
TSUKUBA J. MATH.
Vol. I8 No. 1 (1994), U$9--(\gamma 1

UNIQUENESS AND EXISTENCE OF DUALITIES
OVER COMPACT RINGS

Dedicated to Santuzza Ghezzo Baldassarri

By

E. GREGORIO and A. ORSATTI

0. Introduction

0.1. In relatively recent times it has been proved that some classical dualities
between additive categories are unique. For example, Roeder [13] proved that
any duality on the category of locally compact abelian groups coincides, up to

natural equivalences, with the Pontryagin duality.

Inspired by this fact, I. Prodanov [11] held at Sofia University, at the end
of the $70\prime s$ , a seminar on dualities and spectral spaces, suggesting some similar
results: we recall those by Dimov [2], Stoyanov [14] and the first author [4].

Dimov proved that Stone duality is the unique duality between the category

of Hausdorff compact totally disconnected spaces and the category of Boolean
rings.

Let $(A, \sigma)$ be a compact ring and denote by $\mathcal{L}- A_{\sigma}(A_{\sigma}- \mathcal{L})$ the category

of locally compact right (left) topological modules over $(A, \sigma)$ . L. Stoyanov

proved that, if $A$ is commutative, then the unique duality between $\mathcal{L}- A_{\sigma}$ and
$A_{\sigma}- \mathcal{L}$ is the Pontryagin duality, by using the Theorem of Kaplansky and
Zelinsky on the decomposition of a commutative compact ring as a product of
local rings.

Stoyanov’s theorem has been extended by the first author [4] to the non
commutative case, by using his results on equivalences between closed categories
of modules [5].

Unfortunately the activity of Ivan Prodanov, who inspired this line of
research, was interrupted by his untimely death in Apri11985.

0.2. If we use the result of Stoyanov and Gregorio, it is easy to show that
if $(A, \sigma)$ and $(R, \tau)$ are compact rings, then, if a duality $H=(H_{1}, H_{2})$
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$H_{1}$

$\mathcal{L}- A_{\sigma}\rightarrow\leftarrow R_{\tau}- \mathcal{L}H_{2}$

between $\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ exists, it is unique.

0.3. The present paper is subdivided into two parts. In the first part
(Sections 1 to 4) we give a completely new proof of the uniqueness stated
above by showing, in the meantime, how the duality $H$ acts on modules.

Namely, if we set

$K_{A}=H_{2}(R, \tau)$ and $RK=H_{1}(A, \sigma)$ ,

the discrete bimodule $RK_{A}$ is faithfully balanced, in the sense that $R\cong End(K_{A})$

and $A\cong End(_{R}K)$ canonically (see [9]). Moreover $K_{A}$ is an injective cogenerate
of the category $Mod- A_{\sigma}$ of all discrete right A-modules which are topological
modules over $(A, \sigma)$ and, similarly, $RK$ is an injective cogenerator of the cate-
gory $R_{\tau}$-Mod.

The crucial result is the fact that the structure of the bimodule $RKA$ de-
pends only on the rings $(A, \sigma)$ and $(R, \tau)$ and not on the duality $H=(H_{1}, H_{2})$ .
Moreover we can prove that, for all $M\in \mathcal{L}- A_{\sigma},$ $H_{1}(M)$ is naturally (and topo-
pologically) isomorphic to the left R-module $Chom_{A}(M, K_{A})$ of continuous mor-
phisms of $M$ into $K_{A}$ , endowed with the compact-open topology. A similar
result holds, of course, for all modules $N\in R_{\tau}- \mathcal{L}$ .

If a duality $H$ exists, then the modules $K_{A}$ and $RK$ have finite grade, that
is, the isotypic components of their socles are finitely generated.

In the second part of the paper (Section 5), given a compact ring $(A, \sigma)$ ,

we determine all compact rings $(R, \tau)$ such that there exists a duality between
$\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ in the followingw ay. Let $K_{A}$ be an injective cogenerator
of $Mod-A_{\sigma}$ with finite grade and set $R=End(K_{A})$ , with its K-topology $\tau$ . Then
$(R, \tau)$ is compact, $RK$ is an injective cogenerator, with finite grade, of $R_{\tau}$-Mod
and the bimodule $RK_{A}$ is faithfully balanced. Let $M\in \mathcal{L}- A_{\sigma}$ and let $H_{1}(M)$ be
the left R-module $Chom_{A}(M, K_{A})$ , with the compact-open topology: then $H_{1}(M)$

$\in R_{\tau}- \mathcal{L}$ . If we define analogously a functor $H_{2}$ : $R_{\tau}- \mathcal{L}\rightarrow \mathcal{L}- A_{\sigma}$ , we get a
duality $H=(H_{1}, H_{2})$ between $\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ . Finally, we give necessary
and sufficient conditions under which $(R, \tau)$ is topologically isomorphic to $(A, \sigma)$ .

0.4. All rings considered in this paper have identity $1\neq 0$ and all modules
are unital. The categories and functors we consider are always additive and
subcategories are full; since we deal only with categories of (topological)

modules, we use the convention of writing all morphisms on the side opposite
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to the scalars, unless the contrary is explicitly stated. All ring and module

topologies are assumed to be Hausdorff. The symbol $(M, \epsilon)$ generally means
that the module $M$ is endowed with the topology $\epsilon$ .

1. Preliminary results

1.1. Let $(R, \tau)$ be a compact ring. It is known that $(R, \tau)$ is a linearly

topologized ring having as a base of neighborhoods of zero a family of two-

sided ideals which, of course, have finite index.

Let $R_{\tau}- \mathcal{L}$ be the category of locally compact left modules over the topo-

logical ring $(R, \tau)$ , where the morphisms are the R-linear continuous morphisms.

It is known that every object $M$ in $R_{\tau}- \mathcal{L}$ is linearly topologized; more pre-

cisely, $M$ has a base of neighborhoods of zero consisting of compact and open

R-submodules (for an account of this see, $e$ . $g$ . $[12]$ ).

1.2. Let $\mathcal{F}_{\tau}$ be the family of all open two-sided ideals of $(R, \tau)$ . Observe

that $(R, \tau)$ is topologically artinian and noetherian on both sides, since $R/I$ is

a finite module for any $I\in \mathcal{F}_{\tau}$ , hence artinian and noetherian. Denote by

$R_{\tau}$-Mod the full subcategory of R-Mod defined as follows.

$R_{\tau}- Mod=$ { $M\in R$-Mod: $\forall x\in M,$ $Ann_{R}(x)\geqq I$, for some $I\in \mathcal{F}_{\tau}$ }.

Thus $R_{\tau}$-Mod is the category of all left R-modules which, with the discrete

topology, are topological modules over the topological ring $(R, \tau)$ . Note that,

for any $M\in R_{\tau}$-Mod, every finitely generated submodule of $M$ is finite. For any

$M\in R$-Mod we set

$t_{\tau}(M)=$ { $x\in M:Ann_{R}(x)\geqq I$, for some $I\in \mathcal{F}_{\tau}$ }.

The class $R_{\tau}$-Mod, together with the usual morphisms in R-Mod, is a Gro-

thendieck category, so that $R_{\tau}$-Mod has enough injectives. If $M\in R_{\tau}$-Mod, then

its injective envelope $E_{\tau}(M)$ in $R_{\tau}$-Mod is

$E_{\tau}(M)=t_{\tau}(E(M))$ ,

where $E(M)$ is the injective envelope of $M$ in R-Mod. Finally, it is obvious
that $R_{\tau}- Mod\subseteqq R_{\tau}- \mathcal{L}$ .

We denote by $R_{\tau}$-CM the full subcategory of $R_{\tau}- \mathcal{L}$ consisting of all compact

modules. Then $(R, \tau)\in R_{\tau}- CM$ . The meaning of the symbols $\mathcal{L}- R_{\tau},$ $Mod- R_{\tau}$

and $CM- R_{\tau}$ should be clear.

1.3. Let $(A, \sigma)$ and $(R, \tau)$ be two compact rings and assume we are given

a duality $H=(H_{1}, H_{2})$ between $\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ :



42 E. GREGORIO and A. $0RSATTI$

$H_{1}$

$\mathcal{L}- A_{\sigma}\rightarrow^{\leftarrow H_{2}}$
R. $- \mathcal{L}$ .

Arguing as in [1], Proposition 1.7, we can show that $H$ induces a duality be-
tween $CM- A_{\sigma}$ and $R_{\tau}$-Mod and one between $Mod- A_{\sigma}$ and $R_{\tau}- CM$ .

By some results of [9], there exists a faithfully balanced discrete bimodule
$RK_{A}$ such that $H_{1}(A_{\sigma})=RK$ and $H_{g}(R_{\tau})=K_{A}$ . Moreover, for any $M\in \mathcal{L}- A_{\sigma}$ and
any $N\in R_{\tau}- \mathcal{L}$ there are algebraic canonical isomorphisms

$H_{1}(M)\cong Chom_{A}(M, K_{A})$ ; $H_{2}(N)\cong Chom_{R}(N, RK)$ .

1.4. For the rest of this section we shall study the situation settled in 1.3.

1.5 PROPOSITION. Let $RK=H_{1}(A_{\sigma})$ . Then $RK$ is an injective cogenerator of
$R_{\tau}$ -Mod. Similarly $K_{A}=H_{2}(R_{\tau})$ is an injective cogenerator of $Mod- A_{\sigma}$ .

PROOF. We prove this fact by showing that $(A, \sigma)$ is a projective generator
of $CM- A_{\sigma}$ ; the proof relies on the following facts:

(1) for any $M\in CM- A_{\sigma},$ $Chom_{A}(A_{\sigma}, M)=Hom_{A}(A, M)$ ;
(2) epimorphisms in $CM- A_{\sigma}$ are surjective.

Since $A_{A}$ is a projective generator of Mod-A, it follows from (1) that $(A, \sigma)$ is
a generator of $CM- A_{\sigma}$ , while it follows from (2) that $(A, \sigma)$ is projective in
$CM- A_{\sigma}$ . Now, by applying the duality between $CM- A_{\sigma}$ and $R_{\tau}$ -Mod, we get
that $RK$ is an injective cogenerator of $R_{\tau}$ -Mod. $\square $

Denote by R.-LT (resp. $LT- A_{\sigma}$) the category of left (resp. right) linearly
topologized modules over the topological ring $(R, \tau)$ (resp. $(A,$ $\sigma)$).

Evidently (see 1.1):

$\mathcal{L}- A_{\sigma}\subseteqq LT- A_{\sigma}$ and $R_{\tau}- \mathcal{L}\subseteqq R_{\tau}- LT$ .

1.6 PROPOSITION. $RK$ is an injective cogenerator of R.-LT.

PROOF. Let $M\in R_{\tau}- LT,$ $X$ be a submodule of $M$ with the relative topology
and $f:X\rightarrow K$ be a continuous morphism. We want to show that $f$ can be ex-
tended to a continuous morphism from $M$ into $K$ . Since $K$ is discrete, $Kerf\geqq$

$X\cap V$ , where $V$ is an open submodule of $M$ ; setting $f^{\prime}(x+v)=f(x)$ , for $x\in X$

and $v\in V$ , gives a continuous morphism from $X+V$ into $K$, so that there is no
loss in generality if we assume that $X$ is open in $M$. Consider the diagram
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$X-M$
$\pi$

$\pi^{\prime}$

$X/Kerf\rightarrow M/Kerf$

where $\pi$ and $\pi^{\prime}$ are the canonical projections and $\overline{f}0\pi=f$ . Then $\overline{f}$ extends to

a morphism $g:M/Kerf\rightarrow K$, since $X/Kerf$ and $M/Kerf$ belong to $R_{\tau}$ -Mod and
$RK$ is injective in $R_{\tau}$-Mod; thus $g\circ\pi^{\prime}$ is an extension of $f$ .

Let now $x\in M$, $x\neq 0$ ; there exists an open submodule $V$ of $M$ such that
$x\neq V$ . Let $\pi;M\rightarrow M/V$ be the canonical projection and endow $M/V$ with the
discrete topology, so that $\pi$ is continuous and $M/V\in R_{\tau}$-Mod. There exists
$\xi:M/V\rightarrow K$ such that $\xi(\pi(x))\neq 0$ , since $RK$ is a cogenerator of $R_{\tau}$ -Mod; hence
$RK$ is a cogenerator of $R_{\tau}- LT$ . $\square $

1.7 COROLLARY. The topology of $M\in R_{\tau}$-CM coincides wlth the weak topology

of $Chom_{R}(M, K)$ .

PROOF. By Proposition 1.6, the weak topology of $Chom_{R}(M, K)$ is Haus-
dorff so that it coincides with the topology of $M$, which is compact. $\square $

1.8 COROLLARY. The topology $\tau$ on $R$ coincides with the K-topology, that is
the topology having as a base of neighborhoods of zero the annihilators in $R$ of
the finite subsets of $K$.

1.9 REMARK. The preceding corollaries hold also in CM-A..

2. The structure of $K_{A}$ and $RK$

2.1. In this Section we work under the hypotheses settled in 1.3. Denote
by $(D_{1}, D_{2})$ the duality between $CM- A_{\sigma}$ and $R_{\tau}$ -Mod induced by $(H_{1}, H_{2})$ :

$CM- A_{\sigma}\rightarrow^{\leftarrow D_{2}^{1}D}R_{\tau}$-Mod .

Note that $(A, \sigma)$ and $(R, \tau)$ , as inverse limits of finite–in particular artinian–
rings, are strictly linearly compact $(s. 1. c.)$ in the sense of Leptin [6].

Let $(W_{\lambda})_{\lambda\in\Lambda}$ be a system of representatives of all simple non isomorphic
modules in $Mod- A_{\sigma}$ . It is apparent that, for any $\lambda\in\Lambda,$ $W_{\lambda}\in CM- A_{\sigma}$ , since it is
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finite. Moreover, any finitely generated submodule of $K_{A}$ is finite, so that $K_{A}$

has essential socle. We have

Soc $(K_{A})=\oplus_{\lambda\in\Lambda}W_{\lambda}^{(m}\lambda)$ and $ K_{A}=\oplus_{\lambda\in\Lambda}E_{\sigma}(W_{\lambda})^{(m)}\lambda$

where the $m_{\lambda}\prime s$ are cardinal numbers uniquely determined by $K_{A}$ . The second
equality holds since $(A, \sigma)$ is topologically artinian, so that every module in
$Mod- A_{\sigma}$ has essential socle, and topologically noetherian, so that a direct sum
of injectives in $Mod- A_{\sigma}$ is injective. Let $D_{\lambda}=End_{A}(W_{\lambda})$ ; since $W_{\lambda}$ is finite, $D_{\lambda}$

is a finite field.
For all $\lambda\in\Lambda$ , we set $V_{\lambda}=D_{1}(W_{\lambda})$ . Since $(D_{1}, D_{2})$ is a duality, $(V_{\lambda})_{\lambda\in\Lambda}$ is a

system of representatives of all non isomorphic simple modules in $R_{\tau}$-Mod. It
is clear that Soc $(_{R}K)$ is essential in $RK$ and that $End_{R}(V_{\lambda})\cong D_{\lambda}$ canonically.

Let $J(A)$ be the Jacobson radical of $A$ . Since $(A, \sigma)$ is linearly compact,
we have

$A/J(A)\cong\prod_{\lambda\in\Lambda}End_{D_{\lambda}}(W_{\lambda})$

by a well-known result of Leptin ([6]).

Let $n_{\lambda}$ be the dimension of $W_{\lambda}$ as a left vector space over $D_{\lambda}$ ; since $W_{\lambda}$

is finite, then also $n_{\lambda}$ is finite and therefore we can write

$End_{D_{\lambda}}(W_{\lambda})\cong I_{\lambda^{\lambda}}^{n}$

where $I_{\lambda}$ is a minimal right ideal of $End_{D_{\lambda}}(W_{\lambda})$ . Recall that $I_{\lambda}\cong W_{\lambda}$ in Mod-A
and hence in $CM- A_{\sigma}$ , since $W_{\lambda}$ is finite.

2.2 LEMMA. Let $J(A)$ be the Jacobson radical of A. Then
a) $Ann_{A}$ Soc $(_{R}K)=J(A)$ ;
b) $Ann_{A}Ann_{K}J(A)=J(A)$ .

PROOF. a) Apply to the exact sequence

$0-Soc(_{R}K)-RK-RK/Soc(_{R}K)\rightarrow 0$

the functor $Hom_{R}(-, RK)$ , to get the exact sequence

$0-Ann_{A}$ Soc $(_{R}K)-A-End_{R}$ (Soc $(_{R}K)$ ) $-0$ .

Since $RK$ is quasi-injective and $A=End(_{R}K)$ , we have that $J(A)$ coincides with
the ideal of $A$ consisting of the endomorphisms of $RK$ with essential kernel (see

[3]). But Soc $(_{R}K)$ is the intersection of all essential submodules of $RK$ and so
$J(A)\subseteqq Ann_{A}$ Soc $(_{R}K)$ .

On the other hand, Soc $(_{R}K)$ is essential in $RK$, hence
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$Ann_{A}$ Soc $(_{R}K)\subseteqq J(A)$ .

b) Put $J=J(A)$ and assume there exists $a\in A$ such that $a\in Ann_{A}Ann_{K}(J)\backslash J$ .
Since $(A, \sigma)$ is linearly compact, $J$ is closed in $A$ , so that there exists a con-
tinuous morphism $f:A\rightarrow K_{A}$ such that $f(J)=0$ and $f(a)\neq 0$ . Thus we can find
$x\in K$ such that $xJ=0$ , but $xa\neq 0$ . This is a contradiction, since $x\in Ann_{K}(J)$

and $a\in Ann_{A}Ann_{K}(J)$ . $\square $

2.3 THEOREM. Let $(W_{\lambda})_{\lambda\in\Lambda}$ and $(V_{\lambda})_{\lambda\in\Lambda}$ be systems of representatives of all

non isomorphic simple modules in $Mod- A_{\sigma}$ and R.-Mod respectively. Let $n_{\lambda}$ and
$m_{\lambda}$ be the dimensions of $W_{\lambda}$ and $V_{\lambda}$ respectively as vector spaces over $D_{\lambda}=$

$End_{A}(W_{\lambda})=End_{R}(V_{\lambda})$ . Then
a) for all $\lambda\in\Lambda,$

$n_{\lambda}$ is finite and $ RK=\oplus_{\lambda\in\Lambda}E_{\tau}(V_{\lambda})^{n}\lambda$ ;
b) for all $\lambda\in\Lambda,$

$m_{\lambda}$ is finite and $ K_{A}=\oplus_{\lambda\in\Lambda}E_{\sigma}(W_{\lambda})^{m}\lambda$

Hence the structures of $K_{A}$ and $RK$ depend only on the pair of compact rings
$(A, \sigma)$ and $(R, \tau)$ and not on the duality $(H_{1}, H_{2})$ under consideration.

PROOF. We shall prove only a), for b) follows by symmetry.

As we have seen before, $n_{\lambda}$ is finite, for every $\lambda\in\Lambda$ . Set $J=J(A)$ and
consider the exact sequence

(1) $0-J-A\rightarrow A/J\rightarrow 0$

and set

$(A/J)^{*}=Chom_{A}(A/J, K_{A})=Chom_{A}(\prod_{\lambda\in\Lambda}End_{D_{\lambda}}(W_{\lambda}),$ $K_{A})$ .

Observe that, since $I_{\lambda}\cong W_{\lambda}$ in $CM- A_{\sigma}$ and $V_{\lambda}=H_{1}(W_{\lambda})$ , there are canonical
algebraic isomorphisms

$(A/J)^{*}\cong\oplus_{\lambda\in\Lambda}H_{1}(I_{\lambda^{\lambda}}^{n})\cong\oplus_{\lambda\in\Lambda}V_{\lambda^{\lambda}}^{n}$ .

By Proposition 1.6, applying $Chom_{A}(-, K_{A})$ to the sequence (1) gives the exact
sequence

$0\rightarrow(A/J)^{*}=\oplus_{\lambda\in\Lambda}V_{\lambda^{\lambda}}^{n}\rightarrow RK-Chom_{A}(J, K_{A})$ .

We want to show that $(A/J)^{*}$ , which we can identify with $Ann_{K}(J)$ , is the
socle of $RK$, for from this fact the conclusion will follow, since $RK$ is injective

with essential socle. Obviously $(A/J)^{*}=Ann_{K}(J)$ is semisimple, so that $Ann_{K}(J)$

$\subseteqq Soc(RK)$ .
Assume, by contradiction, that $Ann_{K}(J)\neq Soc(_{R}K)$ : then there exists an

endomorphism $a\in A=End(_{R}K)$ such that

$Ann_{K}(J)a=0$ and Soc $(_{R}K)a\neq 0$ .
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From Lemma 2.2(b), it follows $a\in Ann_{A}Ann_{K}(J)=J$ , while, from Lemma 2.2(a),

it follows $a\not\in Ann_{A}Soc(_{R}K)=J$ , a contradiction. $\square $

3. Uniqueness of the duality induced between $CM- A_{\sigma}$ and $R_{\tau}$ -Mod

3.1. Assume there exists a duality $(H_{1}, H_{2})$ between $\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ .
Then $(H_{1}, H_{2})$ induces a duality $(D_{1}, D_{2})$ between $CM- A_{\sigma}$ and $R_{\tau}$-Mod

$CM- A_{\sigma}\rightarrow^{\leftarrow D_{1}D_{2}}R_{\tau}$-Mod.

3.2 PROPOSITION. There is a functorial isomorphism

$D_{1}\cong Chom_{A}(-, K_{A})$ .

PROOF. As we know, the functor $D_{1}$ is, from algebraic point of view,
naturally equivalent to the functor $Chom_{A}(-, K_{A})$ . Hence, it is sufficient to
show that, for any $M\in CM- A_{\sigma},$ $Chom_{A}(M, K_{A})\in R_{\tau}$ -Mod. Let $f\in Chom_{A}(M, K_{A})$ ;

then
$Ann_{R}(f)=\{r\in R;rf=0\}=\{r\in R:rf(M)=0\}=Ann_{R}(f(M))$ .

As $M$ is compact, $f(M)\leqq RK$ is finite, so that $Ann_{R}(f)$ is an open left ideal in
$(R, \tau)$ . $\square $

3.3 LEMMA. Let $F$ be a finite module belonging to $R_{\tau}$-Mod. Then $Hom_{R}(F_{R}K)$

is finite and, when endowed with the discrete topology, it is an object of $CM- A_{\sigma}$ .

PROOF. Since $F$ is finite, it has a composition series, say of length $p$ .
Assume first that $p=1$ , so that $F$ is simple; then $F$ is isomorphic to $V_{\lambda}$ for
some $\lambda\in\Lambda$ . By Theorem 2.3, $Hom_{R}(F, RK)\cong Hom_{R}(V_{\lambda}, V_{\lambda^{tn}}\lambda))$ is finite.

Assume now that the thesis holds for modules of length $p-1$ . Then, if $S$

is a simple submodule of $F$, the module $F/S$ has length $p-1$ . Applying the
functor $Hom_{R}(-, RK)$ to the exact sequence $0\rightarrow S\rightarrow F\rightarrow F/S\rightarrow 0$ ends the proof. $\square $

Note that, in this proof, we use only the structure of $RK$ .

3.4. For every $N\in R_{\tau}$-Mod we will denote by $Homfi(N, RK)$ the module
$Hom_{R}(N, RK)$ endowed with the topology of pointwise convergence.

3.5 LEMMA. For every $N\in R_{\tau}$-Mod, $Homfi(N, RK)$ belongs to $CM- A_{\sigma}$ .

PROOF. The discrete module $N$ is the direct limit of a family $(F_{\lambda})_{\lambda\in\Lambda}$ of
finite submodules and we have:
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$Hom_{R}^{p}(N, RK)=Hom_{R}^{p}(\lim_{\rightarrow}F_{\lambda,R}K)\cong\alpha\varliminf Hom_{R}^{p}(F_{\lambda,R}K)$

where $Hom_{R}^{p}(F_{\lambda,R}K)\in CM- A_{\sigma}$ by Lemma 3.3. The isomorphism $\alpha$ is topological,
provided we endow the inverse limit with the inverse limit topology ( $i$ . $e$ . the
topology it has as a submodule of the direct product). $\square $

Let $N\in R_{\tau}- LT$ and let $F$ be a subset of $N$. We set

$cW(F)=\{\xi\in Chom_{R}(N, RK):(F)\xi=0\}$

and we use a similar notation for subsets of $M\in LT- A_{\sigma}$ . If $F=\{y\}$ , we write
$9V(F)=\psi(y)$ .

3.6 PROPOSITION. Let $M\in CM- A_{\sigma}$ and $N\in R_{\tau}$-Mod. There exists an abelian
group $\iota somorphism$

$\varphi:Chom_{A}(M, Hom_{R}^{p}(N/RK))-Hom_{R}(N, Chom_{A}(M, K_{A}))$

which is natural in the variables $M$ and $N$.

PROOF. In this proof, to keep the notation not too heavy, we shall skip
the convention of writing the morphisms on the opposite side to the scalars
and we shall write morphisms on the left; since we are not considering endo-
morphism rings, there is no harm in doing this. Let $f:M\rightarrow Hom_{R}^{p}(N, RK)$ be
an A-linear continuous morphism. Define the morphism $f:N\rightarrow Chom_{A}(M, K_{A})$

by setting, for $x\in M$ and $y\in N$,

$f(y)(x)=f(x)(y)$ .
Then $f$ is R-linear, since

$[f(ry)](x)=[f(x)](ry)=r[f(x)](y)=[rf(y)](x)$ .

Let us verify that $f$ is continuous. Indeed, for $y\in N$, we have:

$Ker(f(y))=\{x\in M:f(y)(x)=f(x)(y)=0\}=f^{-1}(q\mu(y))$

which is open in $M$. Thus we can set $\varphi(f)=\hat{f}$.
The morphism $\varphi$ can be inverted by the abelian groups morphism

$\psi:Hom_{R}(N, Chom_{A}(M, K_{A}))\rightarrow Chom_{A}(M, Hom_{R}^{p}(N, RK))$

defined, for any morphism $g:A\rightarrow Chom_{A}(M, K_{A})$ , by $\psi(g)=\check{g}$ , where $\check{g}$ : $ M\rightarrow$

$Hom_{R}^{p}(N, RK)$ is defined by

$\check{g}(x)(y)=g(y)(x)$ ,

for $x\in M$ and $y\in N$. We prove that $\check{g}$ is continuous, leaving the verification
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of the A-linearity to the reader. If $y\in N$, we have

$\check{g}^{-1}(cW(y))=\{x\in M:\check{g}(x)(y)=g(y)(x)=0\}=Ker(g(y))$

which is open in $M$. $\square $

3.7. A consequence of the preceding proposition is that the functor
$Hom_{R}^{p}(-, RK):R_{\tau}- Mod\rightarrow CM- A_{\sigma}$ is a right adjoint to the functor $D_{1}$ : $CM- A_{\sigma}\rightarrow$

$R_{\tau}$ -Mod. Thus, by Proposition 3.2, $Hom_{R}^{p}(-, RK)$ is naturally equivalent to $D_{2}$ .

Therefore we have the following

3.8 THEOREM. Let $H_{1}$ : $\mathcal{L}- A_{\sigma}\rightarrow R.- \mathcal{L},$ $H_{2}$ : $R_{\tau}- X\rightarrow \mathcal{L}- A_{\sigma}$ be a duality and let
$(D_{1}, D_{2})$ be the induced duality

$D_{1}$

$CM- A_{\sigma}\leftarrow^{\rightarrow D_{2}}R_{\tau}$
-Mod.

Then, if $RK_{A}$ is the bimodule such that $H(A_{\sigma})=AK$ and $H_{2}(R_{\tau})=K_{A}$ , there are the

functorial isomorphisms

$D_{1}\cong Chom_{A}(-, K_{A})$ , $D_{2}\cong Hom_{R}^{p}(-, RK)$ .

3.9 REMARK. An analogous statement holds for the induced duality be-
tween $Mod- A_{\sigma}$ and $R_{\tau}- CM$ .

4. The general case

4.1. We assume throughout this Section that we are given a duality
$(H_{1}, H_{2})$ between $\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ :

$H_{1}$

$\mathcal{L}- A_{\sigma}\rightarrow^{\leftarrow H_{2}}R_{\tau}- \mathcal{L}$
.

Let $RK_{A}$ be the canonical bimodule of the duality $(H_{1}, H_{2})$ .

4.2. Let $M\in \mathcal{L}- A_{\sigma}$ and let $C(M)$ denote the set of all compact topological
submodules of $M$ . If $C$ , $C’\in C(M)$ and $C\leqq C^{\prime}$ , we denote by $f_{C}^{C}$ , : $C\rightarrow C^{\prime}$ the
inclusion of $C$ into $C^{\prime}$ . For all $C\in C(M),$ $i_{C}$ : $C\rightarrow M$ is the inclusion of $C$

into $M$.

4.3 LEMMA. Let $M\in \mathcal{L}- A_{\sigma}$ . Then

(1) $M=\lim_{C\vec{\in C(}M)}(C ; f_{C}^{C},)$

in the category $X- A_{\sigma}$ . A similar result holds in the category $R_{\tau}- X$ .
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PROOF. To begin with, we observe that, for all $x\in M$, the submodule $xA$

is compact, since the map $A\rightarrow xA$ which sends 1 into $x$ is continuous. It is
obvious that $C(M)$ contains a compact open submodule $C_{0}$ .

To prove (1), let $L\in X- A_{\sigma}$ and assume there exists a family of continuous
morphisms $(f_{C} : C\rightarrow L)_{C\in C(M)}$ such that the diagrams

(2)

$L$

are commutative, for all $C$ , $C’\in C(M)$ with $C\leqq C^{\prime}$ $i$ . $e.,$ $f_{C^{\prime}}|C=f_{C}$ . Let us
prove that there exists a unique continuous morphism $\varphi:M\rightarrow L$ such that, for
any $C\in C(M)$ , the diagram

(3)

is commutative.
The morphism $\varphi$ is given by

$\varphi(x)=f_{xA}(x)$ $(x\in M)$ ;

we show that $\varphi$ is well-defined and that the diagrams (3) are commutative by
recalling that the diagrams (2) are commutative, so that, if $x\in C$ , we have
$xA\leqq C$ and

$f_{C}(x)=(f_{C}|xA)(x)=f_{xA}(x)=\varphi(x)=\varphi(i_{C}(x))$ .
To end the proof, we show that $\varphi$ is continuous. Let V be an open submodule
of $L$ . Then $\varphi^{-1}(V)\geqq f_{C_{0}}^{-1}(V)$ and this is open in $C_{0}$ . But, since $C_{0}$ is open in
$M,$ $f_{C_{0}}^{-1}(V)$ is also open in M. $\square $

4.4 LEMMA. In the preceding situation, let $M\in \mathcal{L}- A_{\sigma}$ . Then:

(1)
$H_{1}(M)=\lim_{c_{\in C(M)}^{\leftarrow}}(H_{1}(C);H_{1}(f_{C}^{C},))$

in the category $R_{\tau}- \mathcal{L}$ and the equality (1) holds in the category $R_{\tau}- LT$ as well.
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A similar result holds also for the modules in $R_{\tau}- \mathcal{L}$ .

PROOF. By the preceding Lemma we have, in $R_{\tau}- \mathcal{L}$ ,

$H_{1}(M)=H_{1}(\lim_{C\in\vec{C(}M)}(C;f_{C}^{C},))=$ $\lim_{\leftarrow,C\in C(M)}(H_{1}(C);H_{1}(f_{C}^{C},))$
.

Since $H_{1}(M)$ is complete and linearly topologized we have, in the category
$R_{\tau}- LT$ ,

$H_{1}(M)=$
$\lim_{\leftarrow,V\in ff(H_{1}(M))}H_{1}(M)/V$

,

where we denote by $\mathcal{F}(H_{1}(M))$ the filter of all open submodules of $H_{1}(M)$ .
However, for every $C\in C(M)$ , there exists one and only one open submodule V
of $H_{1}(M)$ such that $H_{1}(M)/V$ is canonically isomorphic to the discrete module
$H_{1}(C)$ . Hence the two inverse limits coincide. $\square $

4.5 REMARK. In the preceding inverse limit, the canonical morphisms from
$H_{1}(M)$ to $H_{1}(C)$ (for $C\in C(M)$ ) are the morphisms $H_{1}(i_{C})$ .

4.6 THEOREM. Under the hypotheses of 4.1, if $M\in \mathcal{L}- A_{\sigma}$ then the module
$H_{1}(M)$ is canonically isomorphic to $Chom_{A}(M, K_{A})$ endowed with the topology of
the uniform convergence on the compact subsets of $M$ ; this topology coincides with
the topology of uniform convergence on the compact submodules of $M$, which has
as a basis of neighborhoods of zero the submodules $\wp(C)=\{\xi\in Chom_{A}(M, K_{A})$ ;

$\xi(C)=0\}$ , for $C\in C(M)$ .
A completely analogous result holds for $R_{\tau}- \mathcal{L}$ . Consequently any duality be-

tween $\mathcal{L}- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ is unique.

PROOF. Let $M\in \mathcal{L}- A_{\sigma}$ . As we know, $H_{1}(M)$ and $Chom_{A}(M, K_{A})$ are can-
onically isomorphic as abstract modules. Moreover:

$H_{1}(M)=$$\lim_{\leftarrow,C\in C(M)}(H_{1}(C);H_{1}(f_{C}^{C},))=\lim_{CC\in^{\leftarrow}(M)}(Chom_{A}(C, K_{A});(f_{C}^{C},)^{*})$ ,

where the * denotes the transposed morphism. If we identify $H_{I}(M)$ with
$Chom_{A}(M, K_{A})$ , a basis of neighborhoods of zero in $H_{1}(M)$ is given by the kernels
of the projections $i\partial:Chom_{A}(M, K_{A})\rightarrow Chom_{A}(C, K_{A})$ and

$Ker(;\partial)=\{\xi\in Chom_{A}(M, K_{A}):i_{C}^{*}(\xi)=0\}$

$=\{\xi\in Chom_{A}(M, K_{A}):\xi(C)=0\}=9V(C)$ .

Denote by $w$ this topology and by $w^{\prime}$ the topology of uniform convergence on
the compact subsets of $M$ . Of course $w\subseteqq w^{\prime}$ . To prove the converse inclusion
it is sufficient to prove that every compact subset $F$ of $M$ is contained in a
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compact submodule. So, let $C$ be an open compact submodule of $M$ ; there exist
$x_{1},$ $\cdots,$

$x_{n}\in F$ such that

$F\subseteqq\bigcup_{i=1}^{n}(x_{i}+C)\subseteqq\bigcup_{i=1}^{n}(x_{i}A+C)\subseteqq\sum_{i\Leftarrow 1}^{n}(x_{i}A+C)=C+\sum_{i=1}^{n}x_{i}A$

which is a compact submodule of M. $\square $

4.7. We want to show now, as an example, that Pontryagin duality over
a compact ring $(R, \tau)$ can be represented as stated in Theorem 4.6.

Let $T=R/Z$ be the circle group and recall that, if $M\in \mathcal{L}- R_{\tau}$ , the Pontry-

agin dual $\Gamma_{1}(M)$ of $M_{R}$ is the left R-module $Chom_{Z}(M, T)$ , endowed with the
topology of uniform convergence on the compact subsets of $M$ ; in an analogous

way we define the Pontryagin dual $\Gamma_{2}(N)$ of a left locally compact module $ N\in$

$R_{\tau}- \mathcal{L}$ . It is not difficult to show that these functors–the action on morphisms

being the obvious one–yield a duality between the categories $\mathcal{L}- R_{\tau}$ and $R_{\tau}- \mathcal{L}$ .
As in the proof of Theorem 4.6, we can see that the topology on the Pon-

tryagin dual of $M$ conincides with the topology of uniform convergence on the
compact submodules of $M$ ; thus a basis of neighborhoods of zero in $\Gamma_{1}(M)$ is
given by the submodules of the form

$CW_{T}(C)=\{\chi\in Chom_{Z}(M, \tau):x(C)=0\}$ ,

where $C$ runs over all compact submodules of $M$. Indeed, a basis should be
the family of subsets of the form

$Ct\nu_{T}(C;U)=\{\chi\in Chom_{Z}(M, \tau);x(C)\subseteqq U\}$ ,

where $C$ is a compact submodule of $M$ and $U$ is a neightborhood of zero in $T$ ,

but, without loss of generality, we can assume $U$ is a small neighborhood, $i$ . $e.$ ,

one containing no subgroups of $T$ . In this case $CW_{T}(C;U)=W_{T}(C)$ .
Let now $K$ be the Pontryagin dual of $R_{\tau}$ : it is obvious that it does not

matter whether we consider $R_{\tau}$ as a left or a right module over itself, so that
$K$ carries a natural structure of R-R-bimodule. Consider $M\in \mathcal{L}- R_{\tau}$ ; then the
map

$\varphi_{M}$ : $Chom_{Z}(M, T)-Chom_{R}(M, K_{R})$

$\chi\leftrightarrow\hat{\chi}$

where, for $x\in M$ and $r\in R$ ,
$\hat{\chi}(x)(r)=x(xr)$

is an isomorphism.
Endow $Chom_{R}(M, K_{R})$ with the topology of uniform convergence on the

compact submodules of $M$, so that a fundamental neighborhood of zero is of
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the form
${}^{t}l\mu(C)=\{\xi\in Chom_{R}(M, K_{R}):\xi(C)=0\}$ ,

where $C$ is a compact submodule of $M$ . Now it is only a matter of calculations
to verify that $\varphi_{M}$ is a topological isomorphism:

$\varphi_{M}^{-1}(\wp(C))=\{\chi\in Chom_{Z}(M, \tau);\hat{x}(C)=0\}$

$=\{\chi\in Chom_{Z}(M, \tau);x(xr)=0, \forall x\in C, \forall r\in R\}$

$=\{\chi\in Chom_{Z}(M, \tau);x(C)=0\}$

$=^{c}tt^{l_{T}}(C)$ .

5. Existence of dualities

In this section, given a compact ring $(A, \sigma)$ , we construct all compact rings
$(R, \tau)$ for which there exists a duality between $X- A_{\sigma}$ and $R_{\tau}- \mathcal{L}$ .

5.1 LEMMA. Let $(A, \sigma)$ be a right linearly topologized ring, $K_{A}$ an injective
cogenerator of $Mod- A_{\sigma}$ , $R=End(K_{A})$ . Then the simple submodules of $RK$ are
exactly those isomorphic to $Hom_{A}(V, K_{A})$ , when V runs over the simple submodules
of $K_{A}$ . Moreover Soc $(_{R}K)=Soc(K_{A})$ and Soc $(_{R}K)$ is essential in $RK$ .

PROOF. Let $\mathcal{P}$ be the set of open right maximal ideals of $(A, \sigma)$ . We
prove that, for any $P\in \mathcal{P},$ $Ann_{K}(P)$ is a simple submodule of $RK$ and that every
simple submodule of $RK$ can be obtained in this way. Let us fix $P\in \mathcal{P}$ and let
$x,$ $y\in Ann_{K}(P)$ be non zero. Since $P$ is open in $(A, \sigma)$ and $K_{A}$ is a cogenerator

of $LT- A_{\sigma}$, it is $Ann_{A}(x)=P=Ann_{A}(y)$ . Thus there exists a morphism $f:xA\rightarrow yA$

such that $f(x)=y$ and this morphism $f$ extends to an endomorphism of $K_{A}$ .
Hence there is $r\in R$ such that $y=rx$ and this proves that $Ann_{K}(P)$ is a simple
submodule of $RK$ .

Conversely, let $RS$ be a simple submodule of $RK$ and $x\in S$ be non zero.
There exists $P\in \mathcal{P}$ such that $Ann_{A}(x)\subseteqq P$. Let $y\in Ann_{K}(P),$ $y\neq 0$ : since $Ann_{A}(y)$

$=P$, there exists a surjective morphism $f:xA\rightarrow yA$ such that $f(x)=y$ . Then
$y=\gamma x$ , for some $r\in R$ , so that $Ann_{K}(P)\leqq RS$ ; since $RS$ is simple, we have $S=$

$Ann_{K}(P)$ .
Let now $RS$ be a simple submodule of $RK$ and let $P\in \mathcal{P}$ be such that $S=$

$Ann_{K}(P)$ . Since $K_{A}$ is a cogenerator of $Mod- A_{\sigma}$, the simple module $A/P$ is iso-
morphic to a simple submodule V of $K_{A}$ . The assignment $f\mapsto f(e)$ , where $e=$

$1+P\in A/P$ clearly defines an isomorphism of left R-modules $Hom_{A}(A/P, K_{A})\rightarrow$

$Ann_{K}(P)$ and composing this with the isomorphism $Hom_{A}(V, K_{A})\rightarrow Hom_{A}(A/P, K_{A})$
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yields the desired isomorphism.

Now Soc $(K_{A})=\sum\{Ann_{K}(P)|P\in cP\}$ , since $K_{A}$ is a cogenerator of $Mod- A_{\sigma}$ ,

and so the equality Soc $(_{R}K)=Soc(K_{A})$ is proved.

To end the proof it is sufficient to show that Soc $(K_{A})$ , as an R-submodule
of $RK$, is essential. Let $x\in RK,$ $x\neq 0$ ; there exists $P\in \mathcal{P}$ such that $Ann_{A}(x)\subseteqq P$

and $K_{A}$ contains a submodule V isomorphic to $A/P$ . Thus there exists a mor-
phism $f:xA\rightarrow V$ such that $f(x)\neq 0$ and, by extending this via the injectivity of
$K_{A}$ , we get $r\in R=End(K_{A})$ such that $rx\in Soc(_{R}K)=Soc(K_{A})$ and $rx\neq 0$ . $\square $

5.2 DEFINITION. Let $(A, \sigma)$ be a right linearly topologized ring and let
$(W_{\lambda})_{\lambda\in\Lambda}$ be a system of representatives of all simple non isomorphic modules in
$Mod- A_{\sigma}$ . If $M\in Mod- A_{\sigma}$ , then

Soc $(M)=\oplus_{\lambda\in\Lambda}W_{\lambda}^{(m}\lambda)$

where, for all $\lambda\in\Lambda,$
$m_{\lambda}$ is a suitable cardinal number. The family $(m_{\lambda})_{\lambda\in\Lambda}$ is

called the grade of $M$ . We say that $M$ has finite grade if every $m_{\lambda}$ is finite.

5.3 LEMMA. Let $(A, \sigma)$ be a right linearly topologized ring, $K_{A}$ an injective
cogenerator of $Mod- A_{\sigma},$ $R=End(K_{A})$ and endow $R$ with the K-topology $\tau$ . If
$(R, \tau)$ is compact, then $K_{A}$ has finite grade.

PROOF. Let $N$ be the set of non negative integers and assume, by contra-
diction, that there exists a simple submodule $S$ of $K_{A}$ such that $K_{A}$ contains an
infinite direct sum $S^{(N)}$ of copies of $S$ . Denote by $S_{n}$ the n-th component of
$S^{(N)}$ , let $x_{0}\in S_{0},$ $x_{0}\neq 0$ , and set $I=Ann_{R}(x_{0})$ . Then $I$ is an open ideal of $(R, \tau)$ ,

so that $R/I$ is finite. Consider, for $n>0$ the element $x_{n}\in S^{(N)}$ having the n-th
component equal to $x_{0}$ and the other components equal to zero. Let $\varphi_{n}$ : $S_{0}\rightarrow S_{n}$

be the A-morphism such that $\varphi_{n}(x_{0})=x_{n}$ ( $i$ . $e.$ , the identity); then $\varphi_{n}$ extends

to an endomorphism $f_{n}$ : $K_{A}\rightarrow K_{A}$ . The morphisms $f_{n}\in R$ are all distinct and
non zero and clearly $f_{n}\not\in I$ . Moreover, if $\pi:R\rightarrow R/I$ is the canonical projec-
tion, it is obvious that $\pi(f_{n})\neq\pi(f_{m})$ , if $n\neq m$ . Since $R/I$ is finite, this is
absurd. $\square $

5.4. Let $RK\in R$-Mod be a faithful module and endow $R$ with the K-topology
$\tau$ , which is Hausdorff.

(5.4.1) The following conditions are equivalent:
(i) $RK$ is an injective object in $R_{\tau}$-Mod,

(ii) $RK$ is an $inJecti_{lJ}eob_{J}ect$ in $R_{\tau}- LT$ ,
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(iii) $RK$ is quasi-injective.
(cf. [8], Proposition 6.6.)

Recall that $RK$ called strongly quasi-injective if it is quasi-injective and, for
every submodule $B$ of $RK$ and every $x\in K\backslash B$ , there exists an endomorphism $\alpha$

of $RK$ such that $B\alpha=0$ and $x\alpha\neq 0$ .

(5.4.2) The following conditions are equivalent:
(i) $RK$ is an injective cogenerator in $R_{\tau}$ -Mod,

(ii) $RK$ is an injective cogenerator in $R_{\tau}$-Mod,
(iii) $RK$ is strongly quasi-injective.

(5.4.3) Let $(A, \sigma)$ be a compact ring, $K_{A}$ a cogenerator of $Mod- A_{\sigma}$ and $R=$

$End(K_{A})$ . Then the bimodule $RK_{A}$ is faithfully balanced and $RK$ is
quasi-injective.

(cf. [7], Main Theorem.)

(5.4.4) Let $RK_{A}$ be a faithfully balanced bimodule and assume $K_{A}$ strongly
quasi-injective. Then the following conditions are $equi\iota\prime alent$ ;

(i) $RK$ is strongly quasi-injective;
(ii) $A$ is linearly compact in the K-topology and Soc $(K_{A})$ is essential in $K_{A}$ .

(cf. [7], Theorem 10.)

5.5 THEOREM. Let $(A, \sigma)$ be a compact ring, $K_{A}$ an injective cogenerator of
$Mod- A_{\sigma}$ of finite grade, $R=End(K_{A})$ and let $R$ have the K-topology $\tau$ . Then:

a) the bimodule $RKA$ is faithfully balanced;
b) Soc $(K_{A})=Soc(RK)$ and both are essential in $K_{A}$ and $RK$ respectively;
c) $RK$ is an injective cogenerator of $R_{\tau}$-Mod;
d) $(R, \tau)$ is compact and $RK$ has finite grade.

PROOF. a) By 5.4.1, the bimodule $RKA$ is faithfully balanced.
b) Soc $(K_{A})$ is essential in $K_{A}$ since $(A, \sigma)$ is compact (see 2.1); by Lemma

5.2, Soc $(K_{A})=Soc(_{R}K)$ and Soc $(_{R}K)$ is essential in $RK$ .
c) Observe that the K-topology on $A$ coincides with $\sigma$ by Corollaries 1.7

and 1.8. Therefore it follows from 5.4.4 and the preceding a) and b) that $RK$

is strongly quasi-injective. Thus $RK$ is an injective cogenerator of $R_{\tau}$ -Mod by
5.4.2.

d) Since $(R, \tau)$ is complete, it suffices to show that every finitely generated
module in $R_{\tau}$ -Mod is finite.



Uniqueness and existence of dualities 55

We prove first that a finitely generated module $M$ in R.-Mod has finite
length. Since $M$ embeds in a finite power of $RK$, which is a cogenerator of
$R_{\tau}$ -Mod, and any submodule of $RK^{n}$ is contained in the sum of its projections,

we need only to show that every finitely generated submodule of $RK$ has finite
length; but this follows from [10], Proposition 2.3.

Thus we are reduced to seeing that every simple module $S$ in $R_{\tau}$-Mod is
finite (cf. Lemma 3.3). By Lemma 5.1, we have $S\cong Hom_{A}(W, K_{A})$ , for some
simple submodule $W$ of $K_{A}$ ; since $K_{A}$ has finite grade, it follows that

$S\cong Hom_{A}(W, K_{A})=Hom_{A}$($W$ , Soc $(K_{A})$ ) $=Hom_{A}(W, W^{n})$

for some integer $n$ , and this module is finite since $W_{A}$ is.
Finally $RK$ has finite grade by Lemma 5.3. $\square $

5.6. From this point on we will denote by $(A, \sigma)$ a compact ring, $K_{A}$ an
injective cogenerator with finite grade of $Mod- A_{\sigma},$ $R=End(K_{A})$ endowed with
its K-topology $\tau$ . According to the preceding theorem, $(R, \tau)$ is a compact ring,
$RK$ is an injective cogenerator with finite grade of $R_{\tau}$ -Mod and the bimodule
$RK_{A}$ is faithfully balanced.

If $M\in \mathcal{L}- A_{\sigma}$ , we denote by $H_{1}(M)$ the left R-module $Chom_{A}(M, K_{A})$ endowed
with the topology of uniform convergence on the compact submodules of $M$ .
If $C(M)$ is the family of all compact submodules of $M$, then a typical neighbor-

hood of zero in $H_{1}(M)$ is

$cW(F)=\{\xi\in Chom_{A}(M, K_{A})|\xi(F)=0\}$

for $F\in C(M)$ , since $K_{A}$ is discrete.
Analogous notations and definitions hold also for every $N\in R_{\tau}- \mathcal{L}$ , though

we denote by $H_{2}(N)$ the right A-module with the topology of uniform conver-
gence on the compact submodules of $N$ .

Arguing as in Theorem 4.6, we see that this topology coincides with the
usual compact-open topology.

5.7 LEMMA. For every $M\in \mathcal{L}- A_{\sigma},$ $H_{1}(M)$ belongs to $R_{\tau}- \mathcal{L}$ . Analogously
$H_{2}(N)\in \mathcal{L}- A_{\sigma}$ , for every $N\in R_{\tau}- \mathcal{L}$ .

PROOF. Let us prove, first of all, that $H_{1}(M)$ is complete in its canonical
uniformity. Let $(\xi_{\lambda})_{\lambda\in\Lambda}$ be a Cauchy net in $H_{1}(M)$ : then, for any $F\in C(M)$ ,

there exists $\lambda\in\Lambda$ such that, for all $\lambda^{\prime},$ $\lambda‘‘\geqq\lambda_{F}$ in $\Lambda$ ,

$\xi_{\lambda^{\prime}}-\xi_{\lambda^{\prime\prime}}\in cW(F)$
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and this implies that the net is eventually constant on every compact submodule
of $M$. Therefore the net converges uniformly on all compact submodules of $M$

to a morphism $\xi:M\rightarrow K_{A}$ , which is continuous, since it is continuous on a com-
pact open submodule of $M$ .

To prove $H_{1}(M)$ is locally compact, it is sufficient to show that it has a
precompact open neighborhood of $0$ .

Let $F$ be a compact open submodule of $M$ : then a basis of neighborhoods
of zero in $cW(F)$ consists of the modules $cfi^{\prime}(G)$ , where $G\supseteqq F$ is a compact sub-
module of $M$ . Thus we have to show that, under these conditions, $\subset tV(F)/c\tilde{t\mu}(G)$

is finite. Let $\varphi;^{c}W(F)\rightarrow H_{1}(G/F)$ be the morphism defined, for $\xi\in cW(F)$ and
$x\in G$ by

$\varphi(\xi)(x+F)=\xi(x)$ .
This is a well-defined morphism, since $\xi(F)=0$ and, of course, $Ker(\varphi)=ctt^{\prime}(G)$ ,

so that $\varphi$ induces an injection $cW(F)/\varphi(G)cH_{1}(G/F)$ . Arguing as in Lemma
3.3, we get that $H_{1}(G/F)$ is finite and hence also $cfl^{1}(F)/ct\nu(G)$ is. Thus $W(F)$

is precompact and, being open in $H_{1}(M)$ , it is complete, hence compact.
To finish the proof, it is sufficient to show that $H_{1}(M)$ is a left topological

module over $(R, \tau)$ . Since $H_{1}(M)$ is a linearly topologized module, this amounts
to showing that, for any $\xi\in H_{1}(M)$ and any $F\in C(M)$ ,

$(^{C}\iota\nu(F):\xi)=\{r\in R|r\xi\in cW(F)\}$

is an open left ideal in $(R, \tau)$ . lndeed,

$(^{c}W(F):\xi)=\{r\in R|r\xi(F)=0\}=Ann_{R}(\xi(F))$

and, since $\xi(F)$ is a compact submodule of $K_{A}$ , it is finite, so that $Ann_{A}(\xi(F))$

is open in the K-topology $\tau$ of R. $\square $

5.8 LEMMA. Let $f:L\rightarrow M$ be a continuous morphism in $\mathcal{L}- A_{\sigma}$ . Then the
transposed morphism $H_{1}(f);H_{1}(M)\rightarrow H_{1}(L)$ is a continuous morphism in $R_{\tau}- \mathcal{L}$ .

The proof is standard.

5.9 THEOREM. By defining $H_{1}$ and $H_{2}$ as in 5.6, we get a pair of contra-
variant functors

$H_{1}$

$\mathcal{L}- A_{\sigma}\leftarrow^{\rightarrow H_{2}}R_{\tau}- \mathcal{L}$
.

5.10 REMARK. If $F$ and $G$ are compact submodules of $M\in \mathcal{L}- A_{\sigma}$ and $F$ is
open, then $F+G$ is an open compact submodule of $M$.
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5.11 DEFINITION. Let $M\in \mathcal{L}- A_{\sigma}$ and $\mathcal{F}$ be a basis of neighborhoods of zero
in $M$. We say that $\mathcal{F}$ is a good basis for $M$ if

(1) $\mathcal{F}$ consists of open compact submodules of $M$ ;
(2) if $V_{1},$ $V_{2}$ are in $\mathcal{F}$ , then there exists $V\in \mathcal{F}$ such that $V_{1}+V_{2}\subseteqq V$ ;
(3) for any $x\in M$ there exists $V\in \mathcal{F}$ such that $x\in V$ .

If $C_{0}(M)$ denotes the family of all open compact submodules of $M$, then
$C_{0}(M)$ is a good basis for $M$. Indeed, conditions (1) and (2) are trivially verified;

for condition (3), we have that $xA$ is a compact submodule of $M$ and, given
$V\in C_{0}(M),$ $xA+V\in C_{0}(M)$ .

5.12 LEMMA. Let $\mathcal{F}$ be a good basis for $M\in \mathcal{L}- A_{\sigma}$ . If $X$ is a compact sub-
set of $M$, there exists $V\in \mathcal{F}$ such that $X\subseteqq V$ and so the topology on $H_{1}(M)$ coin-
cides with the topology of uniform convergence on the elements of $\mathcal{F}$ . Moreover
the family

$\overline{\mathcal{F}}=\{cW(V)|V\in \mathcal{F}\}$

is a good basis for $H_{1}(M)$ .

PROOF. Fix $V\in \mathcal{F}$ : there exists a finite subset $\{x_{1}, x_{2}, \cdots , x_{n}\}$ of $X$ such

that

$X\subseteqq\bigcup_{i=1}^{n}(x_{i}+V)\subseteqq\sum_{i=1}^{n}(V_{i}+V)$

where $x_{i}\in V_{i}\in \mathcal{F}$ . By the definition of a good basis, there is $F\in \mathcal{F}$ such that
$X\subseteqq F$ .

Let us prove that $\overline{\mathcal{F}}$ is a good basis for $H_{1}(M)$ . As we have seen in 5.6,

$cW(F)$ is open and compact in $H_{1}(M)$ , for all $F\in \mathcal{F}$ . Moreover, if $F_{1},$ $F_{2}\in \mathcal{F}$ ,

$ct\nu(F_{1})+cW(F_{2})\subseteqq cW(F)$

where $F\in \mathcal{F}$ and $F\subseteqq F_{1}\cap F_{2}$ .
Finally, let $\xi\in H_{1}(M)$ and take $F\in \mathcal{F}$ such that $F\subseteqq Ker(\xi)$ (recall that $Ker(\xi)$

is open in $M$); then $\xi\in\psi(F)$ . $\square $

5.13 DEFINITION. Let $M\in X- A_{\sigma}$ . The canonical morphism $\omega_{M}$ : $M\rightarrow H_{2}H_{1}(M)$

is defined by setting, for $x\in M$ and $\xi\in H_{1}(M)$ ,

$\omega_{M}(x)(\xi)=\xi(x)$ ,

where, for the sake of clarity, we write all morphisms on the left. This is
well-defined, since $\omega_{M}(x)$ is a continuous morphism of $H_{1}(M)$ into $RK$ . Indeed,

let $x\in M$ : then
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$Ker(\omega_{M}(x))=\{\xi\in H_{1}(M)|\xi(x)=0\}=^{c}W(xA)$

which is, by definition an open submodule in $H_{1}(M)$ .
It is clear that $\omega_{M}$ is injective, since $Chom_{A}(M, K_{A})$ separates the points

of $M$ .
We define in a similar way the canonical morphism $\omega_{N}$ , for all $N\in R_{2}- \mathcal{L}$ .
To maintain the convention of writing morphisms to the opposite side to

the scalars, we set $\omega_{M}(x)=\hat{x}$ .

5.14 PROPOSITION. Let $M\in \mathcal{L}- A_{\sigma}$ ; then the canonical morphism

$\omega_{M}$ : $M\rightarrow H_{2}H_{1}(M)$

is injective, continuous and open onto its image $i$ . $e.$ , it is a topological and alge-
braic embedding of $M$ into $H_{2}H_{1}(M)$ .

A similar result holds for any $N\in R_{\tau}- \mathcal{L}$ .

PROOF. We have already remarked that $\omega_{M}$ is injective. The proof will
be complete if we show that

(1) $\omega_{M}(F)=cW(cW(F))\cap{\rm Im}(\omega_{M})$ ,

for every $F\in C_{0}(M)$ , since we know that $C_{0}(M)$ is a good basis for $M$ .
Let us prove the $‘‘\subseteqq$ inclusion, which is equivalent to the continuity of

$\omega_{M}$ . If $x\in F$, then $\omega_{M}(x)\in\wp(cW(F))$ , since, for all $\xi\in\subseteq lt^{\prime}(F),$ $(\xi)\hat{x}=\xi(x)=0$ .
For the converse inclusion, we take $x\in M$ such that $\hat{x}=\omega_{Jt}(x)\in\epsilon W(clt^{J}(F))$ .

Assume that $x\not\in F$. Since $F$ is an open compact submodule of $M$ and $K_{A}$ is an
injective cogenerator of $\mathcal{L}- A_{\sigma}$ , there exists a continuous morphism $\eta$ : $M\rightarrow K_{A}$

such that $\eta(F)=0$ and $\eta(x)\neq 0$ . Thus $(\eta)\hat{x}\neq 0$ with $\eta\in^{c}W(F)$ and this contra-
dicts the fact that $\hat{x}\in c\iota\nu(ctV(F))$ . $\square $

5.15. Let $M\in CM- A_{\sigma}$ : then it is clear that $H_{1}(M)\in R_{f}$ -Mod. Conversely, if
$N\in R_{\tau}$-Mod, then $H_{2}(N)$ , which is $Hom_{R}(N, RK)$ with the topology of pointwise
convergence, is in $CM- A_{\sigma}$ , by reasoning as in Lemma 3.3 and Proposition 3.5.
Of course, analogous results hold for modules in $R_{\tau}$ -CM and $Mod- A_{\sigma}$ .

5.16 PROPOSITION. For any $M\in CM- A_{\sigma}$ , the canonical morphism $\omega_{M}$ is a
topological isomorphism. A similar result holds for any $N\in R_{\tau}- CM$ .

PROOF. We have already shown that $\omega_{M}$ is a topological embedding; since
${\rm Im}(\omega_{M})$ is compact, we need only to prove that it is dense in $H_{2}H_{1}(M)$ .

Let $ L=\langle\xi_{1}, \cdots, \xi_{n}\rangle$ be a finitely generated submodule of the discrete module
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$H_{1}(M)$ and let $f:L\rightarrow_{R}K$ be a morphism. We want to show that there exists
$x\in M$ such that the restriction of $\hat{x}=\omega_{M}(x)$ to $L$ coincides with $f$ . Consider
the submodule $X$ of $K_{A}^{n}$ defined by

$X=\{((\xi_{1})\hat{x}, \cdots, (\xi_{n})\hat{x})|x\in M\}$

and set $y=((\xi_{1})f, \cdots, (\xi_{n})f)$ . Assume by contradiction that $y\not\in X$ . Since $K_{A}$ is

an injective cogenerator of $Mod- A_{\sigma}$ , there exists a morphism $\varphi\in Hom_{A}(K^{n}, K)$

such that $\varphi(y)\neq 0$ and $\varphi(X)=0$ . Identify $\varphi$ with an n-tuple $(r_{1}, \cdots, r_{n})$ , with
$r_{\ell}\in R=End(K_{A})$ . By the R-linearity of $\hat{x}$ , for all $x\in M$, we have

$\sum_{i=1}^{n}r_{i}(\xi_{i})\hat{x}=(\sum_{i=1}^{n}r_{i}\xi_{i})\hat{x}=(\sum_{i=1}^{n}r_{i}\xi_{i})(x)=0$

so that the morphism $\Sigma_{i=1}^{n}r_{i}\xi_{i}=0$ and this is absurd, since otherwise

$(\sum_{i=1}^{n}r_{i}\xi_{i})f=\sum_{i=1}^{n}(r_{i}\xi_{i})f=\sum_{i=1}^{n}r_{i}(\xi_{i})f=\varphi(y)\neq 0$ .

Let $g\in H_{2}H_{1}(M)$ ; a typical neighborhood of $g$ in $H_{2}H_{1}(M)$ is of the form
$g+W(F)$ , where $F=\{\xi_{1}, \cdots , \xi_{n}\}$ is a finite subset of $H_{1}(M)$ . By the preceding

result, there exists $x\in M$ such that $(\xi_{i})g=(\xi_{i})\hat{x}=\xi_{i}(x)$ , for $i=1,$ $\cdots$ , $n$ . There-
fore $\hat{x}\in(g+9V(F))\cap{\rm Im}(\omega_{M})$ and this proves the density.

5.17 PROPOSITION. For any $N\in R_{\tau}$ -Mod the canonical morphism $\omega_{N}$ is an
isomorphism. A similar result holds in $Mod- A_{\sigma}$ .

PROOF. We need only to show that $\omega_{N}$ is surjective. Let $Y={\rm Im}(\omega_{N})$ and

assume there exists $y\in H_{1}H_{2}(N)\backslash {\rm Im}(\omega_{N})$ . Since $RK$ is an injective cogenerator

of $R_{\tau}$ -Mod, there is a continuous morphism $\beta:H_{1}H_{2}(N)\rightarrow_{R}K$ such that $(Y)\beta=0$

and $(y)\beta\neq 0$ . Thus $\beta\in H_{2}H_{1}H_{2}(N)$ and $\beta\neq 0$ . Set $M=H_{2}(N)\in CM- A_{\sigma}$ ; by Pro-

position 5.16, there exists $\alpha\in M=H_{2}(N)$ such that $\omega_{M}(\alpha)=\hat{\alpha}=\beta$ . Then, for all
$x\in N$, we have $\hat{x}\in Y$ and so

$ 0=(\hat{x})\beta=(\hat{x})\hat{\alpha}=R(\alpha)=(x)\alpha$

which implies that $\alpha=0$ ; contradiction. $\square $

We can now state the main theorem of this section, which summarizes and
generalizes the previous results.

5.19 THEOREM. Let $(A, \sigma)$ be a compact ring, $K_{A}$ an injective cogenerator

of $Mod- A_{\sigma}$ with finite grade, $R=End(K_{A})$ and $\tau$ be the K-topology on R. Then
$(R, \tau)$ is compact, $RK$ is an injective cogenerator of $R_{\tau}$-Mod with finite grade and
the bimodule $RK_{A}$ is faithfully balanced. Moreover, for all $M\in \mathcal{L}- A_{\sigma}$ and $ N\in$
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$R.- \mathcal{L}$ , the canonical morphism $\omega_{N}$ and $\omega_{N}$ are topological isomorphisms. In parti-
cular $(H_{1}, H_{2})$ is a duality between $X- A_{\sigma}$ and $R_{\tau}- X$ .

PROOF. Let $M\in \mathcal{L}- A_{\sigma}$ and let $F$ be a compact open submodule of $M$ . Then
we have the exact sequence

$0\rightarrow FMD\underline{i}\underline{\pi}\rightarrow 0$

so that we obtain the commutative diagram with exact rows

0– $F$
$\underline{i}$

$M$
$\underline{\pi}$

$D$ $\rightarrow 0$

$ c\prime F\downarrow$ $\circ M\downarrow$
$\circ$) $ D\downarrow$

$H_{2}H_{1}(i)$ $H_{2}H_{1}(\pi)$

$0-H_{2}H_{1}(F)-H_{2}H_{1}(M)-H_{2}H_{1}(D)-0$

and, since $\omega_{F}$ and $\omega_{D}$ are isomorphisms, also $\omega_{M}$ is. Since $\omega_{M}$ is a topological
embedding, it is a topological isomorphism. $\square $

5.19. Let $(A, \sigma)$ be a compact ring. Among all injective cogenerators with
finite grade of $Mod- A_{\sigma}$ , there is one which realizes the Pontryagin duality be-
tween $\mathcal{L}- A_{\sigma}$ and $A_{\sigma}- \mathcal{L}$ . We want to determine it.

Let $(W_{\lambda})_{\lambda\in\Lambda}$ be a system of representatives of the non isomorphic simple
modules in $Mod- A_{\sigma},$ $D_{\lambda}=End_{A}(W_{\lambda})$ and $n_{\lambda}$ be the dimension of $W_{\lambda}$ as a left
vector space over $D_{\lambda}$ . As we already know, $n_{\lambda}$ is finite, for every $\lambda\in\Lambda$ . Set

$\dim(A, \sigma)=(n_{\lambda})_{\lambda\in\Lambda}$ .

5.20 THEOREM. Let $(A, \sigma)$ be a compact ring, $K_{A}$ an injective cogenerator

of $Mod- A_{\sigma}$ with finite grade. Then $K_{A}$ realizes the Pontryagin duality between
$\mathcal{L}- A_{\sigma}$ and $A_{\sigma}- X$ if and only if the grade of $K_{A}$ coincides with $\dim(A, \sigma)$ .

PROOF. The condition is sufficient by the structure theorem 2.3.
To show the necessity, let $\dim(A, \sigma)=(n_{\lambda})_{\lambda\in\Lambda}$ , so that

$ K_{A}=\oplus_{\lambda\in\Lambda}E_{\sigma}(W_{\lambda})^{n}\lambda$

Set $R=End(K_{A})$ and consider, on $R$ , the K-topology $\tau$ .
Let $\Gamma:A_{\sigma}- \mathcal{L}\rightarrow \mathcal{L}- A_{\sigma}$ be the Pontryagin duality and set $T_{A}=\Gamma(A_{\sigma})$ . Then

$T_{A}$ is an injective cogenerator of $Mod- A_{\sigma}$ with finite grade and $(A, \sigma)$ is topo-
logically isomorphic to End $(T_{A})$ with the T-topology. By Theorem 2.3, the
grade of $T_{A}$ coincides with $\dim(A, \sigma)$ , so that $T_{A}\cong K_{A}$ . Hence $(R, \tau)$ is topo-

logically isomorphic to $(A, \sigma)$ . $\square $
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