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COVERING PROPERTIES IN COUNTABLE PRODUCTS

By

Hidenori TANAKA

1. Introduction.

A space X is said to be subparacompact if every open cover of X has a g-
discrete closed refinement, and wmetacompact (countably metacompact) if every
open cover (countable open cover) of X has a point finite open refinement. A
space X is said to be metalindeléf if every open cover of X has a point coun-
table open refinement. A collection U of subsets of a space X is said to be
interior-preserving if int(NV)=N\{intV : VeV} for every <V U. C(Clearly, an
open collection < is interior-preserving if and only if NSV is open for every
YzU. A space X is said to be orthocompact if every open cover of X has an
interior-preserving open refinement. Every paracompact Hausdorff space is
subparacompact and metacompact, and every metacompact space is countably
metacompact, metalindeléf and orthocompact. The reader is refered to D.K.
Burke for a complete treatment of these covering properties and some in-
formations of their role in general topology.

Let 9C be the class of all spaces which have a discrete cover by compact
sets. The topological game G (9C, X) was introduced and studied by R.
Telgarsky [19]. The games are played by two persons called Players I and II.
Players I and II choose closed subsets of II’s previous play (or of X, if n=0):
Player I’s choice must be in the class ©C and II’s choice must be disjoint from
I’s. We say that Player I wins if the intersection of II’s choices is empty.
Recall from that a space X is said to be 9C-like if Player I has a winning
strategy in G(@C, X). The class of @C-like spaces includes all spaces which
admit a o-closure-preserving closed cover by compact sets, and regular subpara-
compact, o-C-scattered spaces.

Paracompactness and Lindel6f property of countable products have been
studied by several authors. In particular, if X is a separable metric space or
X is a regular Cech-complete Lindel6f space or X is a regular C-scattered
Lindelof space, then X“xY is Lindel6f for every regular hereditarily Lindelof
space Y. The first result is due to E. Michael (cf. [14]) and the second one
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is due to Z. Frolik and the third one is due to K. Alster [I]. K. Alster [2]
also proved that if ¥ is a perfect paracompact Hausdorff space and X, is a
scattered paracompact Hausdorff space for each n=w, then Y X [IY, is para-

new

compact. Furthermore, the author proved that if Y is a perfect paracom-
pact Hausdorff (regular hereditarily Lindelof) space and X, is a paracompact
Hausdorff (regular Lindel6f) 9C-like space for each n<w, then Y X II X, is
paracompact (Lindelof). e

The aim of this paper is to consider subparacompactness, metacompactness,
metalindelof property and orthocompactness of countable products. We show
that if ¥ is a perfect subparacompact space and X, is a regular subparacompact
DC-like space for each n=w, then Y X IT X, is subparacompact. We also prove

new

that if X, is a regular metacompact 9DC-like (C-scattered) space for each n€w,
then [T X, is metacompact. Furthermore, let ¥ be a hereditarily metacompact

ncw
space and X, be a regular metacompact 9DC-like (C-scattered) space for each n
cw. Then the following statements are equivalent: (a) ¥ X IT X, is metacom-

new

pact; (b) Y X II X, is countably metacompact and (c) ¥ X II X, is orthocompact.
new

new
For metalindeldf property, it will be shown that if Y is a hereditarily met-
alindel6f space and X, is a regular metalindel6f 9C-like (C-scattered) space for
each n=w, then Y X [I X, is metalindelof.

new

In this paper, we deal with infinite spaces. No separation axioms are as-
sumed. However, regular spaces are assumed to be 7,. Let |A| denote the
cardinality of a set A. The letter w denotes the set of natural numbers.

Given a cover U of a space X, and Yc X, letU|Y={UNY : UsU}. For
each x&X, let U,={UsvU: x&U} and let ord(x, U)=|U.|. Let UF be the
collection of all finite unions of elements of .

We use the finite sequences in the proofs. So we adopt the following nota-
tions for them: Let A be a set, and let (A) be the set of all nonempty sub-
sets of A. Let A°={@}. For each n=1, A™ denotes the set of all n-sequences

of elements of A and A<¢*=\J A"*. If t=(a,, -, a,)=A<? and a= A, then 7Pa
ncw

denotes the sequence (a,, -, a,, a) and z.=(a,, -+, a,-,) if n=1 and 7. =@ if

n=0.

2. Topological games.

For the class 9C and a space X, the topological game G(DC, X) is defined
as follows: There are two players | and II (the pursuer and evader). They
alternatively choose consecutive terms of a sequence <E,, F,, E,, Fy, -+, E,, F,,
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---> of subsets in X. When each player chooses his term, he knows 9¢C, X and
their previous choices.

For a space X, let 2% denote the set of all closed subsets of X. A sequence
KE,, Fo, E,, F\, -+, E,, F,, ---> of subsets in X is a play of G(@C, X) if it satis-
fies the following conditions: For each ncw,

(1) E, is the choice of Player I,

(2) F, is the choice of Player II,

(3) E.€2*Nac,

4) F,e2%,

b)) E,JUF,cF,_,, where F_,=X,

6) E.NF,=Q.

Player I wins if N F,=¢@ (Player II has no place to run away). Otherwise

new

Player II wins.

A finite sequence <FE,, F,, E,, F\, -+, E,, Fn> is said to be admissible if it
satisfies the above conditions (1)-(6) for each n<m.

Let s’ be a function from \J (2%¥)**! into 2¥N\9C. Let

new
So={F: <{s’(X), F> is admissible for G(9C, X)} .
Moreover, we can inductively define

Sn:{(Fo, Fl.v "';Fn): <E0, FO,' El; Fl: T, En; F7L>
is admissible for G(@¢C, X), where F_;=X and
Ei:S/(Fo, Fl, ey, Fi_1> fOI‘ each Zén} .

Then the restriction s of s’ to \U S, is said to be a strategy for Player I in

new

G(@c, X). We say that the strategy s is a winning one if Player [ wins every
play <FE,, Fy, E,, F\, -, E,, F,, ---> such that E,=s(F,, F,, ---, F,_,) for ncw.

Next, we define another (winning) strategy for PlayerIin G(@c¢, X), which
depends only on the preceding choice of Player II.

A function s from 2% into 2¥N\9C is said to be a stationary strategy for
Player I in G(9C, X) if s(F)cF for each Fe2*. We say that the s is winning
if he wins every play <{s(X), F,, s(F,), Fy, s(F,), --->. That is, a function s from
2% into 2¥N9C is a stationary winning strategy if and only if it satisfies

(i) s(F)cF for each Fe2¥,

(i) if {F,:n<w} is a decreasing sequence of closed subsets of X such that
s(Fo)NFp =@ for each ncw, then N F,=@.

neow

The following lemma shows that there is no essential difference between
the winning strategy and the stationary winning strategy.
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LEMMA 2.1 (F. Galvin and R. Telgarsky [10]). Player I has a winning
strategy in G(9C, X) if and only if he has a stationary winning strategy in it.

As described in the introduction, a space X is 9C-like if Player I has a
winning strategy in G(9C, X).

LEMMA 2.2 (R. Telgarsky [19]). If a space X has a countable closed cover
by DC-like sets, then X is a DC-like space.

Recall that a space X is scattered if every non-empty subset A of X has an
isolated point of A, and C-scattered if for every non-empty closed subset A of
X, there is a point of A which has a compact neighborhood in A. Then scat-
tered spaces and locally compact Hausdorff spaces are C-scattered. Let X be a
space. For each Fe2¥, let

FM={x=F: x has no compact neigborhood in F} .

Let X =X. For each successor ordinal a, let X O =(X@")D If a is a

limit ordinal, let X‘“’:gﬂ X%, Notice that a space X is C-scattered if and
<a

only if X =@ for some ordinal a. If X is C-scattered, let e(X)=inf{a: X
=@}. We say that «(X) is the C-scattered height of X. For each x&X, we
denote by ax(x) the ordinal such that x& Xx» _ Xax®=*b_ ] et X be a regular
C-scattered space. If A is either open or closed in X, then A is C-scattered.
More precisely, if A is an open subset of X, then AW=X“NA for each
a<e(X) and if A is a closed subset of X, then A cANX® for each a<e(X).
Therefore, if x<A, then as(x)<ax(x) and hence, e(A)<e(X). A space X is
said to be g-scattered (a-C-scattered) if X is the union of countably many closed
scattered (C-scattered) subspaces.

LEMMA 2.3 (R. Telgarsky [19]). (a) If a space X has a a-closure-preserv-
ing closed cover by compact sets, then X is a DC-like space.

(b)y If X is a regular subparacompact, a-C-scattered space, then X is DC-like
space.

LEMMA 2.4 (G. Gruenhage and Y. Yajima [11], Y. Yajima [21]). (a) If X
is a regular subparacompact (metacompact) DC-like space, then X XY is subpara-
compact (metacompact) for every subparacompact (metacompact) space Y.

(b) If X is a regular C-scattered metacompact space, then X XY is metacom-
pact for every metacompact space Y.
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For topological games, the reder is refered to R. Telgarsky [18], and
Y. Yajima [21].

3. Preliminaries.

Let Z be a space and {Y,: i=w} be a countable collection of spaces. For
thgl Y;, we denote by @ the collection of all basic open subsets of iny Y.

Let us denote by R the collection of closed subsets of Z an Y ; consisting of
cw

sets of the form R:EthII R,, where Er is a closed subset of Z and there is
cw

an n<w such that for each /<n, R, is a closed subset of Y; and for each i>n,
R,=Y,;. For each B=UXII B;=3 and R=FEzX Il R;€R, we define n(B)

i€w 0]
=inf{iesw: B;=Y; for j=i} and n(R)=inf{icw: R;=Y; for j=i}. We call
n(B) and n(R) the length of B and R respectively. Let JC::{iH K,:K;is a
cw

compact subset of YV; for each /cw}. For each z&Z and KeX, let K, x,=
{z} XK.

LEMMA 3.1 (D.K. Burke [3], [4]). The following are equivalent for a
space X.

(a) X s subparacompact,

(b) Every open cover of X has a a-locally finite closed refinement,

(c) For every open cover U of X, there is a sequence {<V,},co 0f o0pen re-
Jfinements of U such that for each x=X, there is an nEw with ord(x, V,)=1.

It is well known that a space X is metacompact (metalindeldf) if and only
if for every open cover U of X, U¥ has a point finite (point countable) open
refinement. In order to study subparacompactness of ing Y., we need the
following lemma.

LEMMA 3.2. Let Z be a space and {Y ;:icw} be a countable collection of
spaces. Assume that all finite subproducts of ZX I1Y; are subparacompact. If,
cw

for every open cover © of Z ><iI'_[ Y, OF has a o-locally finite vefinement consist-
Ew

ing of elements of R, then Z><il",[ Y, is subparacompact.
cw

PROOF. Let © be an open cover of ZX [IY,;. We may assume that O 8.

UIS0]

By the assumption, there is a o¢-locally finite refinement U R, of ©OF, consist-

mew

ing of elements of R. Fix mew. For each R:Enxié'l R.eRn,, let{O(R, k):
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k=0, -, j(R)} be a finite subcollection of O such that R O(R, k). Let
O(R, k):U’“th O(R, k); for each P<j(R), and let n=max{n(R), n(O(R, k)):
R<j(R)}. Paut R(n):ERXtI;IoRi and O(R, k, n):UR"’th;IoO(R’ k); for each
E<j(R). Let O(R)={O(R, k, n): k<j(R)}. Then R(n)c\UO(R). Rince Z X
ilzIoYi is subparacompact and R(n) is a closed subspace of ZXx iliIoYi, R(n) is
subparacompact. Thus there is a o-discrete closed refinement té{) D(R) of
O(R)| R(n). For each 1cw, let 9;(R)= {DXiI>InY,-: Dea,}. Put ¢, ., =U{Di(R):

Re®,} foreachm, icw. Then \J G..is a ag-locally finite closed refinement

m, tEW
of ©. It follows from that Z Xig Y, is subparacompact. The proof
is completed.
In order to study metacompactness and metalindelof property of countable
products of C-scattered spaces, we need the following.

LEMMA 3.3. Let X be a regular C-scattered metacompact (metalindelif) space.
For every open over U of X, there is a point finite (point countable) open cover <V
of X such that: For each V&<p,

(a) c¢lV 1is contained in some member of U,

(b) (V)™ is compact for some a<e(X).

PROOF. We prove this lemma by induction on the C-scattered height e(X)
for the sake of completeness. Let X be a locally compact metacompact (met-
alindelof) Hausdorff space (i.e. e(X)=1). Thus there is a point finite (point
countable) open cover &V of X satisfying the condition (a) such that for each
Ve, W is compact. Clearly <V satisfies the condition (b). Let X be a re-
gular C-scattered metacompact (metalindel6f) space and e=e(X), and assume
that for each a<e, the lemma holds. Then there is a point finite (point coun-
table) open cover % of X such that (cf. R. Telgarsky [18, Theorem 1.6]):
Let Wew.

(i) c¢IW is contained in some member of U,

(ii) If e is a successor ordinal, then (¢/W)¢~V is compact,

(iii) If & is a limit ordinal, then (c/W)® =@ for some a<e.

Case 1. ¢ is a limit ordinal. By induction hypothesis, for each W<,
there is a point finite (point countable) open collection <V/(W) in c¢/W such that
V(W) covers c¢lW and for each Ve’ (W), (clV)® is compact for some a<s.
Put cvW)=<v'(W)|W for each We and “W=U{cvW): Wew}. Then <V
satisfies the conditions (a) and (b).



Covering properties in countable products 571

Case 2. ¢ is a successor ordinal. Let W,={WeW: «(c/lW)=¢}, and W =
W—aw, Take a WeW,. Then e(c/W)<e. By induction hypothesis, there is
a point finite (point countable) open collection V(W) in c¢/W such that V(W)
covers c¢/W and for each Vea’(W), (¢/V)® is compact for some a<e. Put
Put «W)=¢'(W)|W for each Wegy,. Take a W&, Since e(clW)=z¢,
(cIW)e~b is compact. Let V=W, J(J{VW): WeW,}). Then <V satisfies the
conditions (a) and (b).

The proof is completed.

4. Subparacompactness.

We firstly study subparacompactness of Z inI Y.
cEw

THEOREM 4.1. If Z is a perfect subparacompact space and Y ; is a regular
subparacompact DC-like space for each i=w,, then Z X I1Y; is subparacompact.
lew
PrROOF. Without loss of generality, we may assume that Y;=X for each
i=w and there is an isolated point a in X. Indeed, put X:i@ Y. U{a}, where
cw

a¢ \JY,;. The topology of X is as follows: Every Y, is an open-and-closed

1ew

subspace of X and a is an isolated point in X. Since every Y; is a regular

subparacompact 9C-like space, by X is a regular subparacompact

PDC-like space. inH Y. is a closed subspace of ZxX?®. Therefore, if Z x X
cw

is subparacompact, then Z in Y ; is subparacompact.
cw

Let © be an open cover of Z X X*. Put @ ={Be3: BcO for some O <0OF}.
For each z&Z and K= X, there is an O6F such that K, xy,<0O. Then, by
Wallace theorem in R. Engelking [8], there is a B& 8 such that K, x,cBcO.
Thus we have Be©’. Define n(K, k,)=inf{n(0): O’ and K, k,=O0}.

Let s be a stationary winning strategy for Player | in G(9C, X). Let R=
EzX II R;= R such that for each /<n(R), we have already obtained a compact

icw
set Cirs) Of Ri. (Cignen=90. Ciwro=¢ may be occur for i<n(R).) Fix
i<n(R). If Cymo+9D, let Frg i ny=R; for each mew. Put A(R, )= {A(R, 1)}
and I'(R, 7, m)={y(R, i, m)} for each mew. Let C(R,)={C;: A€ A(R, i)}=
{Cir o} and F(R, i, m)={F,:yel'(R, i, m)} ={Fyw& «m} for each mew. Put
F(R, z'):mkGJw (R, i, m). Assume that C,;k =@. Then there is a discrete col-
lection C(R, i)={C;: 2= A(R, ©)} of compact subsets of X such that s(R,)=
\UC(R, 7). Since R, is a closed subspace of X, R; is a subparacompact space.
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Then there is a family F(R, i)= \U F(R, i, m), where F(R, i, m)={F,: re
mew

I'(R, i, m)}, of collections of closed subsets in R; (and hence, in X), satisfying
(1) <F(R, i) covers R,
(2) Every member of F(R, /) meets at most one member of C(R, 7),
(3) 9(R, 7, m) is discrete in X for each mcw.
In each case, for ye \U I'(R, 7, m), let K,=F,NC,; if F,N\C,;+ @ for some

mew
(unique) C;. If F;NA(UC(R, 1))=@, then we take a point p,=F, and let K,=
{py}. Thus, if Crru#@, then Ky i my=Frr ¢ myNCiry=Ci « for each
mew. For p=(my, -, mym)E0™®*, let dp ,=I'(R, 0, me)X -« X'(R, n(R),
Mam). For each new@*®*!' and 6=(r(, 0), ---, 10, n(R)))E Mg, ,, let K@=
Kii.o0X -« XKy, nery X {a} X - X {a} X ---, and let Kp ,={K(0): d€dr ,}. Then
Kgr yCX. For each ze Ep, n€w™®*! and 0=(7(0, 0), :--, 70, n(R))dg,,, let
(K. k@) =max{n(K. ke»), n(R)}. Fix zeEg, pew®*! and d=(7(0, 0), -+,
70, n(R)))&dg,,. Take an Oz,ﬁzUz,BXig)Oz,ﬁ,iEO’ such that K, x4, C0,.s and

n(Kq xe)=n(0,5). Then we can take a subset H(Z,K(,;))ZH,_,;XiII He. k.
eEw
of ZxX* such that

(4) H, . is an open neighborhood of z in Ey such that H, ;CU,;,

n(K (2, K(8))) -1

(B5) H.sX 11 clH, ki, iX XX - XXX - CO,,,,

=0

(6-1) For each 7 with n(K xw»)<i<r(K. ke»), let He kon.i=Fra,n,

(6-2) For each i<n(K, kw),) with i<n(R), H. xs).: be an open subset of
Fy 6.5 such that K, o CHa ke, i« CelH k@), 0,5,

(6-3) For each i with n(R)<i<n(Kc.. xe»), let Ha, ken.i={a},

(6-4) In case of that »(K. xu))=n(R), let H, xw).:=X for n(R)<i. In
case of that r(K, xw»)=n(Ke xen)>n(R), let He koy.i=X for n(Ke, ke»)=i.

Then we have K. x3»CH. key. For each jeow, let Vi(K(@)={zERr:

n(K . xen)=7} and K (K@0)={H,s: n(K.. ke»)=7j}. Fix j€w. Then ,,\:JOVh(K(a))
—U{H,5: n(Ke xwn)=<7) :,Qo (U (K@)). Since Z is a perfect space, V (K(3))

is an F,-set in Ep. Since Er is subparacompact, there is a family 9, ; ,=
kU Dy.s.5. 8 Where D, ;5 .,={D:: E€5, 5 ;:}, of collections of closed subsets in
cw

Er (and hence, in Z) satisfying

(7) Every member of 9, ;, is contained in some member of 4 ;(K(d))]|
V (K(6)),

®) 9D,.5; covers V (K(d)),

(9) Dy.5.; is discrete in Z for each kew.

For kewand §=5, ;5 ;. ., take a 2(§)eV ;(K(9)) such that D:C H, . sN\V ;(K(9)).
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n(R)
Put F;= i[_Io Froo.o XXX - XX -+ and D; 5=D:X F35. Then {D;;: neo™®*, o

dr.y, J, k€w and £€5, ;5 ;) is a collection of elements of R such that for
each p=w"®*!, d€dp,,, j, ksw and £€5 .55+, DesCR and {Dgs: neo™®*?,
0€dr, y, j, k€w and £€5, 5 ;.,} covers R.

(10) For each n€w™®*! and j, kew, {D;;: 0=dr , and £€5, 5 .} is
discrete in Z X X©°.

Fix new®®*! and j, kesw. Let (2, x)€ZXX* and x=(x;);co. For each
i<n(R), since R; is a closed subset of X, we may assume that x;=R;. Then,
for each /<n(R), there is an open neighborhood B(x;) of x; in X such that

[0 dp.,: T BrONF(n(R)%D} | <1, where Fxn(R)=1I Fr.o for eachde
dg,,. Put B'(x)= Zﬁz)B(xi) and B(x)=B’(x)X 4>I¥R X;, where X; is a copy of
= 1I>n(R)

X for i>n(R). If B'(x)NFs(n(R))=¢@ for each d4dg,,, then ZXB(x)e 48 and
(Z XB(x)N\D¢ 5= for each 0 g, , and §€5,,5,;,,. Otherwise, take a unique
0 g, , such that B/ (x)N\Fsn(R))#=@. Since 9,5, is discrete in Z, there is
an open neighborhood U of z in Z such that [{§€5,5,.:: UND:#=@} | £1.
Then UXB(x)e 8 and |{D; s : Deo \(UXB(x)# @D, 0'Edr,,and E€ 5, 5, 5,4} |
<1. Thus {Dgs: 0€dr , and €5, 5, :} is discrete in ZXX*.

For each new"®*!, d€dg,, j, kew and §€Z,5; let Ggs=D:X
igClH(z(e),K(a)),iCDe.a and G,.5;:(R)=1{Ges: €&, ;1. Define G, ; (R)=

\U{Gy.5.7.:(R): 0€dg,,} for each n€w*®** and j, kcw. Then we have

(11) For each pew™®*!, j, kew, every member of G, ; (R) is contained
in some member of ©’.

(12) For each peo™®*!, j, kew, 4, ;(R) is discrete in ZXX*.

This is clear from (10).

(13) For each pew™®*!, j, kew, every element of &, ,, has the length
max {7, n(R)+1}.

Fix peo™®*!, §=(70), 0), -+, 7@, n(R))Edr,,, j, kcw and €55 ;..
Then n(K.e.x@»)=s and hence, K ee, k@y)y)=max{;j, n(R)}. Let Ae
2({0, 1, .-+, »(K@). k@n)}). In case of that r(Kee. ken)=n(R), ie., n(R)=jJ.
For each i€ A, let R; 4. :=Frs.o—Hae@. xwn.i- For each i A with i<n(R), let
R: 4.i=clH¢ ). k@).:- For eachi>n(R), let R; 4,,=X. Put RE_A::DEXig Re 4 in

In case of that j>n(R). For each ;€A with i<n(R), let Rg4:=Fre.—
He). x@r.i- For each i& A with i<n(R), let Re . :=clHuw. ken.i- Let n(R)
<i<j. If i€A, let Reai=X—Huw.xon.i=X—{a}. If iEA, let Ry 4=
clH @ . xen.i=1{a}. Forizj, let Re4=X. Put Rg,A:DgxtleIwRe,A_i. In each
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case, Rg 4, :CR; for each icw. Notice that if R 4+ @, then n(R)<n(Rg 4). By
the definition, D; ;=G: s\ J(J{Rs 4: A=P({0, 1, ---, max{s, n(R)}})}). For each
Ae@({0,1, - ,max{j, n(R)}}), let Ry s ;¢ sA(R)={Re a: E€E 5 ;.1 and R, 4+ D}.
For j, kew and Ae2({0, 1, ---, max {j, n(R)}}), define R, ;. a(R)=
U{Ry.5.5...4(R): 0€dg, ,}. Then, by (10), we have

(14) Every R, ;. 4(R) is discrete in ZXX*.

Let R, ; o(R)=U{Ry ;2. 4R): AcP({0, 1, ---, max{j, n(R)}})}. Then, by
(14),

(15) For each pew*®*!, j, kcw, R, ; (R) is locally finite in Z X X*.

(16) For each p€w@"®*! and j, kcw with R, ; .+ @, every element of
R, ;.» has the length max{y, n(R)+1}.

Fix a Rf,A:Dextije,A_ie.fR,/,a,j,k,A(R) for pew™®®*, 0=(70, 0), -,

70, (B))E g, ,, J, k€w, E€5 5., and AcP({0, 1, ---, max{j, n(R)}}).

(17) For each 7€ A with :<n(R) such that C,z, =0, sS(R)ONRe 4,.:=D.

Since Re 4= Fro.o—Haee . ke, S(RONRz 4= JCR, N (Fre.o—
H(z(f).K(J)).i):KT(é,i)_H(z(E).K(B)).izg-

For each i& A with i<n(R), a compact set K;,;, is contained in R 4 .=
clHe), k@, Let Cawme . 0=Kre.o. For each igA with n(R)<i<y, let
Care, . o=1{a}. For each i€A, let Cire, ,,.0=9D.

For iew, we shall inductively construct an index set @, and two collections
G. and R. for each r=®, satisfying

(18) For t=1 and r€®,, r.€9,_,,

(19) For t€w and r=®,, G. and R. are collections of elements of R,

(20) For i€w and =@, with R.= @, elements of R, have the same length.

Let @,=w®. For each t=(m, j, k)@, let G, =G(ZXX*)=Gn,; (ZXX*)
and R, =R(ZXX*)=Rn,. ; (ZXX*). Let r=(m, j, k)e®,. By the construction,
G. and R, are collections of elements of ®. Assume that R.#@. By (16),
elements of @R, have the same length. Thus ¢, and R., r=®,, satisfy the
conditions (19) and (20). Assume that for t=w, we have already obtained an

index set @;, for /<t, and families {Q’,: = tL;jo(Di}, {fR,: TE iL:}od)i} satisfying
the conditions (18), (19) and (20). Take a r€®, with R.#@. By (20), elements
of R, have the same length. So we denote this length by n(z). Let @.=
{tD(n, 7, B): pew™®™*', j, kew}. For each ReR, and new™ @, j, kcw, we
denote G, ; .(R) and R, ;:(R) by Gie¢y.;.»(R) and R e, ;. »(R) respectively.
Define G.o(y, ;. y="U{Gr0(y. ;. »(R): RER:} and R:p(y. ;. Hy="I{Reoy. ;. x(R): RE
R.}. Let @,,,=U{D,: =P, and R.#@}. Then, by (16) and the construc-
tion, @.,,, families {g,: p=®,,,} and {R,: p=P,,,} satisfy the conditions (18),
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(19) and (20). Thus, for each icw, we heve an index set @,, families {G.:
re®,} and {R,.: 7= @,} satisfying the conditions (18), (19) and (20). Let &=
U{®D,: icw}. Then |0|<Lw.

By Lemmas and 8.2, our proof is complete if we show

CLAIM. U{G,: €@} is a o-locally finite closed refinement of ©'.

PROOF OF CLAIM. Let 7€®. By (19), ¢, R. By (11), every member of
G, is contained in some member of @’. By (12), (15) and induction, &. is locally
finite in ZXX“ Assume that \U{g.: r=®} does not cover ZXX®. Take a
point (z, x)€ZXX*—U{UG,: r€®}. Let x=(x:)ico- Take an 70)=m(0)Ew
and 0(0)=7(0(0), 0)edz, ye.n=1"(ZXxXX?, 0, m(0)) such that x & Fs,. Put F(0)=
{Fy60.0}. Let K(0)=K(00)E KXz xoqo and let j0)=n(K, xwy»). Choose a
k(0)Ew such that (z, x)E\USG, ), jo. k@ (Z XX ODU(U Ry w0, 5.k 0(ZXX®). Let
7(0)=(7(0), j(0), k(0)=®,. Take a &0)= & ,w.5.5m, k@ such that z& De,.
Put HO0)={Hc¢wn. xwy,i: 1<7(0)}. Since (z, x)&\ UGy, there is an A(0)e
L({0, 1, -+, 7(0)}) such that (z, x)E Rewy, ), Rew), a0 E Rr(ZXX?). By the
definition, if 0= A(0), then R, 40, 0=F;6w.0—HceEw). ko, We have 0=
MZ XX *)<n(Rewy, a0y). For Rewy, a0y, take npl)ew™F@, 4001 §(1)=(y(d(1)),
0), -+, 7(0(L), n(Reco), 4)))E dre 4y, 4¢oy. 71> SUCh that xE Fsy. Put F()={Few.»:
i=n(Rew, a0t Let K(D)=K(@1)E Krgqy, 40y n> @and j()=n(Ke. xay). Take
a k(1)€w such that (z, x)EUG%, 0,50, r ) (Rewr, 40)J(I Ryay, 5wy, k) (Re, 403))-
Let =(1)=((5(0), j(0), £(0)), (n(), j(1), k(1)) ®,. Take a ELIEE w50, 5. 2w
such that ze€D;u,. Put K()={H¢ea», xan,:: 1=<max{jl), n(Rewy, a0y)}}. Since
(2, x)E\UG (), there is an A1)eL({0, 1, ---, max{j(1), n(Rzw), 4w)}}) such that
(z, x)e Rem,Am, Reu),Au)E—‘Rz(n(Re(o).A(w)- Then, if i€ A(1) with ién(Rem,A(m),
then RE(I),A(I),i = ‘r(d(l).i)—H(z(E(l)).K(l)),i- We have n(Re(o).Am)) < n(Rem.A(l))-
Continuing this matter, we can choose a sequence {7(t): i€w} of elements of
w<?, a sequence {0(t):t=w}, a sequence {F(t): t=w} of collections, a sequence
{K(): tew} of compact subsets in X¢, where K(t)=ile‘£K(t)ieJC, sequences

{/(1): tew}, {k(1): tew} of natural numbers, a sequence {z(¢): t<w} of elements
of @, where =(1)=((5(0), 7(0), £(0)), -+, (n(), J@), k({®))), a sequence {&(t): tcw},
a sequence {4 (t):t=w} of collections, a sequence {A(l):t=w} of finite subsets
of w, a sequence {Re), 4 : tEw} of elements of R containing (z, x), where
Ry, acy=Dey X iIeIwa(“"“‘”’ satisfying the following: Let t=w. Assume that

we have already obtained sequences {%()::i<t}, {0():i<t}, {F(@):i<t}, {(K(@):
i<t}, {70): i<t}, {R@): i<t), {r(): i<t} {8G): i<t} {H@): i<t}, {A@G): i<t}
and {Rf(i),A(i): Zél‘} Then
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(21) nit+Deo™Few. a0t

(22) o(t+D)=(r(0(t+1), 0), ---, r@@(t+1), n(Rewy, a)) € dregyy. 40y nesn SUch
that x& Fsi.n, and FE+D=1{F;Gw.n.0 ¢ ién(Rem.A(z))},

(23) K(t+1):K(5(l+l))€JCRe(t),Am.r;(z+1>,

(24) Jt+1) = n(Ke kwen), RE+1) € @ and (t+1)=((9(0), j(0), k(0)), ---,
(pt+1), ji+1), kt+1)ED, .,

(25) EG+ 1D e Eewrnscwsnjurn.easn, X+ 1) ={Heewsn kasm,it 1=
max{j(t+1), n(Rew), a))}} and A@+1)eP({0, 1, -+, max{jt+1), n(Rew. aa))}),

(26) If 1€ A(t+1) with 1 < n(Rewy.awr), then Reqin, acsn, i=F cawn.n—
Heewrnr, ks, i

(27) (2, x) Re(t+1>.A(z+1) = D!,-‘(t+1) X‘]éIwa(t+l),A(t+1).i» Re(t+1).Au+1) S

93:(&+1)(R5(L>.4(z)), and n(RE(t),A(t))<nRe(t+l),A(t+l)):

(28) For each i=n(Rew), awy) With i€ A(t+1) such that Ciirg,, 40y 0=9D>
S(Rewy, actr, )N Reesny, acesny, i =D,

(29) For each i<n(Rew.aw)) With i€ A(t+1) such that Cire,, 40000 F Ds
K@t+1D:=Cirey, 400y -

The rest of the proof is similar to that of Theorem 3.2 in the author [17].
However we include it here, because the method of it plays the fundamental
role in this paper.

Assume that for each icw, |{tcw: i€ A(t)} | <w. Then for each icw, there
is a t;€w such that /<¢; and if t=¢,, then /&£ A(¢t). Then, by (29),

(30) For each icw and t=¢;, K();=K(t,);.

Let K=TI K(t;);X. There is an 0O®’ such that K, x,<O. By (27)

tcow

and (30), take a t=1 such that n(0O)<n(Re-1), acc-1») and if <n(0), then K (¢);=
K(t;);. Then we have K, x«u), <O and hence, j(t)= n(K. k)< n(0). Since
EeE .. i v, MK cewn, kan)=J). For i with n(0)<i<n(Rew-1), ac-1),
by the definition, Heeon. kan. i=Frewm. o- Hence A(t)N{n(0), -+, n(Rect-1y, acc-n)}
=@. Since (z, x)ERey, ay and Rewy, 4 E R y(Rze-1y. at-1), there is an /e
A1) such that x;& Hewn. kan..- Thus i<n(0) and x,€ERey. ar. i =Frew, o —
Heean, kan,i- Since i€ A(Y), t<t;. For each ¢'>t, K('); © Rew,arr.:. Thus
K(:):SRewy, arr,i- Since K(t)iHe e, kn.i» Wwe have K(t);#K(t);. This is
a contradiction. Therefore there is an /=w such that | {{esw: i€ A(t)} | =w.
Let {tew:i€ A¢t) and i < n(Rewy, a)} = {t,: p=w}. Let p € w. Since
C/l(Re(,p),A(,p).i):@, if t,.1=t,+1, then, by (28), S(Reup).A(zp).i)f\Rs(sz).A(zp+1),i
=@. Assume that ¢,,, >f,+1. Since Kmmpm,,-, = C“Re(tpm_mpm_“ =
Carecupi-1ractprr-vrd © Ha@wper kapepr.in by the  definition, we have
S(Rect ract . )V Ret yup. ac,op. i =@. Since s is a stationary winning strategy
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for Player [ in G(,CDC, X), p@ RG(tp).A(tp),i:@' But XiEPQRE(LP)_A(t V. i which

0
is a contradiction. It follows that ‘U{¢.: 7@} is a cover of ZxX<® The
proof is completed.

COROLLARY 4.2. If Z is a perfect subparacompact space and Y, is a regular
subparacompact space with a o-closure-preserving cover by compact sets for each
i€w, then ZXiIIYi is subparacompact.

cw

PROOF. This immediately follows from [Theorem 4.1 and Lemma 2.3(a).

Similarly, by [Theorem 4.1 and Lemma 2.3/(b), we have

COROLLARY 4.3. If Z is a perfect subparacompact space and Y ; is a regular

subparacompact, a—C-scattered space for each icw, then ZX 1Y, is subpara-
=)

compact.

REMARK 4.4. Let M be the Michael line and let P be the space of irra-
tionals. P is homeomorphic to w®. The following are well-known (see D. K.
Burke [4]).

(a) M is hereditarily paracompact but M X P is not normal and hence,
not paracompact.

(b) M xP is hereditarily subparacompact and hereditarily metacompact
(see also P. Nyikos [I5]).

5. Metacompactness, orthocompactness and metalindeléf property.

THEOREM 5.1. [f Y, is a regular metacompact DC-ltke space for each icw,
then iH Y is metacompact.
cw

PROOF. We may assume that Y;=X for each i=w and there is an isolated
point @ in X. Let © be an open cover of ZXX®. Similarly, let @={Bc3®:
BcO for some O0f}. For KX, there is an O<0OFf such that K <O.
Then there is a B€8® such that K<cBcO. Define n(K)=inf{n(0): Os¢’
and K CO}. It suffices to prove that © has a point finite open refinement.

Let s be a stationary winning strategy for Player I in G(@C, X). Let B=
iIeIwBiE'CB such that for each /<n(B), we have already obtained a compact set
Ciao of ¢ciB;. (Cimrnen=0. Cim =@ may be occur for i<n(B).) We
define Gg(B) and B(B) of collections of elements of 8. Fix i<n(B). If C,5 4
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“=@, let Wy = B,. Put AB,7)={A(B, )} and [I'(B,i)= {y(B, 7)}. Let
C(B, ))={C;: 2&AB, )} ={Ciw.o}, and W(B, ))={W;: 1€l'(B, )} ={W;w.0}-
Assume that C ., =¢@. Then there is a discrete collection C(B, )= {C;:
A€ A(B, i)} of compact subsets of X such that s(¢/B;)=\UC(B, 7). Since X is
a regular metacompact space, there is a collection W(B, i)={W,: rel'(B, i)}
of open subsets in B; (and hence, in X) satisfying

(1) w(B, i) covers B,

(2) For each y=[I'(B, i), c/W, meets at most one member of C(B, i),

(3) W(B, 7) is point finite in B; and hence, point finite in X.

In each case, for ye I'(B,?), K, = ciW,NC,; if cW,NC,;+¢@ for some
(unique) C;. If cdW,N\(UJC(B, i))=@, then we take a point pcW, and let K,=
{pr}. Thus, if Cio#@, then Ky o=c¢W; 0N\Cisi=Ciws.. Put dp=
I'(B, 0)x---xI'(B, n(B)). For each d=(7(3, 0), ---, 7(8, n(B)))edg, let K(0)=
Ki.0X -+ XKy nimyX{a} X - X{a} X+, and let Kp={K(d): ddp}. Then
XgC X. For each 6 = (7, 0), ---, 70, n(B))=dp, let r(K(8)=max{(n(K (d)),
n(B)}. Fix a d=(7(, 0), ---, 70, n(B)))eds. Take an O(5)=ig0(6)i60’ such

that K(0)C0O(0) and n(K(0))=n(0O(d)). Since X is a regular space, there is an
H(0)=T1I H(0);€ 8 such that:
icw

n(K(8))-1

4) II cH@)XXX - XXX ---C0(@),

(5-1) For each i with n(K(0))<i<r(K(0)), let H(0);=X,

(5-2) For each i<n(K(d)) with :<n(B), let H(J); be an open subset of X
such that K, ), CH(0);CclH(6),C0(d);,

(5-3) For each 7 with n(B)<i<n(K(9)), let H(d);={a},

(5-4) In case of that »(K(0))=n(B), let H(@);=X for n(B)<i. In case of
that (K (8))=n(K(d))>n(B), let H(0),=X for n(K(9))<i.

Then we have K (8)(CHS). Put W(®="T Wya.0XXX - XXX . Then
{(W@): 6 € 4g} is a collection of elements of @ such that for each d=dp,
W(@)cB and {W(): 64} covers B. By the definition, we have

6) {W(): 0ds} is point finite in X,

Fix a 0=(7(3, , 0), ---, 70, n(B)))€dp. In case of that »(K(8))=n(B). For
each :<n(B), let G(0);=0(0);\W;s.1». For each i>n(B), let G(0);=X. Put
G(5):ig6(5)i. In case of that »(K(9))=n(K(d))>n(B). For each i<n(B), let
G(0);=0(0);"\W,ws.5». For each i with n(B)<:<n(K(9)), let G(d);=H();={a}.
For each :>n(K (d)), let G(6);=X. Put G(5)=i1(;IwG(5)¢- Then we have G(0)C

W (). Define ¢(B)={G(@): d=ds}. Then
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(7) Every member of G(B) is contained in some member of ¢’.

(8) &G(B) is point finite in X©.

This is clear from (6).

Fix d=(y(0, 0), -+, 10, n(B)))eds. Let A=2({0, 1, ---, »(K(0)}). In case
of that r(K(8))=n(B). For each i€ A, let Bs 4:=Wys. iy —clH(0);. For each
iE A with i<n(B), let Bs 4,:=000):\Wys.. For each i>n(B), let B; 4,.:=X.
Put B(;,Azil;)Bg,A,i. In case of that »(K(d)=n(K(0))>n(B). For each i€ A

with ;<n(B), let Bs 4.: = Wye6.0,—clH(0);. For each i&A with i <n(B), let
Bs 4.:=000);\W,s.1. Let n(B)<i<n(K()). If icA, let Bs 4. =X—clH(0):=
X—{a}. If ¢£A, let Bs 4.,=H(@);={a}. For i=n(K(9)), let B;s 4,=X. Put
Ba_A:igDBg,A,i. In each case, Bj; 4..CB; for each iew. We have that if B 4

+@, then n(B) < n(B; ). Let BsB)= {Bs.: A= 2P0, 1, ---, »(K(0))}) and
Bs. 4+ @}. By the definition, W(0)=G(0)\J(\UBsB)). Define B(B)=\U{BsB):
o=4dg}. Then, by (6), we have

(9) 4@B(B) is point finite in X*.

Fix a Ba,A:ig)B(;,A_iE.@g(B) for 0=(y@, 0), -+, (0, n(B))=dp and Aec

({0, 1, -+, (K ()}).

(10) For each ;€A withi<n(B) such that C; =@, s(cIB)N\clBs, 4,:=0.

Since Bs 4 =W, 0y —clH():, s(cIB)MNclBs, 4. C(JC(B, NN(ciW e, —H(0):)
=Kre.0—H0),=0.

For eachi& A withi<n(B), since ¢/(Bs, 4,:=cl(O0)i Wy, 1)) 2D00):N\ciW 5,45,
a compact set K, 4, is contained in ¢/Bj;, 4,;. Let Cas ,.iy=Krwe, . For each
i¢ A with n(B)<i<n(K(9)), let Ci; ,,v=1{a}. Foreachi€A, let Ci; ,0=02.

Now we define ¢; and B; for each jew. Let ¢,=G,(X*)=¢(X*) and B,=
B(X*)=p(X*). Assume that for jw, we have already obtained ¢; and ;.
For each B€ 8,, we denote G(B) and #(B) by G;..(B) and 8,.,(B) respectively.
Define ¢;,,=U{g;.«(B): B€3;} and B,.,=\J{8B;.(B): BE3B,}.

Our proof is complete if we show

CLAIM. \U{G;: JEw} is a point finite open refinement of O'.

PrOOF OF CLAIM. Let jew. By the construction, ¢,C498. By (7), every
member of &, is contained in some member of ©. By (8), (9) and induction,
@; is point finite in X®. Take a x=(x,)ico=X*. Let 4J(0)={0€dx0o: x&W()}.
Then, by (6), 1=<|4(0)|<w. Let X(0)={K(): 6=4(0)}. Put H4(0)={H(@O): o=
A40)}, WO)={W(d): d=4(0)} and gG(0)={G(d): 6=4(0)}g,. For each d=4(0),
let AW0)=2({0, 1, ---, (K (0))}), and let A0)={A@D): 0=4(0)}. Let B(0)=
U{B5(X®): d€4(0)}. Then B(0)C B, By the definition, for each d=7(9, O)&
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4(0) and Ac€(0) with 0€A, Bs, 4.0 = Wyi.0,—clH(3),. Since W(0) = G(0)
(UB5(X?) for each 0 € 4(0), 1<|8(0)UB(0)|<w. Observe that (G,\UB,), C
G0\ B(0). Take a Bep(0). Let AB)={0'cdz: xW (')} and let 4(1) =
U{d(B): Be3(0)}. Let X(1)= {K(@©): 64(1)}. Put H(1)= {H(): o=d(1)},
W()={W(@©): 64(1)} and ¢(1)={G): 6€d(1)}cg,. Define A(0) for each 0=
4(1), and A1) as before. Let 8(1)=U{8sB): B€ 3(0) and écd(B)}C 38,.
Let d=(7(a, 0), ---, r(d, n(B)))4(B) and B #(0). For each AcsJ(0), if i€A
with 7 < n(B), then Bsa:=W;s —clH(@);. We have |[g(1)U8B(1)|<w and
(6,UB,), C ¢1)Uas(1). Continuing this matter, we can choose a collection
{4(7): jew}, a family {K(J): j€ew} of collections of compact subsets of X<,
where for each KeX(j) and ]'ew,K:tleIu)KieJ(, families {H(): j = w},

{(W(7): jew}, {4(7): jew} of collections of elements of @B, a family {A(y):
j€w} of collections of finite subsets of w and a family {#(j): j€w} of collec-
tions of elements of @ such that for d=(y(, 0), ---, 7(8, n(B))e 4(B), B
B(j—1), where B 1), 4-.1,=X%, and 8_=38(—1)={X*}, and A=), if i€ A
with i<n(B), then B; 4 ;=W,;s,—clH();, and for each jewo, |¢()H)UB()| <
and (G,;,\UB;).CE(/)JB(j). Assume that xe\ B, for each jew. Then, by
the construction, x='\U8(;) for each jEew. Since B(;). is non-empty and finite
for each j€w, it follows from Koénig’s lemma (cf. K. Kunen [13]) that there
are a sequence {0(J): jEw}, a sequence {K(j): j€w} of compact subsets of
X, sequences {H(0())): jew}, {(W((7)): jew} of elements of B, a sequence
{A(J): jew} of finite subsets of w, a sequence {B;, 4 : j€Ew} of elements
of @ such that: For each jew,

(1) o(N=7(0(), 0), -+, 1(8(5), n(Bs-1r. as-yNEA()),

(12) K(N=K@()),

(13) A()eABG)),

(14) For each i€A(j) with 7Zn(Bsg-v.45-v) Bswp.agp.i = Wi, o—
clH(6(7)):,

(15) x&Bs, ap and Bsjy, ah € B(Bs-1, aci-1)-

Furthermore we have

(16) n(Bs, ap)<n(Bsan, a+1)) for each jew,

(17) For each :=n(Bs».ap) With i€A(j+1) such that Cisg . 4050 0=9D,
s(clBsiiy, an)N\Cl By, ey =0,

(18) For each i=n(Bsp,an) with i€ A(j+1) such that Cimg . 405007 D>
K(7+1D=Casy. acs 02-

By the similar proof of Claim in [Theorem 4.1, we can show that there is
an i€w such that [{jew: i€cA()} =w. Let {jew:icA() and i<n(Bsi, a))}
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={je: k€w}. Then we can prove that s(ciBsg,). 4,0 \ClBsGy, . 4G, =D

for each k=w. Since s is a stationary winning strategy for Player I in

G(ac, X), km clBsy. ap=@. But szkﬂ Bsjy . a,, Which is a contradic-
(=7 cw

tion. Thus there is a P€w such that x&\UB,. Let j=inf{kcw: x&\UB,}.
Since x=\U®;_,, we have x=\U¢g,;. For each k>j, every element of G, is
contained in some member of #;. Therefore (\U{G,: ksw}). T \U{G,: <},
Since every g, is point finite in X ¢, it follows that \U{g,: k=w} is a point
finite open refinement of ©’. The proof is completed.

COROLLARY 5.2. If Y, is a regular metacompact space with a o-closure-
preserving cover by compact sets for each i< w, then iII Y, is metacompact.
cw

PrROOF. This follows from [Theorem 5.1 and Lemma 2.3(a).

For a T,-space X, let F[X] denote the Pixley-Roy hyperspace of X (cf.
E.K. van Douwen [7]). Every Pixley-Roy hyperspace is a hereditarily meta-
compact Tychonoff space and has a closure-preserving cover by finite sets. In
[17], the author proved that if Z is a perfect paracompact Hausdorff space and
Y, is a T,-space such that [Y,] is paracompact for each i=w, then Z X
II ¢[Y.] is paracompact.

i€w
COROLLARY 5.3. If Y; is a T,-space for each i€ w, then IIF[Y.] is
1w

metacompact.

By D. K. Burke and M. M. Coban [6], every perfect metacompact (me-
talindel6f) space is hereditarily metacompact (hereditarily metalindelsf). Next,
we show the following result.

THEOREM 5.4. Let Z be a hereditarily metacompact space and Y; be a
regular metacompact DC-like space for each i=w. Then the following are
equivalent.

(a) ing) Y is metacompact,

(b) thﬂ Y is countably metacompact,
cw

(¢) ZXiH Y. is orthocompact.
cw

PROOF. (a)—(c) Obvious.
(c)—(b) We shall modify the proof of Theorem 2.1 in N. Kemoto and Y.
Yajima [12]. Assume that ZXiH Y, is orthocompct. Let 9={0;: jEw} be a
€ew
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countable open cover of Z><iII Y ,. By their proof, it suffices to prove that
cw

there is a countable open refinement U of © such that for every infinite sub-
collection U’ of U, int(N\U’)=¢. Applying their technique to ZX 1Y, we

ew

have a countable collection {G;,.: jew and =0, 1}, where G, ,=ZxH;, for
each jew t=0, 1, of open subsets of ZX []Y; such that
1€w

(l) For each an), H Yi:Hj,oUHj_l and hence, ZX{H Yi:Gj_oUGj_l,
tEw =1

(ii) For each infinite subset M of w and each ¢=0, 1, int{"\{H,.: jeM})
=@ and hence, int(N\{G,,.: jeM})=ZXint(N{H;.: jeM})=@.

Let U={0,;NG;.: jew and t=0, 1}. Then 4 is a countable open refine-
ment of @ such that for every infinite subcollection U’ of U, int(N\U")=@.

(b)—(a) Assume that thg Y, is countably metacompact. For each /icw,

take a point q; in V,;. Let © be an open cover of inH Y;and let ’={Be g
cw

BcO for som O=©f}. For each z€Z and K= .X, define n(K, x,) as the proof
of [Theorem 4.1.

Let s; be a stationary winning strategy for Player I in G(9C, Y ;) for icw.
As [Theorem 5.1, take a B:ngigBieQ satisfying the following condition:

For each :<n(B), we have already obtained a compact set C ;. Of ¢/B,.
(Ci.nen=@. Ci =@ may be occur for ;<n(B).) Fix i<n(B). If Ci;ws. 1
+ @, take the same W,;..), A(B, ), I'(B,1:), C(B, ) and W(B, i) in
5.1. Assume that C ;s H,=@. Then we take a discrete collection C(B, 7)=
{C;: 2 A(B, 7)} of compact subset of }Y; such that s;,(c/B;)=\UC(B, i), and a
collectiom W(B, i)={W,: rl'(B, i)} of open subsets in B; (and hence, in Y,)
satisfying the condition (1)=(1), (2’)=(2) in the proof of and

(3") W(B, i) is point finite in B; and hence, point finite in Y.

Define the same K, for yeI'(B, 7) and 4z in [Theorem 5.1. For é=(r(d, 0),
v, 70, n(B))eds, let K(0)=Krs,0X -+ XKye, nm X {@naya} X oo X{ap} X .
Define Xz as before. For each z€Ugjg and 6=(7(9, 0), ---, 7(3, , n(B)))edjp, let
(Ko, kon)=max{n(Kq. ko), n(B)}. Fix z&Up and 6=(7(9, 0), ---, 7(9, n(B)))
4. Take an O, ;=U, ;X I[10,,5.:€0" such that K, k) CO..s and n(Ke. ko))

1€Ew

=n(0,,s). Since Y, is a regular space, there isan Hq, ken=H, s} II He. k6.
i€w

€ @ such that:
n(K(Z,K(g)))—l
(4’) H,sX IIO clH k0. i XY nk g, g X" XY X C 0,5 and z&
i=
H, sCUpNU,,s,
(5’-1) For each 7 with n(K, xen)Si<r(K.. ko), let He kon.i=Y 4,

(5’-2) For each i<n(K . k@) With i<n(B), let H(,. x»)),: be an open subset
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of Y, such that K;u, o CHe xen, i CclHe, k@), 02064,

(5’-3) For each 7 with n(B)<:<n(K. xs), let H., x>, : be an open subset
of Y; such that a;€He, xw). i CclHq, k6,102,640

(5’-4) In case of that »(Ke. xen)=n(B), let Hi, ke, : =Y for n(B)<i. In
case of that r(K. xwn»)=n(Kq, ke»)>n(B), let He ke, =Y for n(Ke, ken)=i.

Then we have K¢, k@), CH, x@)). Foreach jew, let J; ;,={H, s: n(Ke xé)))
<j}. Fix jew and let V(K(@)={z€Up: n(Ke¢ xw»)=J}. Then V(K ()=
U4, ;. Since Z is a hereditarily metacompact space, there is a family <V; ;=
{Ve: &€= 55,5}, of collections of open sets in V(K (9)) (and hence, in Z) satisfying

(6’) Every member of <V, ; is contained in some member of %4 ;,

(7") <Vs,; covers V(K (0)),

(8) Vs, ; is point finite in V(K (d)) and hence, point finite in Z.

For each £ 5, ;, take a 2(§)eV (K (0)) such that V.C H,¢,s. Put W=
ﬁ:W,<5,,-,><Y,,<B)+1>< XY X - and Ve, =VexWs. Then {Ves: 8 €ds, j cw
and é=5; ,} is a collection of elements of @ such that for each &4 jEw
and £€5;,;, Ve sCB and {Vg;: d=dp, jew and &é=5; ;1 covers B. Clearly
we have

(9’) For each jew, {Ves: 04 and £ 5;,;} is point finite in Z><iH Y.
<X}

Fix a 0 =(r(0,0), -+, 700, n(B))) € 4p, j =w and £=5; ;. In case of that
r(Kew,xken)=n(B). For each i<n(B), let Gew, xw».i=0:0.5.:\Wyi,. For
each i>n(B), let G(z(e),K(B)).i =Y, Put Geue.x@) = foig)c(z(e).lf(a)),i- In

case of that (K¢, kxw»)=n(Kew@, k@) >n(B). For eachi=n(B), let G, k@),
=0.@.5.iWre,n. For each 7 with n(B)<i<n(Kqge, xon), let Gaw, ke, =
O.@®.5.:- For each iZn(Ke). xen), let Gow.xen.:=Yi. Put Goe, xen=VeX
iI;”Gma.K(&)),i- Then we have G, k@ CVes Define G5 (B) = {Gew, ke :

EeF; ;) and G (B)=\U{4s ;(B): d=dp}. Then, by (9’) and definition,

(10’) For each jew, every member of ¢;(B) is contained in some member
of O'.

(11’) For each jew, ¢,(B) is point finite in Z X guyi'

Fix 0=(7(, 0), ---, 7(8, n(B))ed;s, jew and &=5; ;. Let Ae®({0, 1, -,
r(Kew, x@»)}). In case of that »(K, xw))=n(B). For eachi€ A, let B, 4,,=
Wye.o—clHGe . k@.:- Foreach i€ A with i<n(B), let Be 4,:=0,.5:\Wirae, .
For each i>n(B), let Bg 4 ,=Y,. Put BE,A:Vgxig)Be,A,i. In case of that

r(Kew, ken)=n(Kee, k@) >n(B). For each i€ A with i<n(B), let Bgai=
Wy(a,i)—ClH(z(é).K(a))'i. For each Z%A with zgn(B), let Be.A,i:Oz(e),J,imWT(B.i)-
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Let n(B)<i<n(Kee. xaen). f i€ A, let Be 4i=Y —clHGw. kwr.i- If i A, let
Be ai=0,¢.5.:. For i>n(K,e. ken), let Be 4.=Y,;. Put Be 4=VeX };[wBe.A.i-

We have that B 4.CB; for each icw and if B¢ ,+®, then n(B)<n(Bg 4.
Since n(K). kw@»)=<J, for a subset A= @({0, 1, -, max{j, n(B)}}), let B; ; 4«(B)
= {Bea: §E€ 5, Bea is defined and B4+ @}. For jew, let 84B)=
\{Bs,;, 4(B): 04 and A=L({0, 1, ---, max{J, n(B)})}. Then we have

(12) Every 8,B) is point finite in inguYi.

Fix a B¢ 4=VeX gBe,A.iegd.j,A(B) for 0=(7(0, 0), ---, 7(3, n(B))Ed;s, jE

o, (€55 ; and AeL({0, 1, ---, max{j, n(B)}}). Then

(13’) For eachie A with i<n(B)such that C; =0, si(clB)NelBe a.i=D.

For each i<n(B; 4), define a compact set C;(p; ,:) in clBg 4 as
5.1.

Now we define ¢. and 3. for each r€w<® with r#@. For each jew, let
Q’j:gj(ZXile’{)Yi) and Qj:QJ(ZXig)”i). Assume that for r=w<® with 7+ @,

we have already obtained ¢. and @.. For each B€ 4, and jew, we denote
G(B) and B,B) by 4.¢;(B) and B.4,(B) respectively. Define G0;=\J{G.0;(B):
Be 3.} and B.4;=\U{B.4;B): BE 3B,}.

Firstly we show that \/{g.: t€w<® and r#@} is a o¢-point finite open
refinement of ©’. Let r€ w<” and t= @. By (10’), every element of g, is
contained in some member of ©’. By (11’), (12’) and induction, for each rew<®
and v+ @, 4. is point finite. Thus, it suffices to prove that \U{G,: r=w<® and
7+ @} isa cover of ZX [1Y,. However, the proof is similar to that of Claim

=X
in [Theorem 4.1. Let G.=Ug, for each rew<® with 7+ @. Then {G,: rew<®
and 7# @} is a countable open cover of ZXx IIY,. Since ZXx tH Y; is countably
t1Ew cEw
metacompact, there is a point finite open refinement {G;: r€w<® and 7+ @}
such that G;C G, for each rew<® with r#@. Then {GiNG: Geg,, rew<®
and 7+ @} is a point finite open refinement of ¢©’. It follows that Zx [IY;
i€w

is metacompact. The proof is completed.

REMARK 5.5. B. Scott showed that if ¥ is orthocompact and Z is
compact, metric and infinite, then } X Z is orthocompact if and only if V is
countably metacompact. J. Chaber constructed a scattered hereditarily
orthocompact space Y which is not countably metacompact. Thus, for J. Chaber’s

space Y, Y X(w+1) is not orthocompact, even though both factors are hereditarily
orthocompact and scattered (cf. Cemma 2.4).
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COROLLARY 5.6. Let Z be a hereditarily metacompact space and Y,; be a
regular metacompact space with a c-closurepreserving cover by compact sets for
each i€w. 7Then the following are equivalent.

(@) ZXI1Y; is metacompact,

=3

(b) inﬂ Y. is countably metacompact,
cw

(c) Z XiH Y is orthocompact.
€

Since every o¢-point countable collection of Z ><i1'I Y; is point countable, by
cw

the proof of the implication (b)—(a) in [Theorem 5.4, we have

THEOREM 5.7. If Z is a hereditarily metalindeldf space and Y, is a regular
metalindeldf DC-like space for each iSw, then ZXiII Y. is metalindelof.
cw

COPOLLARY 5.8. If Z is a hereditarily metalindeldf space and Y, is a regular
metalindelof space with a a-closure-preserving cover by compact sets for each icw,
then ZX I1Y; is metalindelif.

1Cw

We consider metacompactness, orthocompactness and metalindeldf property

of countable products using C-scattered spaces.

THEOREM 5.9. If Y, is a regular C-scattered metacompact space for each
icw, then iII Y is metacompact.
cw

PROOF. We also assume that V;=X for each i€® and there is an isolated
point a in X. We shall modify the proof of [Theorem 5.1. Let ©® be an open
cover of X“. Define the same @ and n(K) for each K& X. We take a B=
ig)BiefB satisfying the condition of the proof of [Theorem 5.1. Fix ;<n(B).
If Cimo+@, then we take the same W,,:, A(B,i), I'(B,1), C(B, ), and
W(B, 7). Assume that C; »H=¢@. Since c/B; is a regular C-scattered meta-
compact space, by [Lemma 3.3, there is a collection W(B, /)= {W,: r=I(B, i)}
of open subsets in B, satisfying the conditions (1”)=(1) and (2”)=(3) in the proof
of and

(3”) For each yeI'(B, i), (cIW,)*7 is compact for some a(y).

Let A(B, i)=I(B, i) and C(B, i)={(cIlW )% : A& A(B, i)}.

Let K;,=(cIW,)*™ for ye (B, i) and take 4z, K(J) for d=dp, Kz, r(K(5)),
H(d), W(0) and G(0) for d=4dp, G(B), B;s 4, Bs(B) and B(B) for é6=4(B), A=
2({0, 1, ---, r(K(0))}) as before satisfying the conditions (4”)=(4), (56”-i)=(5-7)
for 7=1, 2, 3 and 4, (6”)=(6), (7")=(7), (8”)=(8) and (9”)=(9). Furthermore, we
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take the same G; and @, for each j=w, and show that \U{g,: jew} is a point
finite open refinement of ©’. Let x=(x;)ico. Take the same {4(j): jEw},
{K(G):jew}, {H0): jeW}, (W) : jEW}, {4(5): JEW®}, {A()): jEw} and {B(j):
Jj€Ew}. Assuming xe\UB; for each jew, we similarly choose a sequence {d(7):
jEw}, a sequence {K(j): jew} of compact subsets of X¢, where for each jew,
K(j):igK(j)ieJC, sequences {H(A(7)): jew}, {W(©O()): jew} of elements of

B, a sequence {A(j): jew} of finite subsets of w, a sequence {Bs, 4 jE®}
of elements of & satisfying the conditions (10”)=(11), (117)=(12), (127)=(13),
(13”)=(14), (14”)=(15), (15”)=(16) and (16”)=(18). Then there is an i=w such
such that |{jew: i€ A())}|=w. Let {j€w: i€A(j) and i=n(Bs;, an)t =1/
kew}. We have

(177) For each k€w, e(ciWieiy,+0. 0)<e(CW 16,40, 0)-

Fix k€w and take a yEclW; 6, 40,0 Since WiGG, ., +0.0CWreG,sn,. o)
AW GG aq+0. V) S @ClW 40, 0(D)- Assume that j,,;=j,41. Then

WT(ﬁ(jk+l+l.).i)CBa(jk.{..l).A(jk+1).i and
K(Je+1)i=Kr6Gpep. 0 =W 1G4, 0)* TCOR+D DT H@G(F441)); -
Assume that j,.,>7j,+1. Then

K(].k+l)i:Kr(&(j,,+1).i):C2(Ba(jk+1)’A(jk+”.i):CX(Ba(jk+l_1).A(jk+l_l),i)CH(ﬁ(jk+l))i .

In each case, we have aclW;i; 0. 0(3)<a(r((j.+1), 7). Hence acilW; iy, +0.00(3)
< a(r(d(jr+1), 7). Therefore e(ciW;ise,.+0.0) = a(7(0(j,+1), 9.  Since
(W1 p+0.0)=a(y(0(7e+1), ©)+1, we have (WG piy+0.0)<E(€W 3441, 90)-

Thus {e(cilWyG,+0.0): EEw} is an infinite decreasing sequence of ordinals,
which is a contradiction. Thus there is a k=w such that x&\U®,. Similarly,
it follows that \U{G;: jEw} is a point finite open refinement of ©’. The proof is
completed.

Similarly, we have

THEOREM 5.10. Let Z be a hereditarily metacompact space and Y; be a
regular C-scattered metacompact space for each i=w. Then the following are
equivalent.

(a) Z X‘g,Yi is metacompact,

(b) Z th Y: is countably metacompact,
(7

(c) ZX tl'[ Y : is orthocompact.
cw

THEOREM 5.11. If Z is a hereditarily metalindeléf space and Y ; is a regular
C-scattered metalindeléf space for each i=w, then thle'I Y. is metalindelif.
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