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A NOTE ON QUOTIENT SPACES OF
SUPERCOMPACT SPACES
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Abstract A space is called supercompact if it has an open subbase
such that every cover consisting of elements of the subbase has a
subcover consisting of two elements. In this paper we prove that
the quotient space of a supercompact space obtained by identifying

a finite set or a closed $G_{\delta}$-set to a point is also supercompact thus
answering a question of M. G. Bell.
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1. Introduction.

All spaces in this paper are assumed to be Hausdorff. Supercompact spaces,
introduced by de Groot [4], are spaces $X$ which possess an open subbase $\mathcal{G}$

such that every cover of $X$ consisting of members of $\mathcal{G}$ has a subcover of at

most 2 members. For our purposes it is more elegant to work with closed
subbase. A collection of sets $\mathcal{G}$ is linked if every 2 members of $\mathcal{G}$ has a non-
empty intersection. A collection of sets $\mathcal{G}$ is binary if every linked subcollec-
tion of $\mathcal{G}$ has a non-empty intersection. So, $X$ is supercompact if and only if
it has a binary closed subbase.

Many compact spaces, but not all, are supercompact. For example, all
compact metric spaces are supercompact $[3, 6]$ ; all continuous images of com-
pact ordered spaces are supercompact [2]. On the other hand, the author
recently proved that every cluster point of a countable subset of a supercompact

space is the limit of a nontrivial sequence [7]; therefore there exist many

non-supercompact compact spaces. In 1990, Bell [1] gave a negative answer
for the question of whether all dyadic spaces ( $=continuous$ images of $2^{\kappa}$ ) are
supercompact. In fact, Bell proved that there exists a supercompact subset
$A\subset 2^{\omega_{3}}$ such that the quotient space obtained by identifying $A$ to a point is not
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supercompact. Thus the question of whether the quotient space of a super-
compact space obtained by identifying a finite set to a point is supercompact
was raised [1]. Bell himself proved that it is true if $X$ is zero-dimensional.
In the present paper we give a positive answer to this question. Moreover we
show that it is also true if a finite set is replaced by a closed $G_{\delta}$-set. We
finally want to note that there exists a non-supercompact space which is an at
most 2 to 1 irreducible image of a supercompact space [5].

2. Preliminaries.

It is trivial that the smallest collection which contains a binary collection
and is closed with respect to arbitrary intersections is also binary. Thus we
assume throughout this paper that all closed subbase are closed with respect to
arbitrary intersections. For a collection $\mathcal{G}$ of sets let

$\mathcal{G}<\omega=$ { $\mathcal{A}\subset \mathcal{G}$ : a is finite}.

The following Lemma 1 has a short proof which has been mentioned in many
papers [e.g., 1, 3 and 7].

LEMMA 1. Let $X$ be a compact space and $\mathcal{G}$ a closed subbase for X. Then
for every closed set $F$ and every open set $U\supset F$ there exists $\llcorner A\in \mathcal{G}<\omega$ such that
$F\subset\cup \mathcal{A}\subset U$ .

LEMMA 2. Under the assumptions of Lemma 1, there exists $ A\in \mathcal{G}<\omega$ such that
$ F\cap S\dotplus\emptyset$ for every $S\in \mathcal{A}$ and

$F\subset int(\cup d)\subset\bigcup_{\mathscr{O}}t\subset U$ .

PROOF. By the normality of $X$ , there exists an open set $V$ such that
$F\subset V\subset\overline{V}\subset U$ . It follows from Lemma 1 that there exists $ B\in \mathcal{G}<\omega$ such that
$\overline{V}\subset\cup 9\subset U$ . Then $\llcorner A=\{S\in B;S\cap F\neq\emptyset I$ satisfies the required conditions.

LEMMA 3. Let $X$ be a compact space and $\mathcal{G}$ a closed subbase for X. Then

for every $S\in \mathcal{G}$ and any closed sets $E,$ $F\subset X$ with $ E\cap F=\emptyset$ there exists $\mathcal{A}\in \mathcal{G}<\omega$

such that $S=\cup A$ and either $ T\cap E=\emptyset$ or $ T\cap F=\emptyset$ for each $T\in d$ .

PROOF. Because $ E\cap F=\emptyset$ , there exists an open set $U$ such that $ E\subset U\subset$

$\overline{U}\subset X\backslash F$. Thus, by Lemma 1, there exists $ d_{1,\iota}A_{2}\in \mathcal{G}<\omega$ such that

$\overline{U}\subset\bigcup_{\llcorner}4_{1}\subset X\backslash F$

and
$S\backslash U\subset\cup d_{2}\subset X\backslash E$ .
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Then $\llcorner\#=\{T\cap S:T\in cA_{1}\cup A_{2}\}$ satisfies the required conditions.

3. Results

Let $X$ be a space and $A$ a closed subset of $X$ . By $X$ MOD $A$ we denote
the quotient space of $X$ obtained by identifying $A$ to a point and by $\pi:X\rightarrow$

$X$ MOD $A$ the quotient map.

THEOREM 1. If $X$ is a supercompact space and $A$ is a finite subset of $X$ ,

then $X$ MOD $A$ is also supercompact.

PROOF. By induction, it suffices to prove our theorem in case $A=\{p, q\}$ .
Let $\mathcal{G}$ be a binary closed subbase for $X$ . It follows from Lemma 2 that there
exist $\mathcal{P},$ $\mathcal{Q}\in \mathcal{G}<\omega$ such that

$p\in\cap \mathcal{P}\cap int(\cup \mathcal{P})$ ;

$q\in\cap Q\cap int(\cup \mathcal{D})$

and
$(\cup \mathcal{P})\cap(\cup \mathcal{Q})=\emptyset$ .

Let
$\mathcal{G}_{1}=$ { $S\in \mathcal{G}$ : $ S\cap A\neq\emptyset$ and either $S\subset\cup \mathcal{P}$ or $S\subset\cup \mathcal{Q}$};

$\mathcal{G}_{2}=$ { $S\in \mathcal{G}$ : $ S\cap A=\emptyset$ and either $ S\cap \mathcal{P}=\emptyset$ or $ S\cap\cup \mathcal{Q}=\emptyset$ }
and

$\mathcal{G}_{0}=\mathcal{G}_{1}\cup \mathcal{G}_{2}$ .

To complete the proof, we only have to check that $\pi(\mathcal{G}_{0})$ is a binary closed
subbase for $X$ MOD $A$ . Lemma 3 implies that every $S\in \mathcal{G}$ satisfying $ S\cap A=\emptyset$

can be represented as an union of finite elements of $\mathcal{G}_{2}$ . It follows that
(A) for every open set $U\supset A$ there exists $\mathcal{A}\in \mathcal{G}_{2}<\omega$ such that $ X\backslash U\subset\bigcup_{c}A\subset$

$X\backslash A$ ;
(B) for every point $x\in X\backslash A$ and every open set $U\ni x$ with $\overline{U}\cap A=\emptyset$

there exists $\mathcal{A}\in \mathcal{G}_{0^{<\omega}}$ such that $X\backslash U\subset\cup A\subset X\backslash \{x\}$ .
In fact, (A) is obtained immediately. For (B), there exists $\mathcal{P}^{\prime}\in \mathcal{G}^{<\omega}$ such

that
$p\in\cap \mathcal{P}^{\prime}\cap int(\cup \mathcal{P}^{\prime})$

and
$\cup \mathcal{P}^{\prime}\cap\overline{U}=\emptyset$ .

Thus
$p\in int$ ( $\cup\{P^{\prime}\cap P:P^{\prime}\in \mathcal{P}^{\prime}$ and $P\in \mathcal{P}\}$ ).

Clearly, $P^{\prime}\cap P\in \mathcal{G}_{1}$ but $P^{\prime}\cap P\geq x$ for all $P^{\prime}\in \mathcal{P}^{\prime}$ and all $P\in \mathcal{P}$ . That is, there
exists $ A_{I}\in \mathcal{G}_{1}<\omega$ such that
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$p\in int(\cup \mathcal{A}_{1})$ but $\bigcup_{c}A_{1}\neq x$ . $(*)$

Similarly, there exists $\llcorner fl_{2}\in \mathcal{G}_{1}<\omega$ such that

$q\in int(\cup d_{2})$ but $\cup d_{2}\geq x$ . $(**)$

Moreover, Lemma 1 implies that there exists $ A_{3}\in \mathcal{G}_{2}<\omega$ such that

$X\backslash $ ($U$uint $(UA_{1})Uint(\cup A_{2})$ ) $\subset\bigcup_{L}A_{3}\subset X\backslash \{x, p, q\}$ ,

Thus it follows from $(*)$ and $(**)$ that $\cup\#=A_{1}\cup A_{2}\cup d_{3}$ satisfies the required
conditions in (B).

It is clear that (A) and (B) imply that $\pi(\mathcal{G}_{0})$ is a closed subbase for $X$ MOD $A$ .
Finally, we show that $\pi(\mathcal{G}_{0})$ is binary. Let $\mathcal{A}\subset \mathcal{G}_{0}$ such that $\pi(\mathcal{A})$ is linked.

If $\cup l\subset \mathcal{G}_{1}$ or $d\subset \mathcal{G}_{2}$ , then it is trivial to verify that $\cap\pi(d)\neq\emptyset$ . If $A\not\subset \mathcal{G}_{1}$ and
$\llcorner A\not\subset \mathcal{G}_{2}$ , then either $ S\cap\cup \mathcal{P}=\emptyset$ for every $S\in\llcorner A$ or $ S\cap\cup \mathcal{D}=\emptyset$ for every $S\in \mathcal{A}$ .
Thus a is linked and hence $\bigcap_{\llcorner}fl\neq\emptyset$ . So we have $\cap\pi(A)\neq\emptyset$ .

THEOREM 2. If $X$ is a supercompact space and $A$ is a closed $G_{\delta}$-subset of
$X$ , then $X$ MOD $A$ is also supercompact.

PROOF. Let $\mathcal{G}$ be a binary closed subbase for $X$ . Then, by Lemma 2,
there exists a sequence $\{\mathscr{Q}_{n} : n=1,2, \cdots\}$ in $\mathcal{G}<\omega$ such that

(1) for every $n$ and every $B\in B_{n},$ $ B\cap A\neq\emptyset$ ;
(2) for every $n$ ,

$A\subset int(\cup \mathscr{Q}_{n+1})\subset\cup \mathscr{Q}_{n+1}\subset int(\cup 9_{n})$ ;

(3) $A=\cap\{\cup B_{n} ; n=1,2, \cdots\}$ .

Let
$\mathcal{G}_{1}=\cup\{B_{n} ; n=1,2, \cdots\}$ ;

$\mathcal{G}_{2}=\{S\in \mathcal{G};S\cap A=\emptyset$ and for every pair $E,$ $F\in \mathcal{G}_{1}$ ,

if $ E\cap F=\emptyset$ then either $ S\cap E=\emptyset$ or $ S\cap F=\emptyset$ }.

Now suppose that $S\in \mathcal{G}$ satisfies $ S\cap A=\emptyset$ . Then there exists $n$ such that
$ S\cap(\cup B_{n})=\emptyset$ . Let

$B=\cup\{B_{i} ; i=1, \cdots, n-1\}$

and
$\{(E^{i}, F^{i}):i=1, \cdots , k\}=\{(E, F)\in \mathscr{Q}\times B;E\cap F=\emptyset\}$ .

Then for every $i\leqq k$ , Lemma 3 implies that there exist $S_{1}^{i},$
$\cdots,$

$S_{m(i)}^{i}\in \mathcal{G}$ such
that

$S=S_{1}^{i}\cup\cdots\cup S_{m(t)}^{i}$



A Note on Quotient Spaces 221

and for each $j=1,$ $\cdots,$ $m(i)$ ,

$ S_{j}^{i}\cap E^{i}=\emptyset$ or $ S_{j}^{i}\cap F^{i}=\emptyset$ .
Thus

$S=\cap\{S_{1}^{i}\cap\cdots\cap S_{m(i)}^{i} : i=1, \cdots, k\}$

$=\cup\{\cap\{S_{f(i)}^{i} : i=1, \cdots, k\} : f\in\prod_{i=1}^{k}\{1, \cdots, m(i)\}\}$ .

It is trivial that $\cap\{S_{f(i)}^{i} : i=1, \cdots, k\}\in \mathcal{G}_{2}$ for every $f\in\Pi_{i=1}^{k}\{1, \cdots , m(i)\}$ . Hence,
for every $S\in \mathcal{G}$ , if $ S\cap A=\emptyset$ , then $S$ can be represented as a union of finite
elements of $\mathcal{G}_{2}$ . Then, using the same method as Theorem 1, we can show
that $\pi(\mathcal{G}_{1}\cup \mathcal{G}_{2})$ is a binary closed subbase for $X$ MOD $A$ .
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Added in Proof. It can be proved that the converse of Theorem 1 is also
true, but the converse of Theorem 2 is not true even in the case that the closed
$G_{\delta}$-set is supercompact.
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