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1. Introduction

Let $P^{n}C$ be an $n(\geqq 2)$-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature 4. A first interesting
progress in the theory of real hypersurfaces in complex projective space is R.
Takagi’s work on homogeneous real hypersurfaces. In [T1], he classified all
the homogeneous real hypersurfaces in $P^{n}C$ into six types, $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ and
$E$ . A real hypersurface of type $A_{1}$ is also called a geodesic hypersphere, which
can be characterized as a real hypersurface with two constant principal curva-
tures [T2]. Furthermore he characterized real hypersurfaces of type $A_{2}$ and $B$

as those with three constant principal curvatures [T3]. Next important studies
are found in [C-R]. In thier paper [C-R], T. E. Cecil and P. J. Ryan investi-
gated a real hypersurface which lies in a tube over a submanifold in $P^{n}C$ .
Especially, they found that every homogeneous real hypersurface in Takagi’s
classification can be realized as a tube of a constant radius over a compact

Hermitian symmetric space of rank 1 or rank 2: Every homogeneous real
hypersuface in $P^{n}C$ is locally congruent to a tube of radius $r$ over one of the
following;

$(A_{1})$ hyperplane $P^{n-1}C$, where $0<r<\pi/2$ ,
$(A_{2})$ totally geodesic $P^{k}C(1\leqq k\leqq n-1)$ , where $0<r<\pi/2$ ,

$(B)$ complex quadric $Q^{n-1}$ , where $0<r<\pi/4$ ,
$(C)$ $P^{1}C\times P^{(n-I)/2}C$, where $0<r<\pi/4$ and $n$ is odd,
$(D)$ complex Grassmann $G_{2.6}C$, where $0<r<\pi/4$ and $n=9$ ,
$(E)$ Hermitian symmetric space $SO(10)/U(5)$ , where $0<r<\pi/4$ and $n=15$ .
On the other hand, many differential geometers have studied real hyper-

surfaces in $P^{n}C$ by making use of the almost contact structure induced from
$P^{n}C$ . For example, M. Okumura [Ok] proved that a real hypersurface is of
type $A_{1}$ or $A_{2}$ if and only if the almost contact structure commutes with the
second fundamental form of it.
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In this paper, we characterize a geodesic hypersphere by a certain condition
on the second fundamental form (Theorem 4.1 and Theorem 4.2.).

The author is grateful to Prof. Ryoichi Takagi for advices and encourage-
ment.

2. Preliminaries

Let $M$ be a real hypersurface in $P^{n}C$ . The Riemannian metrics of $P^{n}C$

and $M$ are denoted by the same letter $g$ , while the Riemannian conections of
them are denoted by $\nabla^{P}$ and $\nabla$ respectively. Let $\nu$ be a (local) field of unit
normal vector of $M$. Then Gauss’s and Weingarten’s formulas are given as

(2.1) $\nabla_{X}^{P}Y=\nabla_{X}Y+g(AX, Y)$ ,

(2.2) $\nabla_{X}^{P}\nu=-AX$ ,

for any vector fields $X$ and $Y$ . Here $A$ is an endomorphism of the tangent
bundle $TM$ of $M$ which is defined by (2.2) and called the shape operator in the
direction $\nu$ . Let $J$ denote the complex structure of $P^{n}C$ . Then we define $\phi$

of type $(1, 1)$ , a vector field $\xi$ and a l-form $\eta$ on $M$ as follows:

(2.3) $\phi X=(JX)^{T}$ , $\xi=-J\nu$ , and $\eta(X)=g(X, \xi)$ ,

where . $T$ : $TP^{n}C\rightarrow TM$ indicates the orthogonal projection. From definitions
above we obtain

(2.4) $\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\xi)=0$ ,

where $I$ denotes the identity transformation of $TM$. We also obtain

(2.5) $\nabla_{X}\phi(Y)=\eta(Y)AX-g(AX, Y)\xi$ ,

(2.6) $\nabla_{X}\xi=\phi AX$ .
Let $R^{P}$ and $R$ denote the curvature tensor of $P^{n}C$ and $M$ respectively. Then
since $R^{P}$ is given by

$R^{P}(X, Y)Z=g(Y, Z)X-g(X, Z)Y$

$+g(JY, Z)JX-g(JX, Z)JY+2g(X, JY)JZ$ ,

the equations of Gauss and Codazzi are respectively given as follows:

(2.6) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z+g(AY, Z)AX-g(AX, Z)AY$ ,

(2.7) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .



Geodesic Hyperspheres 209

Finally we recall the Ricci formula. For each tensor field $T$ of type $(r, s)$ ,
its covariant derivative $\nabla T$ , a tensor field of type $(r, s+1)$ , is defined by

$\nabla T(X_{1}, \cdots, X_{s} ; X)=\nabla_{X}T(X_{1}, \cdots , X_{s})$ .
Then the second covariant derivative $\nabla^{2}T=\nabla\nabla T$ is computed as

(2.8) $\nabla^{2}T(X_{1}, \cdots, X_{s} ; X;Y)=\nabla_{Y}\nabla_{X}T(X_{1}, \cdots, X_{s})-\nabla_{\nabla_{Y}X}T(X_{1}, \cdots, X_{s})$ .
From (2.8) we have the following which is known as the Ricci formula:

(2.9) $\nabla^{2}T(X_{1}, \cdots , X_{s} ; X;Y)-\nabla^{2}T(X_{1}, \cdots , X_{s} ; Y;X)$

$=-(R(X, Y)T)(X_{1}, \cdots, X_{\epsilon})$ ,

where $R(X, Y)$ acts on $T$ as a derivation.

3. Key lemma

In the study of real hypersurfaces of $P^{n}C$ , it is a crucial condition that the
structure vector $\xi$ is principal. In fact in proofs of many known results, it
seems that the most difficult part is to show that $\xi$ is principal under a certain
condition. For this reason, this section is devoted to show the following lemma:

LEMMA 3.1. Assume $n\geqq 3$ and the shape operator $A$ satisfies
$(R(Y, Z)A)X=0$

for each vector $X,$ $Y,$ $Z$ perpendicular to $\xi$ . Then $\xi$ is principal.

PROOF. We denote by $\xi^{\perp}$ the subbundle of $TM$ consisting of vectors per-
pendicular to $\xi$ . In what follows $e_{1},$ $\cdots,$ $e_{2n-2}$ stand for an orthonormal basis
of $\xi^{\perp}$ at a point in $M$, and the index $j$ runs from 1 to $2n-2$ .

On account of (2.6) and the condition, the following holds:

(3.2) $g(Z, AX)Y-g(Y, AX)Z+g(\phi Z, AX)\phi Y-g(\phi Y, AX)\phi Z$

$-2g(\phi Y, Z)\phi AX+g(AZ, AX)AY-g(AY, AX)AZ$

$-g(Z, X)AY+g(Y, X)AZ-g(\phi Z, X)A\phi Y+g(\phi Y, X)A\phi Z$

$+2g(\phi Y, Z)A\phi X-g(AZ, X)A^{2}Y+g(AY, X)A^{2}Z$

$=0$ ,

where $X,$ $Y,$ $Z$ are tangent vectors perpendicular to $\xi$ . Putting $X=e_{j}$ and $Z=$

$\phi e_{j}$ in (3.2), and taking summation on $j$ , we obtain
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(3.3) $-\{TrA-\eta(A\xi)\}\phi Y-3\phi AY+(2n+1)A\phi Y$

$-A\phi A^{2}Y+A^{2}\phi AY-\eta(A\phi Y)\xi=0$ .

Taking $\xi$-and Y-component of (3.3) to get

(3.4) $2n\eta(A\phi Y)-\eta(A\phi A^{2}Y)+\eta(A^{2}\phi AY)=0$

and

(3.5) $(2n+4)g(A\phi Y, Y)+2g(A^{2}\phi AY, Y)=0$ .
Note that $TrA\phi=TrA^{2}\phi A=0$ because $A$ is symmetric and $\phi$ is skew-symmetric.

Therefore putting $Y=e_{j}$ in (3.5) and taking summation on $j$ ,

(3.6) $g(A^{2}\phi A\xi, \xi)=0$ .

Now define a cross section $U$ of $\xi^{\perp}$ and a smooth function $\alpha$ on $M$ by

$ A\xi=U+\alpha\xi$ .
Then $\phi A\xi=\phi U$ and $ A^{2}\xi=AU+\alpha U+\alpha^{2}\xi$ , so (3.6) implies

(3.7) $g(\phi U, AU)=\eta(A^{2}\phi U)=0$ .
Using (3.7), we also have

(3.8) $g(A^{2}U, \phi U)=0$

by putting $Y=U$ in (3.4). We also note

(3.9) $g(\phi U, A\xi)=\eta(A\phi U)=0$ .
Thus from (3.7) and (3.9), we get the following by putting $Z=U$ and $X=\phi U$

in (3.2):

(3.10) $-g(Y, A\phi U)U-g(\phi Y, A\phi U)\phi U+g(\phi U, A\phi U)\phi Y-2g(\phi Y, U)\phi A\phi U$

$-g(AY, A\phi U)AU+3g(Y, \phi U)AU-\Vert U\Vert^{2}A\phi Y+g(Y, U)A\phi U$

$+g(AY, \phi U)A^{2}U=0$ ,

where $\Vert U\Vert^{2}=g(U, U)$ . Taking $\phi U$-component of (3.10),

$g(g(A\phi U, \phi U)U+\Vert U\Vert^{2}\phi A\phi U,$ $Y$ ) $=0$ .

Since this equation holds for all $Y$ perpendicular to $\xi$ , we obtain

(3.11) $-\Vert U\Vert^{2}A\phi U=g(\phi A\phi U, U)\phi U$ .
Now suppose 1 $U\Vert^{2}\neq 0$ at a point, say $x$ . Then a contradiction is derived

as follows. In this case, by virture of (3.11), there exists a certain real number
$\lambda$ such that
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(3.12) $A\phi U=\lambda\phi U$ .

That is, $\phi U$ is principal curvature vector with principal curvature $\lambda$ . Then
(3.10) is reduced to

(3.13) $-3\lambda g(Y, \phi U)U+\lambda\Vert U\Vert^{2}\phi Y+(3-\lambda^{2})g(Y, \phi U)AU$

$-\Vert U\Vert^{2}A\phi Y+\lambda g(Y, \phi U)A^{2}U=|0$ .

Therefore if $Y$ is perpendicular to all of $U,$ $\phi U$ and $\xi$ ,

$\lambda\Vert U\Vert^{2}\phi Y-\Vert U\Vert^{2}A\phi Y=0$ ,
so that

$A\phi Y=\lambda\phi Y$ .
Now let $T_{x}M=V\oplus span\{U, \xi\}$ be the orthogonal decomposition. Then the above
argument implies

(3.14) $A|V=\lambda I_{V}$ ,

where $I_{V}$ stands for the identity transformation of $V$ . Further we decompose
$V$ orthogonally as $V=V^{\prime}\oplus span\{\phi U\}$ . Note that $\dim V^{\prime}\geqq 1$ by the assumption
$n\geqq 3$ . Since $V^{\prime}$ is invariant by $\phi,$ $(3.3)$ reduces to

$-\{TrA-\alpha\}\phi Y-3\lambda\phi Y+(2n+1)\lambda\phi Y=0$ ,

for each $Y\in V^{\prime}$ . So we have

(3.15) $TrA-(2n-2)\lambda-\alpha=0$ .
On the other hand, (3.14) implies

(3.16) $ TrA=(2n-3)\lambda+g(AU, U)+\alpha$ .

Thus $ g(AU, U)=\lambda$ , which implies

(3.17) $ AU=\lambda U+\Vert U\Vert^{2}\xi$ ,

and

(3.18) $ A^{2}U=(\lambda^{2}+\Vert U\Vert^{2})U+(\alpha+\lambda)\Vert U\Vert^{2}\xi$ .

Putting $Y=\phi U$ in (3.13) and substituting (3.17), (3.18) into it, we get

$\lambda\Vert U\Vert^{4}U+(\alpha\lambda+4)\Vert U\Vert^{4}\xi=0$ ,

which contradicts to $\Vert U\Vert^{2}\neq 0$ . Consequently $U=0$ and $\xi$ is principal. $\blacksquare$

Next lemma is contained in previous Lemma (3.1) in the case $n\geqq 3$ , but is
verified even in the case $n=2$ :
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LEMMA 3.19. Assume the shape operator $A$ satisfies
$(\nabla^{2}A)(X;Y;Z)=f\{g(X, \phi Y)\phi Z+g(X, \phi Z)\phi Y\}$

for all $X,$ $Y,$ $Z$ perpendicular to $\xi$ , where $f$ in a $C^{\infty}$-function on M. Then $\xi$ is
principal.

PROOF. By making use of the equation of Codazzi (2.7), we find the fol-
lowing formula in general:

(3.20) $(\nabla^{2}A)(X;Y;Z)-(\nabla^{2}A)(Y;X;Z)$

$=g(Y, \phi AZ)\phi X-g(X, \phi AZ)\phi Y-2g(X, \phi Y)\phi AZ$

$+3\{\eta(X)g(AY, Z)-\eta(Y)g(AX, Z)\}\xi$ ,

for arbitrary tangent vectors $X,$ $Y,$ $Z$ .
Therefore the condition and (3.20) implies

(3.21) $-f\{g(Y, \phi Z)\phi X-g(X, \phi Z)\phi Y-2g(X, \phi Y)\}$

$=g(Y, \phi AZ)\phi X-g(X, \phi AZ)\phi Y-2g(X, \phi Y)\phi AZ$ .
Putting $Y=\phi X$ in (3.21) and taking $\phi X$-component, we obtain

(3.22) $ AZ=-fZ+\eta(AZ)\xi$ ,

for all $Z$ perpendicular to $\xi$ .
On the other hand, the condition and the Ricci formula (2.9) implies

$(R(Y, Z)A)X=0$

for all vectors $X,$ $Y,$ $Z$ perpendicular to $\xi$ . In what follows we use notation
in the proof of lemma (3.1). Suppose $U\neq 0$ at a point. Then from (3.12) and
(3.22), $-f=\lambda$ at the point, so that

$ AU=\lambda U+\Vert U\Vert^{2}\xi$ .
This derives a contradiction by a similar argument in the proof of lemma (3.1).

$\blacksquare$

Type number at $x\in M$ is, by definition, the rank of linear transformation
$A$ , and denoted by $t(x)$ . As a result of this proof, we obtain

PROPOSITION 3.23. There exist no real hypersurfaces in $P^{n}C$ satisfing

$(\nabla^{2}A)(X;Y;Z)=0$

for all $X,$ $Y,$ $Z$ perpendicular to $\xi$ .
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PROOF. Since $\xi$ is principal under the condition as $f=0$ on $M$ in Lemma
(3.9), (3.22) reduces to $AZ=0$ . Thus $t(x)\leqq 1$ at each $x\in M$ . However it is
known that any real hypersurface has a point $x$ with $t(x)>1$ (cf. p. 156 [Y-K],

see all so [T1]). This contradiction shows the assertion. $\blacksquare$

4. Theorems

In this section we will prove the following two Theorems:

THEOREM 4.1. Let $M$ be a real hypersurface in $P^{n}C,$ $n\geqq 3$ . If the shape
operator $A$ satisfies

$(R(Y, Z)A)X=0$

for all tangent vectors $X,$ $Y,$ $Z$ perpendicular to $\xi$ , then $M$ is locally congruent
to a geodesic hypersphere.

THEOREM 4.2. Let $M$ be a real hypersurface in $P^{n}C,$ $n\geqq 2$ . If the shape

operator $A$ satisfies
$(\nabla^{2}A)(X;Y ; Z)=f\{g(X, \phi Y)\phi Z+g(X, \phi Z)\phi Y\}$

for all tangent vectors $X,$ $Y,$ $Z$ perpendicular to $\xi$ , where $f$ is a $C^{\infty}$-function on
$M$, then $f$ is non-zero constant and $M$ is locally congruent to a geodesic hy-

persphere.

For proof we need the following results:

FACT 4.3. ([K-Ms]) Let $M$ be a real hypersurface in $P^{n}C,$ $n\geqq 2$ . Suppose

that $M$ satisfies
$\mathfrak{S}_{X.Y.Z}(R(Y, Z)A)X=0$

for all $X,$ $Y,$ $Z\in TM$. Here $\mathfrak{S}_{X,Y,Z}$ indicates cyclic sum with respect to $X,$ $Y,$ $Z$.
Then $M$ is locally congruent to one of the following:

(i) a geodesic hypersphere, $n\geqq 3$ ,

(ii) a real hypersurface in $P^{2}C$ on which $\xi$ is a principal curvature vector.

FACT 4.4. ([T2]) If $M$ is a connected complete real hypersurface in $P^{n}C$

with two constant principal curvatures, then $M$ is a geodesic hypersphere. If we
do not assume the completeness of $M,$ $M$ is locally congruent to a geodesic hypers-
phere.

PROOF OF THEOREM 4.1. We have seen in Lemma (3.1) that the structure

vector $\xi$ is principal under the condition. Then it is easy to verify $\mathfrak{S}_{X.Y,Z}$
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$(R(Y, Z)A)X=0$ for all tangent vectors $X,$ $Y,$ $Z$ . Therefore our assertion comes
from Fact (4.3). $\blacksquare$

REMARK 4.5. Maeda [Ms] proved that there exist no real hypersurfaces
in $P^{n}C,$ $n\geqq 3$ , satisfying $RA\equiv 0$ .

PROOF OF THEOREM 4.2. Theorem 4.2 is contained in Theorem 4.1 in the
case $n\geqq 3$ , but we proceed independently.

Since $\xi$ is principal by Lemma (3.19), let $Y$ be a (local) vector field ortho-
gonal to $\xi$ such that $AY=\lambda Y$ . Then it is known ([My]) that

$A\phi Y=\frac{\alpha\lambda+2}{2\lambda-\alpha}\phi Y$ .

Putting $X=Z=\phi Y$ in (3.2) to get

$-2\alpha\lambda^{4}+(2\alpha^{2}-20)\lambda^{3}+30\alpha\lambda^{2}+(20-8\alpha^{2})\lambda-8\alpha=0$ .
It is also known ([My]) that $\alpha$ is locally constant. Thus $\lambda$ is constant. On
the other hand, from (3.22)

$A|\xi^{\perp}=-fI_{\xi\perp}$ ,

and so $ f=-\lambda$ is constant. Consequently $M$ has two constant principal curva-
tures. Therefore Fact (4.4) implies the assertion. Moreover this constant $f$

is not zero by Proposition (3.23). $\blacksquare$
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