<a;, D],

where ¢;,0>0, |8,/ <1 and ¢;, 8; are defined by [2.3).

In order to prove Theorem 2 and Theorem 3 in Case 2 we first consider
the special case, however we show that the general case is reduced to this
special one (see Second step).

First step. Set 6=a,=(, 0) and let a;=(s;, t;), =0, 1, 2, ---, m, where
s;=cos ¢; and t;=sin¢@; with 0=¢,<¢;<--<¢n=n/2. Note that if A has no
mass at o=(1, 0), then A1 has mass at —g=(—1, 0) by our definition of direc-
tions, and B, ,=—1.

We define the following a-stable densities:

(i) For y, zeR, p,(y) (resp. ps(v)) is a one-dimensional density with a
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log-characteristic function ¥y (z)=—c,|z|*exp[—if,sgnz] (resp. ¥$()=¥(0, 2))
(ii) For x, zeR? and j+k, pj (x) is a two-dimensional density with a
log-characteristic function ¥ z(2)=—2r=j. s ¢r|<{0, 2)|*exp[—if sgna,, z)].

PROPOSITION. Let r=0.
a) If o=Spt 2 and ps(0)>0, then

3.6) pra)~po(r)ps(0) as r— +oo;
b) If a&Spt 2 and =Con Spt A, then
3.7 plra)y~ X pja(ro) as r— +oo;
1sj<ksm

¢) If 1a<2 and o&Con Spt 4, then p(ro) is rapidly decreasing as r—+ oo ;
d) If 0<a<l and o&Int (Con Spt ), then p(ra)=0.

Note that (b), (c) and (d) also hold in the case that A has no mass at {+a}
(in this case ¢y ,=c,=0 in ¥(2)) and that, by

Re S:exp U, 20dzy=rpsO)=c""Ia"'+1) cos(5= L@F),

where (¢, B) is (¢, B) in which is given by using (¢, Bo) = (271 c;.otS,
SFics0B5.0t5/E0) instead of (co, Bo) in [2.3). Hence by (2.4) and (2.8) p+(0)=0
if and only if 0<a<l1 and B, ¢=B.o='"=Fno==x1 (i.e.,, c&Int (Con Spt 2)).
From this proposition we can easily deduce Theorem 2 and Theorem 3 in
Case 2 by using the one-dimensional results.
To prove Proposition we need some lemmas. The following lemma is
obtained by elementary analysis.

LEMMA 2. Set a;=t;/s;=tan @;(a,=0, ap=). Then

38 pro)=@m*| expl—irz+¥()]dz

= (=1 -
~ p-ig-2
ngl n!

w (__1\n-1
+r it 3] =D 1)' ¥
n=1 n:

r "%t sin nnoszodu e tynre Reg exp W(—z’i:-, u)dv

u/(ray)
. -]
“rac® sin myoS du e ¥yne+!
0

lez d¢ei¢ % _(:l)_ y-na Im[,i cjua(sj-l-iewtj/al)“e‘iVj]n

(] neo 1!

_ _ m-—1(oo aj+yv _
+r it Egodug due™™

J=1 a jv
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= (=Dr! ‘ :

ngl(—)T—r‘"“ Im{coue™ 10+ sf(u—aw)e 11+ -
+epsa(u—amp)re i1

& (__,1)71'1 -na a a,—if a,—-1 n

2 T ImlensFa(a ey —u)te T e eyt m]

as r—+oo, where 9;=7(8,), §;=7(—8@,) are defined by [2.3). This expansion
holds in equal provided 0<a<1, and if 1<a <2, then it holds in the sense of
(1.2).

PRrROOF. For simplicity we only prove the case that m=3, ¢=0,=(, 0),
0:=(81, t1), 02=(Ss, t2) and @3=(0, 1). That is, for &;=c;s5(j=1, 2),
U(z2)=—colz,|%exp[—if,sgnz,]—&|2,+a,2z:| *exp [ —70, sgn(z;+ a,2,)]
—Cs| 21402, | *€Xp [ —i6, sgn(2:+a225)] —Cs| 2| “€Xp[—ifs sgn z,] .

Then

__ Re
p(ro)= 58

S dZQS dz,exp [—irz,—coz%e~t%0]
0 0

(exp [ —&1(z1+a122)%e 101 —,5 (2,4 o25) %0 102 —yz8 0™ 104]
+exp[—51121-—'0122|“e"iolszﬂ(zl—alzz)
—83|z1— g2, | Yo7 t0258n 1m0 020 0 220105
By changing variable rz;, to ¥ we have
r
0

b 122 . _ _q
Znarp(ro)zReS dzz{g du exp[—iu—cor “ue %]
0
(exp[—cl<alzz+7) e iﬁl"“Cz(ngz'{"?) e ioz—CSde 103]
. U\ | . U\
+exp[—'cl(0122—7> elol—cz(azzg*‘?) 27«02—-—()32‘2’@103])
ra2z2 . 16
+S du exp[—iu—cor *u®e %]
Tllllz
U a . uU\e _ _
(exp[—f‘l(—;—l—alzz) e ”1—c2(agzz+7) e 02 —coz% “’3]

u a . A .
—l—exp[—?l(;——alzg) e“’al—c2<azzg—7) e”’?—csz‘;e“93])

—l—S du exp[—iu—cor-“ue %]
Tagzy
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(exp[—&‘l (% +a122)ae-i01—52(% —I—agzz)ae‘wz—cszge‘i”]

N (U @« o N (U a . ;
+exp[—c1<—r—a,zz> e 101—c2(7—azz2> P 102~csz‘2’e’”3])}.

First assume 0<a<1. Rotate the contour of integration with respect to du
through an angle —x/2. Then

Ta122
du e texp[—cor “u%e 0]

3.9) 27r2rp(ro):Re[—z'S:°de{S

0
~ L UN\Y ~ LU\ _
<exp[—cl<a122—27) e i01—Cz(azzz—"Z‘;) e 102"‘6‘32%9 ‘:03]
o .U\ LU\ .
+eXp[_C1(alzz+l7> ewl—fz(azzz-*ﬂ'r—) e‘”z—Csz‘z’e”’SD

T(lzlz , -
+S du exp[—u—cor “ue™t"]

Tiazg

(U « LU\ »
(exp[—c1(7+zalzz) e ‘?l—cz(azzz—z7) e 2—cyz8¢ ”’3]

L U a LuNe
+exp[—cl(—r— —za122) e ’”l—cg(azzz—i—z?) e”’2—-csz‘2”e‘03])

+S du exp[—u—cor “ue"t10]
TQoZy

a

~ (U . i ~ (Y . 1 a,-10
exp| —¢ 7+20122) et —C, 7+za222 e *M2—cqyz%e s

~ (U . « u . a A
+exp[—c1(7—zalzz) e ‘”1—62(7—za222> e i“——cszge'o-"])}

(> /2
+’S dzgralzgg dpe™?
0 0
exp[ —7a,z,e' 72" —coafzge 0ot a9 ¢ z8(a,—a,e7 ) %0 02— cyz801%3]

{exp[—2,a%z5(1—e~*¥)%e!? 1] —exp[ —&,a%z3(e'* —1)*e~*?1]}

T

+2.Smd227a222g /2d<pe—w

0

exp[—7ra,z,e* 2P —coagzge ot e) —f z28(ase " —a,)%e 01— cyz5e05]
{exp[—&:a5z8(1—e *¥)%e'? 2] —exp[ —ra525(e™** —1)%e ™ 02]} ]

In the last two terms change ra,z, and ra.z, to u, n/2—¢ to ¢ respectively
and rotate the contour of the integration with respect to du through an angle
—¢@. Moreover, in the second and third terms exchange the order of integra-



Asymptotic Behaviour of Densities 237

tion with respect to dz, and du and change rz, to v. Then 2x%p(ra) is
equal to

gwdur dze ™™ Im{exp[—cor “u%e 707}

0 u/(ray)
N LUNE LUNT _
Re{exp[——q(alzg—z—) e ‘01—32(a222—z7) e 02— cyz%e “’3]}
r
Im (= )
—I—-r—S du e *exp[—cor *u%e"t10]
[

ulay - . . ~ . — - -

{S dy(exp[ =&, *(u+iaw)*e 11—~ *(aw—iu)*e 02—y %y%e 03]
uj/ag

+exp[—& i r *(u—ia,w) e " —yr % (awtiu)%et?r—cyr ety

u,/a2 ~ . . ~ _ . . _ - .
+g dy(exp[—Cr *(u+ia,v)%e 11— *(u+1a,v)%e 12—y~ %y%et0s]
0

+exp[—& v *(u—ia,v)*e 11—, r *(u —z'azu)“e‘i“ncar“"u“e“’aj)}

Re (e . u (nl2
-u —a, a,-iy
+ ~ So du e *exp[—cor *u%e"t70] aISo d¢

expl—ip—Cr *u*(l—ie~*%a,/a,)%e'"2—cyr “a7ue*¥s-29)]
{exp[—&ir “u*(l—ie ") %e'n]—exp[ —&r *u*(1—ie~%)2¢ i1}
RGS‘” U (=/2
—\ du e “exp[—cor “u%e"tn0 __S d
+ 7 Jo p[—co ]az . o
exp[—i¢—&r *u*(l—ie™*%a,/a,) e —cr~*az%uet =29
{exp[—&r “u*(l—ie~*%)%et12] —exp[ — &y *u*(l—ie~ )2 127}
Moreover in the second term we see that
ula,y ~ . —1 ~ . 0 _ 0
S dy(exp[Cir~*(u+iaw)?e 11 —Zr *(aw—iu)*e 02— cyr=2y2e~19s]
uj/ag
+exp[—& 7 *(u—ia,w)%e 11— *(aw+iu)¥etlr—cr*petfs])
ul/ag ~ . . ~ . - -
—{—S dy(exp[—¢r™*(utiaw)®e 11— rN(u+ia,w) e 12—y~ tyte 03]
0
+exp[—&ir *“(u—iaw)¥e N —{r (U —iaw)%e 12— cyr "% %et?s])
[ul/ay - ) o . a
:zgu/a dv(exp[—C1r *(u—av)%e™ 11 —For *(a,y—u)%et 12— cyr %p%eiis]
2
—exp[—C 1™ (u—aw)e I —Cr (@ —u)¥e 12— cor %yt ts])

(ulag . . -~ . _ A
_HS dyv(exp[—& 17 *(u—a,v)*e 1 —Cor (U —a,w)%e 12—y Yy eiis]
0
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—exp[—&1r *(u—aw)®e = (u—aw)%e T2 —cyr %y t8])
LU (e . PP S S T AP
_ZTSO de(expli¢p —¢r “u*(l+ie*?)e '
1
—Zr ut(l+ie?az/a)) e 12—cyr *a7%u%e t0sma®)]
—exp[—ip—&r u(l—ie 9)%e tn
—&r u*(l—ie*?ay/a,) e’z —cyr ®a7%ue’¥s=a9)])
.U (w2 . . . )
_Ha_go dp(explig—¢.r*u*(1+ie*®a,/as)*e *n
2
—&r ut(l+4ie?) e 12— cyraz%u%e " t¥s~a9)]
—exp[—i¢—&r *u*(1—ie*?a,/az)%e
—&r *u(l—ie'®)etn2—cyr%azu%et?s~29)7)
LU /2 . . ‘
——z—a—go dp(explig —&,r*u(1+ie*?a,/az)*e™*n
2
—&r tu(l47et®) %112 —cr-2az%u%e t¥sm 9]
—exp[—igp—&r *u*(l—ie*fa,/ay)%e '
—&r ou(l—iet®) e in2—cor~2az;%u%et¥s—2$)7]),

where we rotate the contours through angles +x/2. Substitute this equation
for the above one, then we get

1 (e
proy=—i-|" du e Im{exp[—cor~*ure~tral)
Y Jo
= . UN\® ~ LUN\E _
ReSu/(ral) de{eXp[—51<0122—27) e_iol_CZ(agaZz—Z?) e ioz—CSde toa]}

1 hed ulay —u e . Y
+—7r2“’j§“§0 du{Su/azdue Im{exp[—cor “ute 10— r~*(u—aw)*e" "]}

Im {exp[ —&r " “(aw—u)%e 12— cyr *pe 3]}

ulag . .
+S dyve *Im{exp[ —cor *u%e 10— 1r"*(u—a,v)%e "t
0

— & *(u—aw)®e ' 12]} Im {exp[ —cor v e~ t7] }}

1 * —u -, A, u
+WSO du e * Im{exp[—cor *u‘e ':?o:]}a_1

S:/2d¢ explig —&r *u*(1+ie*?)%e~*n

_Ezr"dua(l+z-et¢az/al)ae—iﬂ2_csr—aa—l-auae—t(oa—ngs)] .
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This implies (3.8). Next let 1<a<2. In this case it is impossible to proceed
in the same way as above, because the integral in (3.9) may diverge. However
in a similar way to the one-dimensional case (cf. Th. 2.4.2), if we choose
suitable angles in the rotation of the contours of integration and use Taylor’s
formula: For x>0, yeR

N —_ y v )7 . S \N+1
exp[-——x—l—z'y]:ngo( x:—!zy) —I—s( (J;v_:ff))! , e€C, |e]£1,

then we will obtain the same asymptotic expansion (3.8). In fact, first we see
that
2 . o0 T(ZIZZ . _ -0
2 rp(ra)zReS0 d22g duexp[—iu—cor “u%e 1" /n!
(1]
. A a
(exp[—?l(alzz—l— 7) e"’"l—ﬁz(agzg—l——:f—) e‘w2—caz’é‘e“03]
u U\
+exp[—51(alzg—-7)aet01—52(a222—7> ewz—csz%‘ew“])
Re

+ ——Swdv{gazydu exXp[—iu—cor *ue 9]
v Jo ay

( 51 [—&r*(ut-aw)et01]n/n ﬁ’}o [—Cr~*(asvtu)®e *2]"/n

=0

N ) N
20[—c3r"“u“e‘we]"/n! + D [=¢r-*(u—aw) e t01]m/n !
n= n=0

[—&r %*(apy—u)®etf2]/n

M=

3
I

0

2

 [—cor™ve?s]"/n !)‘l'S duexp[—iu—cor *u%e 0]
Prd

o0
a

3
1

N N
Eo [—&wr *(u+taw)®e- %1 /n !ngo [—&r*(utas)®e 9212 /n !

N

M=

N
o[—car“‘y"e““’3]"/71I + [ *(u—aw)e 1] /n
n=0

E]
I

N N
ngo[—€2r‘“(u—azu)“e*i”2]"/n ! Z_}o [—cer~%v%et?s]n/n ')}
+O(r-1-(N+1)a) .

In each term we rotate the contour of integration with respect to du through
an angle y=zn[(a—2)B,—1]/(2a), then exp[—iu] is to exp[—ue**/2*P7] and
expl[—cor “u%e~%0] is to explicor *u]=38_, [icor *u®]"/n ! +elicor *u*j¥+1/
(N+1)! with e=C, |¢|<2. Note that —7#<y<0 and |7/2+7|<x/2. Moreover
we rotate the contour through an angle —z/2—y. Then we have the expansion
which is similar to (3.9). Then by the same way to the case of 0<a<l we
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can easily obtain (3.8). Q.E.D.

Thus if ¢=Spt 2 and p3(0)>0, then

ReS:rexp?If(—z'%, y)dv——>7rp$(0) as r— +oo,
and

pra)~r 2w ¢y sinpol (a+1)p5(0) as r — +oo.

Therefore we have (a) in Proposition :

If o&Spt 4 then By ,=—1, i.e., 7,=0 or = (see §2), thus the first and
second terms of (3.8) vanish. Hence by change of variables u—a,v to u’ we
have the following :

LEMMA 3. Set bj=a;—a,(by=0, bpy=c0). Then for c&Spt 4,

(3.10) p(ra)zr—‘zn.—zmz_}lgoodygbj+1udu p-u-aps
J=1J0 ij
s (=Dt o -
nz=31_> nl ¥ Im[(f'lslu e ”’+c2sz(u—b2y) e 124 ...

—i—c;s?(u —ij)ae—’“”]n

S

| n! r="Im [:C_;HS';H(ijy—u)ae'iﬁjﬂ_f_ —{—cmy“e‘“fm]" .
n= !

as r — oo,

This lemma also holds in the case that 2 has mass at neither ¢ nor —o,
because c¢,=0 in (3.8).
Thus if ¢&Spt 2 and os=Int S(2), then

p(ra)wr‘“”“)n‘zf(a—l—1)2lsj§smgj, kCilhy el 77 sing cp | he, 5| 7' "% Sin 7y

~ 2 gixbirhs )perhe, ;) as r— +o

1sj<ksm

= 2 pj.k(ra)r

" 155&ksm

where g; e=(s;tr—sit;)"*>0 for j<k, h;, and h,, ; are defined by o=h; ,0,;+
hi ;o (€., hj r=ti/(sjtr—sst;)). Thus, we get (b) in Proposition.

Moreover if 1<a<2 and ¢&S(2), then 8, y=-=Bn =x1(.e., )1==in
=x or n,=--=7n,=n). Hence every term of (3.10) vanish. We have (c) in
Proposition.

Finally (d) is followed by Lemma 2.

Second step. Suppose that 4 has mass at only (m+1)-directions ¢; 7=0, 1,
2, -, m. We may assume that ¢=(1, 0) and 0=, <@1<@:< + <Pn_1<Pa<
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n(p;=argg;). If 2 has no mass at {+g}, then by taking ¢,=0 in ¥'(z) and
seting g,=0¢ we may include ¢ as a member of directions ¢; 7=0, 1, ---, m.
Moreover in let Q be a linear transformation such that Qo,=0a, and Qa.,,
=(0, 1), then 0=¢,<&: < <@pn=n/2 where ¢;,=arg Qog,. Thus by Qro=ro
we have pg(ro):]dethp;Q(ra) and 4, has mass at only (m+1)-directions Qa;,
7=0, 1, ---, m. Therefore the general case is reduced to the special case of
First step.

The proof of Theorem 2 and Theorem 3 in Case 2 is complete.

CASE 3. a=1 and 21 has mass at (m-+1)-directions a,, g, -*-, Gn (M=2).
We may also take {g;, 7=0, 1, 2, ---, m} as in First step of Case 2. Then for
z2=(z,, z;)ER?

m .2
V(o)== 3 e{ <oy 21 +i pikas, > logl<as, DI},
where ¢;>0, |8;1=1, j=0, 1, 2, ---, m are constants.
The following lemma is corresponding to Lemma 2 and Lemma 3.

LEMMA 4. Let =0 and o=0,=(1, 0).
(i) Then for a;=tang;

p(ra):(er)‘ZSRzexp[—z'rzl +¥(2)]dz

rn 2

~ria 5 cﬁgje‘“u" Im [i<1+,90)~

B uir
- log r] du

Re S:/rexp W(—z'—if—, y)dv

+,m~z§1 rn" c:;g:e-“u”“ Im [z‘(1+,80)—%,80 1og%]”du

LI coudici+ 80— 2 g, log LY

aj+1!v‘

0
du e * >
n=1

-l-r'%‘zjglgjdug

ajv

teusiu—ao) i B — 2 By log[si(u—au)/rl} -+

ess (u—a i+ B~ = 6, logls u—ap)/r} |

o . 2
;! Im[cj+13j+1(aj+1”_u){z(l_ﬁjn)'*"T?;Bju log[s,-+,(a,~+1v—u)/r]}

oo
>
n=1
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+ .. -}-cmv{i(l—[gm)“*'%ﬁm log_’;‘—}]n

as r—-+oo,
(ii) If o&Spt A, set by=a;—a,, then

—2 —Zm-l Y bj+1v u—ayy
pra)=r~x"% 33\ dv du e 1
=10 ij

| cusuu i+ B — = B, TogTsw—by/r I}

n!

oo
2
n=1

g8 (u—by) {i(1+,e,)—% B, 10g[s,(u—bp)/r1} |

oo -n . 2
ngl :L! Im[chlsjﬂ(bjnv—u){1(1'—.8j+1)+}—ABJH 108[31+1(bj+1”_u)/r:]}

b benfil— L po log 2} ]

as r— oo,

From this lemma we obtain Theorem 2 and Theorem 3 by the same way
as in case of 1<a<?2.

Next we proceed the proof of Theorem 2 in case of d=3.

(1) First we see that

@1 @rrp=|_expl—icx, >+T()]dz

=2 Regksdz {exp[—i(x,21+ X22:+ X325) + ¥ (24, 25, 25)]
+

Fexp[—#(x121— X222+ X525) + ¥ (27, —2, 23)]
+exp['—i(xlzl+xzzz_xszs)+w(21, 23, —23)]
+exp[—i(X121— Xo2,— X325) +¥ (21, —25, —29)]1}.

(2) We divide the integral domain in order to omit the notation “sgn” in
U(2).

(3) We change variables z,, z;, z; appropriately according to o.

Then we deduce that Theorem 2 and Theorem 3 hold. We will describe
the outline of the proof in some details. Here we only consider the case that
A2 has mass at (m+1)-directions ¢, 7,, --- 0, (m=3) but that 0<a<l1 and o&
Int S(3), because it is evident in the others.

a) If o=T(Q), i.e., A({0})>0, we may take ¢=0,=(1, 0, 0) and change z,
to —iu/r, then we have pro)~p,(¥)ps(0)~cr '"*(c>0) as r—+oo.
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ExampLE 1. Let m=5,0=0,=(1,0,0), 6,=(0, 1, 0), 6,=(1/+3, 1/4/3,
1/4/3), 6s=0, 1/~ 2, 1/V/2), 6,=(1/+2, 0, 1/+/2) and 05;=(0, 0, 1). In (3.11)

we divide the integral domain as follows:

0 el e (an ] )
(e el
A )
|

U I M S D)

and change z, to —iu/r, then we can see that the sum of terms in (3.11)
corresponding to the first integral with respect to dz, of each term in (3.12)
decreases like p,(7)ps(0) ~ cr '"*(¢>0) as r —» 4. Moreover, the remaining
terms are o(r~!"%) as r—+co.

b) If ¢=T(2), then the following two cases arise.

(i) There exists only one plane H which is spanned by some elements
Gy, G4, -+, 0r(k=1) of Spt A and contains ¢. In this case we may assume
that H is x,x,-plane, 0=(1/~2, 1/ 2, 0), ¢,=(1, 0, 0), 6,=(0, 1, 0) and a,, ---,
0, {0;=0}\{6,=0, 6,=0, §,=0} in S2. Set »'=r/+/ 2. We divide the integral
domain as mentioned in (2) and change (z,, +2,) to —#(u,/r’, £uy/r’) in order
to exp[—r'(z,+2,)] become exp[—u;—u,] in (3.11). Then we have an asym-

__I_

+

ptotic behaviour p(re)~r 2%*% ag y—4 oo,

EXAMPLE 2. Let m=3, k=1, 6,=(,0,0), 6,=(0,1,0), 6,=(0, 1/4/5,
2/4/5), 6;=(0, 0, 1) and ¢=(1/42, 1/~ 2, 0)cCon {g,, ¢,}. In (3.11) we divide
the integral as follows:

gnia’zzgja’zag:odzl{gzzs+S;a’zz} .

Change variables z, and z,. Then from the term in (3.11) corresponding to the
first integral in the above we have an asymptotic p,,(ra(0, 1))pi (0)(~cr—20+®,
¢>0) as r—-+oco, where (0, 1) is a restriction of ¢ to Span {g,, ¢,}. Moreover,
from the other we have o(r~2*®) as r—-+oo.

(ii) There exist at least two planes H,, H, which are spanned by some
elements of Spt 4 and H,N\H, is a line conta‘ining o. In this case we take ¢
=(1, 0, 0). We change z, to —iu,/r and also z, appropriately as seen in the
following example. Then we have p(ro)~r-20+® ag r—+4oco,
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ExAMPLE 3. The setting is the same as in Example 1 except g,=(1/+v 2,
1//2, 0)+a=(, 0, 0), and also divide the integral domain as in it. First in
each integral we change z, to —zu,;/r then in (3.11) terms vanish which cor-
respond to the first integrals with respect to 2z, in (3.12). In the integral

o0 z3/2 r(z3-29) . . . .
Sodzsg dzzg du, we change z, to —+iu,/r, —iuy/r, +ius/r and —iu,/r
0 T29

according to each term of (3.11). Then we have the asymptotic p,,(ra(0, 1))
p¢.(0) as » — +oo. Moreover by the same change of variables we have
o(r-t1*®) as r—+oo from the integrals of

oo 2g/2 rzg r(zg+2zg) ©
[azf(*"azo( +H{T du,)
0 0 T (2g+22) T23 T(2g3+29)
23 rzg r(23+29) o
o )
z3/2 Tz TZz3 T (29%23)

=) oo (zg-2g)
Similarly, in the integral S dzagz dzzgr B du, we change z; to +ius/r, +ius/7,
0 z3

rzg

—ius/r and —ius/r according to each term of (3.11). Then we have the asymp-
totic p, s(ra(4, 5)pi s(0) as r—+o, and by the same change of variables we
have o(r 2*®) as r—+oo from the integrals of

o0 2zg r2g r(zg+2g) o0
dzs{g d22(S +S +S dul)
0 zg T23 TZg T (29+23)
L Tzg r{zg+2g) oo
e )
223 T (2g—23) T2y T (23+23)
0 29 Tzg r(zg+zg) »
=S dzz{g dzg(S +S +S dul)
0 z2/2 Tzg T29 T (29+23)
zg9/2 Tzg r(zg+23) 0
TR (T S W)
0 T (29—23) rzy 7 (2g+23)

Finally we have the asymptotic p, s(ra(2, 3))p3 5(0) as r—+ o from the remaining

- z Tz
terms. In fact, in the integral S dzsg 3,2d22S 2du1 we change 2z, (resp. z;) to
0 zg

r2g
—iuUy/r, +iuy/r, —iuy/r and +iu,/r (resp. +ius/r, +ius/r, —ius/r and —ius/7)
according to each term of (3.11). Moreover change variables (u,, u,, u;) to
(vi+vs, v, va+vs). Then the sum of the first and 4-th terms vanish and we
change v, to —7y, (resp. +7v;) in the second term (resp. third term). Similarly

o 2z Tz
in So dzag sdzzg : du, change z, (resp. zs) to —iu,/r, —iu,/r, +iuy/r and
z2

T(29—23)
—iuy/r (resp. —ius/r, —ius/r, +ius/r and +ius/r) according to each terms of

(3.11), and (u,, u,, us) to (v;+vs, va+vs, vs). Then the sum of the first and 4-th
terms vanish. Hence, we change vy; to +7ys (resp. —7yvs) in the second term
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(resp. third term). By this way we have p, :(ra(2, 3))pss(0) as r—-+oo. There-
fore we see that p(ra)~ po:(ra(0, 1))ps,1(0)+ pes(ra(2, 3))p3,5(0)+ pus(ra(4, 5))
93,500) (~er20* M) as r—oo,

c) If ¢=T(3), it is sufficient to consider the case that e=(1/+3, 1/+/3,
1//3), 0,=(1, 0, 0), ¢,=(0, 1, 0), 6,=(0, 0, 1) and gy, ---, 6,CS?\{0,:=0, 0,=0,
0:=0}. Set r'=r/+/3. We divide the integral domain as mentioned in (2) and
change (zi, 25, z3) to —i(u,/v’, +us/r’, +us/r’) in order to exp[—ir'(z,+25+23)]
be to exp[—u,—u,—uz] in (3.11). For instance, for exp[—ir'(z:—z:42s]) we
change (zi, z,, z35) to —i(u,/r’, —u,/r’, us/r’). Then we have an asymptoic p(ra)
~rT3atD g8 r—4oo,

EXAMPLE 4. Let m=3, ¢,=(,0,0), ,=(0,1,0), 6, =0, 0, 1), g5 = (0,
—1/+/2,1/4/2)and 6=(1/+3, 1/4/3, 1/4/3). In (3.11) we divide the integral

Snz dzzgjdzsgjdzl{gzs+ S:dzz}.

Change variables z;,, z, and z; as above. Then we can easily deduce that
P(ra)~po,1,5(ra) ps,1,2(0)+ Po. 1, 5(r0) 93, 1,5(0)+ Do, 2. s( ) D5, 2,5(0) (~er 3™ ¢>0) as
r——+oo,

d) If 6=S@3) and 1<a<2, then by the same way as in (c) we can see
that p(ro) is rapidly decreasing as r—-oo.

All of the above change of variables are informal, however we can justify
the computations by a similar way to the case of d=2.

Then we conclude Theorem 2 and Theorem 3.

REMARK 4. As mentioned in §1, i higher dimensions (d=4) we belive
that our method should work, although the calculations may be more tedious
and complicated.
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