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0. Introduction

Let C be a complete non-singular curve defined over rn algebraically closed
field £ and let .£ be an invertible sheaf of positive degree on C. J. Wahl de-
fines a natural map

@_g: Azf(C, .E) e F(C, wc®.£®2)

given by @ (sAt)=s(dt)—t(ds) where s, tel(C, .L) (see [18]). This notation
is locally defined and well-defined on C. We often call this map a Wahl map.
The original study of a Wahl map is the study of @,, where w is the canonical
sheaf on C. This map is very much useful. For example it gives a property
which must be satisfied in order that a curve sits on a K3 surface. Precisely
if C lies on a K3 surface, then @, is not surjective (see [17]). In [3], we
have that if C is a general curve of genus 10 or =12, then @,, is surjective.
This result gives an answer of Mukai conjecture. Let £ and # be two inver-
tible sheaves on C and let
cup product

R(L, M)=ker [I'(C, .LYRI(C, M) I'C, £LQ&mn)].

In [18], Wahl constructs another Wahl map
QI,JM : R(I; ‘%) —> F(C; w(’®’£®‘ﬂ> ’

(if L=M, then N2]"(C, L)YGR(LRL) and @, =D ). And he proves that
if deg(L)=bg+2 and deg (HM)=2g+2, then @, 4 is surjective, and if C is a
non-hyperelliptic curve and deg (£)=5g+2, then @,, r is surjective. These
results give several informations about first ordered deformations of a cone
over the Co, P(I'(C, .r)) when £ is a normally generated (very ample) inver-
tible sheaf on C (if deg (.L)=5g+2 then . is clearly normally generated (and
very ample)). For example we have that if deg (.£)=5g-+2 then a cone over
a non-hyperelliptic curve embedded by .£ has only one canonical deformation
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from the above results (see [17]). @, also has a geometric meaning. The
geometric aspect of a Wahl map is the following. Let . be a very ample
invertible sheaf and Cc.P™ is an embedding defined by .£. Then we can con-
sider a Gaussian map

g: C —> Grass(P', P™)

which is given by g(p)=the tangent line of C in P™ at p where Grass(P', P™)
is a Grassmannian variety of all projective lines in P™. Let

¢: Grass(P}, P™) —_, P¥
be a Pliicker embedding. Then the restriction map
g*ex: D'(PY, 0pn(1)) —> I'(P¥, g*c*Opn(1))

gives the above @ . Sometimes we call the image ¢g(C) a dual curva of C.
If @, is surjective, then the dual curve ¢g(C) is linearly normal and if @, is
injective, then the dual curve ¢g(C) is non-degenerate. Therefore the above
dual curve ¢g(C) is linearly normal if deg(.) is sufficiently large. In this
paper, we want to generalize a Wahl map from the viewpoint of projective
geometry. The notion of dual curve is generalized as follows. Let C—P™ be
a birational morphism to its image, let

gn:C - —> Grass(P", P™)

be a Gaussian map defined by g,(p)=the osculating tangent n-th plaine at p
and let
tn: Grass(P!, P™) —_, P¥n

be a Pliicker embedding. Then the image ¢,g,(C) is also called a dual curve,
and in projective geometry, whether ¢,_1g~-1(C) is linearly normal or not and
whether ¢,_.g.-:(C) is non-degenerate or not are very big problems. These
conditions are equivalent to surjectivity or injectivity of g% _.%_,. Let .L be a
very ample invertible sheaf on C. In section 1, we define a generalized Wahl
map

O : AN (C, L) —> I'(C, 0B~ D12Q.L®™)

which is equal to g¥c* if deg (.£) is sufficiently large. Unfortunately we can
not give the sufficient conditions for surjectivity or injectivity of g¥_,¢%_,. But
in the sections 2 and 3, we have the following main theorem :

THEOREM. Let C be a non-singular curve of genus g defined over an alge-
braically closed field k and let L be an invertible sheaf on C. We assume that
char (R)=0 or char (k)>deg(.L). If deg(L)>(g—1)2n*—2n+3)+2(n*—1), then
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D is surjective.

for

[ would like to express my sincerely gratitude to Professor Masaaki Homma
his help and continuous support.

NOTATIONS

char(k): The characteristic of a field %

Oc: The structure sheaf of a variety C

wc¢: The canonical invertible sheaf on a non-singular variety C
f*: The pull back defined by a morphism f

deg(.L): The degree of an invertible sheaf =

O¢(D): The invertible sheaf associated with a divisor D
I'(C, ¥): The global sections of a sheaf &

HYC, g): The i-th cohomology group of a sheaf F
&,: The symmetric group of degree n

A"V : The exterior product of a vector space V

V*: The dual space of a vector space V

/EAV;: The direct sum of vector spaces V,; (A= A)

VE@W : The direct sum of vector spaces V and W
P(V): The projective space of all 1-dimensional subspaces of V
Grass(P", P™): The Gramann variety of all n-plaines in P™,.

1. The definition of a higher Wahl map and its basic property

Let C be a complete non-singular algebraic curve of genus g defined over

an algebraically closed field 2 and let .£ be an invertible sheaf on C. Through-
out of this paper, we assume that char(k)=0 or char(k)<deg (.L).

DEFINITION 1. Let V be a vector subspace of /'(C, .£). We define the n-

Wahl map

by

Oy 1 APV —> I'(C, 0 ~D1QLom)

Sy - d™ s,y
OP (1A =+ ASa)=|

Sn te dn_ISn

If V=I'(C, .r), we dofine @ to be O{™.

This definition is well-defined. Because if n=1, then the proof is found in
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Wahl (see p. 77) and if n>1, then the proof is given by the same argu-
ment.

DEFINITION 2. Let V be a finite dimensional vector space over k2. Then
for each x;A = AXn, MINA - AY2 €AV, we define

[XA - AXZ AN - AYal

— L (mA e Axa B D@ - ASA - AT

=A== AYaA BDTER@TA - ARA - Ax)
where 2 means that the term x is omitted.

Clearly this definition is also well-defined. In the above definition,

XA s AXaALVIN - AYal

is contained in A®*'W@A™'V. According to Definition 1 and Definition 2, we
have the following lemma :

LEMMA 1. For every xi, -+, Xn_1, Y1, **+, Yo &L (C, L), we have
OPNDEA LA - AxadADNIA - AYail)
=0 Bn-vn-nirgron-i@EVEN = ALa )APETV(IA = AYn-1))
ProOOF. By the definition,

OPNDED([xIN * AXaliJAIIINA = AYn-1d)

1 n
=7(—-1)"¢‘}"f\¢f}'"”(x,/\ e AXpaN El(_l)t-lyi®}’1/\"'/\5\71/\"'/\3’1:—1

—EA e AT A D EDTIR@TA < ARA A%nos)
Xy

dr'x ¥ oo d" iy,

1 n-1 : ’ :
=5 (B D7, gnig,, || 4TS

e n-l ) :
Yoo @Yy dn iy

LY n-s
Yy e dmly, Xy dr=*x,
" 1)t E : : dri-s
_igl(— ) Ya-1 dn—lyn—l >xt . xt< )
Xy o d™lxy Xp_g dn—.sxn_l
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where > < means that this low (or column) is omitted. First we calculate the
first term of the right-hand side of this equation.

-3
x, - d*ix, Yi o d"y,

n-l ) : : : :
(“'1)" El(“l)l—l Xnoy o d" %X py >yl d?f—-syi<

e gnlay, | :
Vi d Vi Vn-1"" dn_lyn—l

= (=S 33 (— 1)y )
i=1 j=1

Vi Y - d" 7y,
Xy e dj"lxl dn“lxl E :
: : >yi o dPy<
Kt oo A7y e d g ||
/\ y ,_.dn—s

n-1 Yn-1

L2 dn'3y1

== B (B D@ >y e dr i<

yr;_l dn;:;yn-l
Xy - df‘lxl dn‘lxl

xr;—l dj_l:xn_l cen d"‘.lx,,_, )

0 yu - d"y,

n . n—‘l' .: ’ :
Z_EI(—D’_I P3| 7y yi o ATy

0 Ypord™Pyny
Vv
xi e df"lxl e dn_lxl

Xpoy oo+ dj-lxn—l ... gr-t Xn_1
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Gy oy e dry,

=“§1(—1)J‘—1 d’ 7'y yi o d"7yy

dj_lyn—l Vo1 dn-ayn—l
Xy - df—lxl dn‘lxl

Xpoq o df‘lxn_l .o qrt Xni
A

yl Ve dn—Syl dn—lyl
: : : Xy oo d™%xy
=| y; - dn“syi d"'lyi :

Xpoy e d"—-zxn—l_

Ynor - A" °Yasy dP7'Yaly

% o dPx AP

y1 oo d"?y, : : :

—| : Xg o d"xy drixg
Vnop o dn-zyn_l . .

Xpoy o dn_3xn_1 dn_lxn—l

Xy - d"7%x, Y, - d™7%y,
=| : d| :
Xy AP P Xnoy | | Ynor e @Y
Yoo ATy Xy o d"7ix,
— : : d| : :
Yoy A" Yoy Xpoy o A2 g

=P V(XN - AXp))A@E VA - AVnoy))
—(DP VYN - AV )A@E V(XN - AXny))
= @fﬁé(n-n(n-z)/2®_£®n_1(@_(}"”([xl/\---/\xn_l])

ADEVPIYiINAYnarl).

We can calculate the second term in the first equation in the same way, and
we are done. Q.E.D.

LEMMA 2. If V is an (n+1)-dimensional vector space, then we have an iso-
morphism

2: NAAPTVPA IV — ATVRA™EV .



On the higher Wahl maps 85

The 1somorphism g is given by
g(xl/\ e ANXp aAN o A Va-y, o)
=[x A = AXao JADVIA - AVaoal+H0NG,

where 0= ﬁ‘,l(—l)"“eo/\ e AN o NeaQe; and e, -+, e, make a basis of V.
PROOF. [f ¢, -+, e,€V and 0Z4,<n, ---, 0Z7,<n, then
LeigN -+ New, g IN[ei, Nes A - Ney, ]
1
=(=D" oA - Ali, A, O, - Al

—(es,o ANeg N\ o New, AN(—1D)"Pe;, )Q(eigA\ - Nei, )

=(—D"ei, A -+ New, JR(ei N - Nei,_y),
and

[ei -+ Nes, o IALei,_ Aei,Nes /N -+ Neg, ]
1
:(—1)n§‘(ei0/\ e Neg, Qe AeigN - Neay, )
—(@s N\ - Neiy,_yNei )R, Nei /N - Nei,_,)
—(ei,_ NeiyNes N\ - New, N1 ges, J&(es A\ -+ New,_ Nei, )
—(esp ANei,NeggN - New,  N(—=D"2e;, Qe A -+ Nei,_ Nei,_,)
' 1
:(“l)n“z—(eio/\ e Ney, Qe —e N Neg,_Nes Qe
_eio/\ /\ein-s/\ein—l/\ein®ein—2
+ei N - New,_Nei,_Nei,  Nei,Qei, JNei N\ - Neq,_,
1
=(—1)"7(ei"n®ein+e%"nyl®ein_l—e?‘n_2®ein_2—ei"n_3®ein_3)eio/\---/\ein_,,
where e¥, -+, ek A®V =V* is the dual basis of ¢, -+, ¢,. Therefore
Les A\ - Neiy g dALei,_ Nei, Nesg N - Nea, ]

1 -
=(~1)”—2—(e¥‘n®ein+e%"n_1®ein_l“eé“n e, _,—ef, Q2 _JINei N Nei,_,

1
=(—D(et,®er, +et, @i, —50)Aei,A - Aer,,

Therefore a basis of A"VRA™ 2V is contained in g(A*'V)PA" V). Hence
g is surjective. Moreover
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dim, (AX A V)DV)=(n+1) (—"%lfﬁdimku\w@/\”m.

Hence g is an isomorphism. Q.E.D.

LEMMA 3. If a=§(—1)n'feo/\ C AGA - ANenEAVRV where V is an

(n+1)-dimensional vector subspace of I'(C, L) and e,, -+, e, make a basis of V,
then

D P Nidy(d)=0.

PROOF. By the definition,
PP Nidy@)= 3 (—D"OL(eA -+ A& -+ Aewes
e, - d" e,

=S (=D >e - drie< e

en - d" e,

0 e -~ d'le

=(=1)" 3 |es e - d e

0 e, d" e,

e; e - d* e,

=(—D*le; ey - d" ey

e, €, d*le,
=0.

Therefore we have the result. Q.E.D.

2. Generalized Castelnuovo’s lemma

In this section, we will give a generalization of Castelnuovo’s lemmas in
Wahl (p. 86 Theorem 2.6.)

DEFINITION 3. Let V be a vector subspace of I'(C, .£) and let s,, -
€V be a basis. For any pe(C, if

..’SN



On the hi8her Wahl maps 87

Sl(p) d”sx(p)
rank : : =n-+1,

sn(p) - d"sn(p)
then we say that V is n-immersive. In particular if n=1, then we say that V

is immersive.

DEFINITION 4. Let V be a vector subspace of I'(C, .£). If dim,(V)=n,
then we call that V is an n-net.

LEMMA 4. Let L be an invertible sheaf on a curve C of genus g. If deg(.L)
=2g-+n, then a general (n+2)-dimensional subspace of I'(C, L) is an n-immer-
sive (n-+2)-net.

PROOF. By the same argument of Hartshorne (see Hartshorne p. 310
Porposition 3.5.), we have

dim ( Uc(osculating tangent n-plaine at peCcC P (I’ (C, .L’)*)))gn—l—l .
e

This completes the proof. Q.E.D.
LEMMA 5. Let .L be an invertible sheaf on C, and let V be a vector subspace
of I'(C, .£). If V is an (n—1)-tmmersive, then a sheaf homomorphism
/\nV®Og —_ w%n(n—l)/2®.£®n

induced by @YY is surjective.

PROOF. Let s, -, s,€V. Then we have

si(p) - dn_lsl(p)
DYV (siN - Asa)P)= :

Sa(p) =+ d™7'sa(P)
for every pC. As V is (n—1)-immersive, therefore this completes the proof.

Q.E.D.

The following definition and lemma are famous (see Hizeburch [II]).

DEFINITION 5. Let 9 and 9’ be locally free sheaves and let & be an in-

vertible sheaf. Suppose that a sequence 0—%’ Ly .0 is exact. The the
homomorphism A?¢: A?PW—-FQQAP !9’ is defined by
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NPYWIN -+ Awp)= %‘;(—D‘(ﬁ(wi)wl/\ AN AWy .

i=0

LEMMA 6. The above AP¢ is surjective and induces an exact sequence

p /\I)

AN ¢
0—> APW —> APW —> FQAP'W —> 0.
PROOF. See Hirzeburch p. 55 Theorem 4.1.3. Q.E.D.

Let V be a finite dimensional vector space and V* be a dual vector space
of V. Let deV®V*=Hom,(V, V) be an element corresponding to the identity
id. We consider the Koszul complex

a 0 0
K:0—0p — V*QO0p(l) —> AV*RQ0p(2) —> ---
defined by a(f)=f A0 for fEe AN V*ROp@F) (=1, 2, ---) where P=P(V*).

LEMMA 7. The above Koszul complex K is exact and the image sheaf

)
im(@)=im (A PV*Q0p(p) —> NPT V*QOp(p+1))

is isomorphic to N*Tp, where Tp is a tangent sheaf on P.

ProoF. If p=1, this is obvious (for example, see Hartshorne [9] p. 176).
If p is arbitary, then this follows directly from Lemma 6. Q.E.D.

DEFINITION 6. Let V be an (n—I1)-immersive (n+1)-net. A locally free
sheaf @, is given by

Qu=ker (A\"V@0c — wg*~b/QLen) .

REMARK 1. As OP : A"V ROc—wg" " D/12RQ)_L®" is surjective, @, is a locally

free sheaf of rank n.

Let V be an (n—Il)-immersive (n+1)-net. As V*= A"V, ocV*QV is
given by
o= 3 (=D teg A\ - A& - NenQe; .
i=0
Therefore 0 is contained in I'(C, Q) by in§1. As V is (n—1)-
immersive, V is base point free, so V defines a morphism C—P(V*). We
restrict the above Koszul complex X to C—P(V*) and we have the following

exact sequence:
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b7 0 0
(B): 0 —> O¢ —> V*RL —> NWV*RL —> - .

As 0I'(C, Q,), 0 defines the following compleX:

0 0 0
(A): 0 —>0¢ —> Q.Q.L —> NQ,QL —> .

where the map 0 is defined qy o(f)=/fAd. Moreover we consider a complex
(C)=(A)Qug" " D1PQ.Le"

0
O S wgn(n—l)/2®£®n > Qn®w%n(n—l)/2®-£-®n+l
0 /\ZQn®wgn(n—l)/z®£®n+2
By we have the following short exact sequence:

¢
D:0— QL —> V*QL —> 0f" " P 1PQLo*! —> 0.

Therefore we have the following short exact sequences by Lemma 6:
i i

. . Ny 4 : .
(1): 0__) /\1.Qn®’£'®1 —_ /\ZV*®I®1I ___)wgn(n—l)/2®_£®n+z®/\z—lQn — 0

where /=1, 2, ---. Hence we have the following diagram :
0 0 0
l ia l l
} (1) | (1) |
00— Qn®.[ —i) V*®_£’ _({i_) wgn(n—l)/2®-£®n+1 —>0
! (I2) ! (I15) |
N2 N2

O — /\an®-€®2 - > /\ZV*-L‘QOZ —_— w%n(n—-l)/2®.€®n+2®Qn —_— 0

l (1) l (1)

n n

0 - > /\nQn®£®n _Sﬁ /\nV*®I®n ___.f w%n(n—l)/2®£®2n®/\n—10n - > 0
(nss) | (Ilasy)
—> /\n+lv*®£®n+1 ~ wgn(n—l)/2®£®2n+1®/\nQn —_— 0

:
| |

0 0

00—

<
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where ¢=0 .
LEMMA 8. The above diagram is commutative.

PROOF. It is easy that ([;) part is commutative for /=1, 2, ---. Because
NN C 2V NI PNV AN CVANRWAS FIVAY?)

by the definition of (A) and (B). We now show that (/[;) part is commutative
for 7=1, g, ---. This is equivalent to

(AN EN - Ax DIAG=(APYENA - Axi-1\O)
for ;=1, 2, ---. As

(AIGNEA - AZi A= T (—IPPENTN - ARA - AXicaAD,
J=1

and
(NP xINA - AXi-1\O)
i-
= Z}I(_l)jsb(xj)xl/\ e ANEGN /\xi—l/\a+('—1)t¢(a)xl/\ e VXia
j=1
i-1
= 21(—1)’90(36;)761/\ s AZGA o ANXND
Jj=
we have the commutativity of (II;) by Lemma 3. Q.E.D.

LEMMA 9. The complexes (A) and (B) are exact.

PROOF. As the exact sequence (1) splits locally, there is a local section ¢,
of ¢. We put ¢;=A% (1=0, 1, ---) and put ¢;=A‘p (=0, 1, ---). By the defini-
tion of ¢, it is clear that d¢p=¢,0. Therefore we have ¢y ,,0=0¢, and ¢pon=id.

Hence the exact sequence of complexes
0 (A) (B) ©) 0

splits locally. As (B) is exact, therefore (A) and (C) are exact complexes.
Q.E.D.

LEMMA 10. Let V be a subspace of I'(C, L) with dim, V=n+1. If V is

(n+41)-immersive, then the subspace

@_(El—l)(/\n—lV)C[’(C’ w%n(n-l)/2®_£®n—l)

is immersive.

PROOF. Let x,, ---, x,.,€V. Then
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@(2®n(n—l)/2®_fn-—1(@ffn—l)(xl/\ /\xn-—l)/\@g}—])('xn/\xl/\ o NXnp_2))

)
@@

X1 ...dn_lxl Xy e dn"sxl

Xp oo dn“lxn Xp_g o d""3xn_2
Hence for every p=C there are some v, v A" 'V such that
¢fﬁén(n-l)/2®_c®n-1(@.(g_l>(v)/\ QFPWP)#0,

because V is (n—1)-immersive. Therefore we have the result. Q.E.D.

LEMMA 11. Let & be a locally free sheaf on C, let V be a subspace of
I'(C, &) and let K be a function field of C. If the canonical map VQ,K—
ERo K is injective, then VQwOc is subsheaf of &.

PrRFoo. This is obvious. Q.E.D.

LEMMA 12. Let V be a subspace of ['(C, .L) with dim,V=n+1. If W, is

a general 3-dimensional linear subspace of N""'V, then a composition of two
canonical maps

/\2W0®00 > /\nV®/\n-2V®OC > TPnIc®wg(n—2)(n—3)/2®£®n—3

s injective.

PrROOF. This condition is an open condition. Therefore we construct an
example of W, which satisfies the property of this lemma. Let x,, -+, x5, be
a basis of V and let Wo=[xX:A - AXn_1, XaAXIN 0 <Xp_gy Xaad AXIN - A
Xn_s]. By Lemma 2, a basis of @PNOPD(AW,) is (XA -+ AX)Q(XA -+
AZXn_z)y (XA o AXnciA X)) Q (XN o AXn_z)y (XN AXpa AXaAXpe1) @
(1A - AXxq_z). Therefore we can construct an example of W,. Q.E.D.

LEMMA 13. Let V be (n—1)-immersive and dim,(V)=n+1. If W, is a
general 3-dimensional linear subspace of NA""'V, then @F VY (W,) is an immersive
net.

PrROOF. This condition is also an open condition. Therefore this lemma

follows from Lemma 10, Q.E.D.

LEMMA 14. If VC A" 'V is an (n—1)-immersive (n+-1)-net, then there is an
n-dimensional subspace W A N\™"'V) such that ' ‘
(1) there is W, A™ 'V such that dim,W,=3, A*W,CW and ®@PW,) is im-
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mersive net,
(2) /\2W0®00—>/\"V®/\"‘2V®OC+—Tpnlc®w‘§("‘2’(n‘s”2®.£’®"'3 s z'njectz've.

PrRoOOF. By Lemma 12 and Lemma 13, there is a 3-dimensional subspace
Wo,C A™ 'V such that

(1) there is W,C A" 'V such that dim,W,=3 and @®(W,) is immersive net,
(2) ANWQROc—A"VRN 2V ROc—T prnicQEn-2 (n-32QLE*"* is injective.

As 00— A" VRL—Tpnic—0 is some W AVRA® 2V such that (AW ,DW)
QK=Tprnic®o,QK. We put W=N\*W,PW. By Lemmall, we get the result.
Q.E.D.

DEFINITION 7. Let vVcIl'(C, .£) be an (n—1)-immersive (n+1)-net. By the
following exact commutative diagrams, we define a locally free sheaf &,:

0 0

| l

id
Oc —_—> Oc

l l

0 — QL __90> V*QL —g-b—>w§"<"‘1>/2®_£®n+1 —_—0

l l Jid
0—> &, —> Tprnc —> @B DR Lo+ __5 ()
l l

0 0

Let W,C A" 'V and WCA¥A™ 'V) be vector subspaces in Lemma 14. By the
following exact sequences, we define locally free shaaves Qw, and Q,:

2
¢;é(n—l)(n-2)/2®£®n+1
2_ -
00— Qy —> WXRO¢ s @RMEIRIIR) B2 5 ()
and

@)
¢mg(n—l)(n—2)/2®_[®n+l
00— QWO —_— /\2W0®OC - wgn2—8n+s®.£-®2n—2 > (.

PROPOSITION 1. We have the following exact sequences :
A): 00— 0 — Q. L —&,0

B): 0 — Qy —> E£,QE ™ D =NI12Q -3 5 (torsion sheaf) —> 0
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©):0 Qw, —> Qo WRoc — 0
(D) O — > (w-%)(n—l)(n—Z)/2®I®n—l)®—l - > QWO

5 (w%1+((n—1)(n—2))/2®£®u—1)®—1 > 0

where W=W/(N\*W,).

PrROOF. The sequence (A) is given by the definition of £,. Now we con-
sider the sequence (B). By [Lemma 14, we have the following commutative
exact diagram:

0 > 8n®wg(n—2)(n—3)/2®_f®n—3 —_—
0—> Qo —
- - - 2_ -
TPn]C®w%(n 2)(n 3)/2®°£®n 3 > wgn 3n+3®_£®2n 2 > O
T inclusion T id

W®0c > wgn2—3n+s®.£®2n—z > ()
2
@z)é(n—l)(n_z)/2®£®n+1

Therefore there is an injective morphism :
Qo —> E2 QR D R Lm0 )

As Q, and &,Qug~2-H/2Q) ren-3 are both locally free invertible sheaves of
rank n—1, hence we have (B). By the exact sequence

0 —> Qy —>WRO; —> w§n2—3n+s®_f®2n—2 —>0,
the following exact commutative diagram is obtained:

0 0

l

0 —> Qwo —> AW RO —> 0§ QL2 — ()

idl

00— Qo — W®Oa —_ wgnz—snw@f@zn—z —0

0 —> WRO: —> WRO: —> 0 —>0

id
\ l

0 0.

Therefore we have the exact sequence (C) by the snake lemma. As W, is an
immersive net, the exact sequence (D) is obtained by the definition of Q, (see
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Wahl p. 85 Lemma 2.4.). Q.E.D.

By these lemmas and proposition, we have the following theorem which is
a generalization of Castelnuovo’s lemma in [18].

THEOREM 1. If VCI'(C, .L) is an (n—1)-immersive (n+1)-net and if F is
a coherent Oc-module on C such that
HY(C, £**Q9)=0,
H(C, (@8> ™/ QLon e Q=0
HY(C, (@™ " QLo" )2 ' ®F)=0,
HY(C, (@™ " QLo 12 Q) =0 ,
then a canonical map
AN"VQRI(C, L27'QF) —> I'(C, @B "V/3Q Lo 1R F)
which is induced by an n-Wahl map @ is surjective.
PROOF. We put (A),=(A)RQLE*QRF, (B)=(B)R (@@ »®-9/12RQ _ren-18-1

RF, (Ch=(C)Q(@E > -0/2Q_ren-He-1Qg (D),=(D)RQ(@E™~» -3 /3RQ) _ren-1)e-1
X%F. By (B),, we have the following two exact sequences:

0 — (kernel) —> Q,R(@E "D -N12RQ)_ren-He-1q > (;mage) —> 0
0 —> (image) —> €,QLEERQF —> (torsion sheaf) —> 0.

By the exact sequence (D), and an assumption, we have that

HY(C, Qw Q(@f"™ 2 2@ Lo IQF)=0 .
Therefore we have
HY(C, Qu®(@g > DR Lo e I QF)=0
by the exact sequence (C),. Hence
HY(C, €,.Q8L®*QRQF)=0
by the exact sequence (B), because C is one-dimensional. And
HY(C, Q:QLe7'QF)=0
by the sequence (A),. Therefore we have the result. Q.E.D.
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3. Application

In this section, we consider the surjectivity of @¢’. Now we prepare
several definitions and lemmas.

DEFINITION 8. Let .£y, ---, .L, be invertible sheaves on C. We define a
vector subspace R(.L,, -+, L )CIT'(C, L1)Q - Q' (C, L) by

2 x}"(l”(d‘lx](”””) (din—-lx;”("))) =0
J

Ex“’@ - Qx5m 1 0<7,<1, -+, 0=Z¢,1=n—1

and b s<"(n2 )

LEMMA 15. The above space R(.L,, -+, L) is well-defined.

for any =68,

PROOF. Let f; be a transition function of an invertible sheaf .£; and let
ZP=x"f, where x} and %} are local sections of ., (=1, ---). We assume that
2 xR - Qx5™ satisfies
5

D xfe(dhx§eeEn) ... (din-1x§7m0)=0,
j .

n(n—1)

5 and ¢€6,. As

for 06,51, -+, 0<7,.,5n—1, Zz,

i
d4(fx)= i:( )(d'xxd""f),
- S

we have that
? 0(1))(di1j‘c‘(0(2))) (din—lf}(ﬂ(n))

inl

i1
=3 . (2 X (dhxfeEn) .. (dtn- lx(v(nn))
81=0

Sp-1=0

1.1 in-l
( ) ( )f"(l)(d‘r”fa(c)) e (din-1mn-1f )

S Sp-1
Therefore we have the resuit. Q.E.D.

REMARK 2. If n=2, then R(.L,, L) in is the kernel of a cup
product map
I'C, £L)RI'(C, L£3) —> I'(C, £1QLs)
because
S xMxiP=0
j
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in the only relation in Definition 8.

~ DEFINITION 9. Let 7=3x"Q - QxiM € R(L,, -, La). We define the
n-Wahl map

Doz, R(Ly, ooy L) —> T(C, 0" VERQLQ - QL)
by '

@_fl_...,_[n(z')::¢,[l,...__cn(2 x§1)® ®x§n))
Jj

:;172 > sgn(a)x§”“”(dx§”‘2”)---(d"“x,“""”))-
g

oESy

LEMMA 16. The above @, ..., is well-defined.

PROOF. Let f, be a transition function of an invertible sheaf £, and let
#=x®f, (i=1, ---). Then

2( 3 sgn (0‘)%}"‘”)((1%}"(2”) (dn—lfyr(n))))
j \9€€n

=3 2 sgn(e)x{TD(dx{e®) ... (d"_‘xﬁ“("”)>(f1 o fa)
J

o€y

+2<2( 2 P sgn(a)
j \OESg \ug+vp=1,v3#1 Up+tVp=n-1,9p¥n—1

1 n—1

fmx;“m( )(d"zfm))(d”’x}""‘”)---( )(d""f.,m)(d""x}""‘”)))

Uy Up

=3 32 sgn(@)x57 ™ (dxsm®) - (P )Ny fa).

j \O0EG,

Thus we have the result. Q.E.D.
LEMMA 17. Assume that x,, ---, x,&1'(C, .L), then R(L, -+, L) contains

> sgn(o)x,y@ - @ Xoiny

=
and
¢_l:1-~-..£n(a§s sgn(e)x,1y® -+ ®xa(n)):¢?)(x1/\ AT FHR
. . a=l.  n(n—1) . .
Proor. If 04,51, -+, 057, =<n—1 and §1z,< 5 then 0, 75, -+, 7,

are not all distinct. Therefore R(.L, ---, .L) contains >} sgn(a)x,HQ - @Xgcn)
By
by Definition 8. Moreover
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mrl,...,fn(oezg sgn(@ %@ - Qe )

2 sgn(t) 2 Sgn(o')x(az(l))(dx(mm)) - (d™ lx(az(n))))

n're Sn

=2 Sgn(“)xw(m(dx(a(z))) ~(d*7 X (g(ny))

=1
QP (XN - AXp).

This complete the proof. Q.E.D.

LEMMA 18. The image of D, .. r is equal to the image of L.
PROOF. Let t=2 2" --- Qx{™ be an element of R(.L, ---, .£). Then

(br,..._f(f):wn%z_( 3 sgn(e)xfr(dxfe®) - (dixge ™)
L} g n

x‘;l) v dn"lx}l)
B n! i
x§n) dn-lx}m

1
2 OP (XN - Axa).
nl j

Therefore the image of @, .. » is contained in the image of @¢. The converse

is clear by Lemma 17l Q.E.D.
LEMMA 19. Let Ly, -+, L, and P be invertible sheaves on C. Then the

following diagram is commutative :
cup product
92([1, "'y-Ei) ’fn)®[,(c; g)) —_—

«pj;l,...,fn@)idl
I'(C, " PQRQLE - QLR - QLIRI(C, P)
-(R<'£1’ Tty -£i®g)x Tty -Eﬂ)

cup product

Dr i L8P, Ly l
I'(C, @rPPQRQLR) - QLQPR -+ QL)

PrROOF. This lemma is clear by the same calculations as in [Lemma 16,
Q.E.D.

LEMMA 20. Let £ and M be invertible sheaves on C. If deg(.L)=2g+1
and deg(M)= then I'(C, LYRQI(C, M)—I'(C, LRM) is surjective.
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PrOOF. See Fujita p. 168 Proposition 1,10, Q.E.D.

PROPOSITION 2. Let L be an invertible sheaf on C. If
deg(L)=(g—1)(2n*—2n+3)+2(n*—-1),

then there is an effective divisor A of degree g-+n such that I'(C, O(A)) is an
(n—1)-immersive (n+1)-net and

H‘(C, (w%"”“"”@O(A)m""*)@“1.£)=0

Proor. If A is a general effective divisor of degree g+mn, then
dim I'(C, ©(A—nP))=1 for every P=C. This implies that I'(C, ©(A)) is an
(n—1)-immersive (n+1)-net. Moreover the condition

HI(C, (w%n2—4n+5®0(/1)®2n—2)®—1®-£»):0
is also a general condition. Therefore we have the result. Q.E.D.

Now we prove the Main theorem.

THEOREM 2. Let .L be an invertible sheaf on C. If
deg(L)z(g—1)(2n*—2n+3)+2(n*—1),
then the n-Wahl map

OP: N*T(C, L) —> ['(C, 0@~V 12Q._L®")
is surjective.

PROOF. Let A be an effective divisor in [Proposition 2. By [Lemma 18,
Lemma 19 and [Theorem 1, @o4)...0c00,000. ¢ iS surjective. As

deg (LRO(A)=2g and deg(@w@* " V"2RO(A)®"'RL)=2g+1,

a cup product map
p: I'(C, g™V *Q0(A)®* 'QRLYRYT(C, LRO(— A)®"
—> [(C, @@ -11R _Lom)
is surjective by Lemma 20. By we have the following commutative
diagram :
I'(C, @™ D2RQR0(A)®" 'QR.LYRI(C, I@O(—A))@’""I—P;F(C, WPt DR _L®
DPoca), 04,04, L T Pr,...c T

R©OA), -, 0(A), LYRI'(C, LRO(—AN®* ' —> R(L, -, L).
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As p and De...om. 000, are surjective, we have that @ ... , is surjective.

Therefore @ is surjective by Lemma 18. Q.E.D.
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