COVERING PROPERTIES IN COUNTABLE PRODUCTS

Ву

Hidenori TANAKA

1. Introduction.

A space X is said to be subparacompact if every open cover of X has a σ -discrete closed refinement, and metacompact ($countably\ metacompact$) if every open cover (countable open cover) of X has a point finite open refinement. A space X is said to be $metalindel\"{o}f$ if every open cover of X has a point countable open refinement. A collection $\mathcal U$ of subsets of a space X is said to be interior-preserving if $int(\cap\mathcal V)=\cap\{int\ V:V\in\mathcal V\}$ for every $\mathcal V\subset\mathcal U$. Clearly, an open collection $\mathcal U$ is interior-preserving if and only if $\cap\mathcal V$ is open for every $\mathcal V\subset\mathcal U$. A space X is said to be orthocompact if every open cover of X has an interior-preserving open refinement. Every paracompact Hausdorff space is subparacompact and metacompact, and every metacompact space is countably metacompact, metalindel\"{o}f and orthocompact. The reader is referred to D. K. Burke [4] for a complete treatment of these covering properties and some informations of their role in general topology.

Let \mathcal{DC} be the class of all spaces which have a discrete cover by compact sets. The topological game $G(\mathcal{DC},X)$ was introduced and studied by R. Telgársky [19]. The games are played by two persons called Players I and II. Players I and II choose closed subsets of II's previous play (or of X, if n=0): Player I's choice must be in the class \mathcal{DC} and II's choice must be disjoint from I's. We say that Player I wins if the intersection of II's choices is empty. Recall from [19] that a space X is said to be \mathcal{DC} -like if Player I has a winning strategy in $G(\mathcal{DC},X)$. The class of \mathcal{DC} -like spaces includes all spaces which admit a σ -closure-preserving closed cover by compact sets, and regular subparacompact, σ -C-scattered spaces.

Paracompactness and Lindelöf property of countable products have been studied by several authors. In particular, if X is a separable metric space or X is a regular Čech-complete Lindelöf space or X is a regular X-scattered Lindelöf space, then $X^{\omega} \times Y$ is Lindelöf for every regular hereditarily Lindelöf space Y. The first result is due to Y-E. Michael (cf. [14]) and the second one

Received June 10, 1992, Revised February 1, 1993.

is due to Z. Frolik [9] and the third one is due to K. Alster [1]. K. Alster [2] also proved that if Y is a perfect paracompact Hausdorff space and X_n is a scattered paracompact Hausdorff space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} Y_n$ is paracompact. Furthermore, the author [17] proved that if Y is a perfect paracompact Hausdorff (regular hereditarily Lindelöf) space and X_n is a paracompact Hausdorff (regular Lindelöf) \mathcal{DC} -like space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_n$ is paracompact (Lindelöf).

The aim of this paper is to consider subparacompactness, metacompactness, metalindelöf property and orthocompactness of countable products. We show that if Y is a perfect subparacompact space and X_n is a regular subparacompact \mathcal{DC} -like space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_n$ is subparacompact. We also prove that if X_n is a regular metacompact \mathcal{DC} -like (C-scattered) space for each $n \in \omega$, then $\prod_{n \in \omega} X_n$ is metacompact. Furthermore, let Y be a hereditarily metacompact space and X_n be a regular metacompact \mathcal{DC} -like (C-scattered) space for each $n \in \omega$. Then the following statements are equivalent: (a) $Y \times \prod_{n \in \omega} X_n$ is metacompact; (b) $Y \times \prod_{n \in \omega} X_n$ is countably metacompact and (c) $Y \times \prod_{n \in \omega} X_n$ is orthocompact. For metalindelöf property, it will be shown that if Y is a hereditarily metalindelöf space and X_n is a regular metalindelöf \mathcal{DC} -like (C-scattered) space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_n$ is metalindelöf.

In this paper, we deal with infinite spaces. No separation axioms are assumed. However, regular spaces are assumed to be T_1 . Let |A| denote the cardinality of a set A. The letter ω denotes the set of natural numbers.

Given a cover \mathcal{U} of a space X, and $Y \subset X$, let $\mathcal{U}|Y = \{U \cap Y : U \in \mathcal{U}\}$. For each $x \in X$, let $\mathcal{U}_x = \{U \in \mathcal{U} : x \in U\}$ and let $\operatorname{ord}(x, \mathcal{U}) = |\mathcal{U}_x|$. Let \mathcal{U}^F be the collection of all finite unions of elements of \mathcal{U} .

We use the finite sequences in the proofs. So we adopt the following notations for them: Let A be a set, and let $\mathcal{P}(A)$ be the set of all nonempty subsets of A. Let $A^0 = \{\emptyset\}$. For each $n \ge 1$, A^n denotes the set of all n-sequences of elements of A and $A^{<\omega} = \bigcup_{n \in \omega} A^n$. If $\tau = (a_0, \dots, a_n) \in A^{<\omega}$ and $a \in A$, then $\tau \oplus a$ denotes the sequence (a_0, \dots, a_n, a) and $\tau_- = (a_0, \dots, a_{n-1})$ if $n \ge 1$ and $\tau_- = \emptyset$ if n = 0.

2. Topological games.

For the class \mathcal{DC} and a space X, the *topological game* $G(\mathcal{DC}, X)$ is defined as follows: There are two players I and II (the pursuer and evader). They alternatively choose consecutive terms of a sequence $\langle E_0, F_0, E_1, F_1, \cdots, E_n, F_n, F_n \rangle$

 \cdots of subsets in X. When each player chooses his term, he knows \mathcal{DC} , X and their previous choices.

For a space X, let 2^X denote the set of all closed subsets of X. A sequence $\langle E_0, F_0, E_1, F_1, \cdots, E_n, F_n, \cdots \rangle$ of subsets in X is a play of $G(\mathcal{DC}, X)$ if it satisfies the following conditions: For each $n \in \omega$

- (1) E_n is the choice of Player I,
- (2) F_n is the choice of Player II,
- (3) $E_n \in 2^X \cap \mathcal{DC}$,
- (4) $F_n \in 2^X$,
- (5) $E_n \cup F_n \subset F_{n-1}$, where $F_{-1} = X$,
- (6) $E_n \cap F_n = \emptyset$.

Player I wins if $\bigcap_{n \in \omega} F_n = \emptyset$ (Player II has no place to run away). Otherwise Player II wins.

A finite sequence $\langle E_0, F_0, E_1, F_1, \cdots, E_m, F_m \rangle$ is said to be *admissible* if it satisfies the above conditions (1)-(6) for each $n \leq m$.

Let s' be a function from $\bigcup_{n\in\omega}(2^X)^{n+1}$ into $2^X\cap\mathcal{DC}$. Let

$$S_0 = \{F : \langle s'(X), F \rangle \text{ is admissible for } G(\mathcal{DC}, X)\}$$
.

Moreover, we can inductively define

$$\mathcal{S}_n = \{ (F_0, F_1, \cdots, F_n) : \langle E_0, F_0, E_1, F_1, \cdots, E_n, F_n \rangle$$
 is admissible for $G(\mathcal{DC}, X)$, where $F_{-1} = X$ and $E_i = s'(F_0, F_1, \cdots, F_{i-1})$ for each $i \leq n \}$.

Then the restriction s of s' to $\bigcup_{n\in\omega} S_n$ is said to be a *strategy* for Player I in $G(\mathcal{DC}, X)$. We say that the strategy s is a *winning* one if Player I wins every play $\langle E_0, F_0, E_1, F_1, \cdots, E_n, F_n, \cdots \rangle$ such that $E_n = s(F_0, F_1, \cdots, F_{n-1})$ for $n \in \omega$.

Next, we define another (winning) strategy for Player I in $G(\mathcal{DC}, X)$, which depends only on the preceding choice of Player II.

A function s from 2^X into $2^X \cap \mathcal{DC}$ is said to be a stationary strategy for Player I in $G(\mathcal{DC}, X)$ if $s(F) \subset F$ for each $F \in 2^X$. We say that the s is winning if he wins every play $\langle s(X), F_0, s(F_0), F_1, s(F_1), \cdots \rangle$. That is, a function s from 2^X into $2^X \cap \mathcal{DC}$ is a stationary winning strategy if and only if it satisfies

- (i) $s(F) \subset F$ for each $F \in 2^X$,
- (ii) if $\{F_n: n \in \omega\}$ is a decreasing sequence of closed subsets of X such that $s(F_n) \cap F_{n+1} = \emptyset$ for each $n \in \omega$, then $\bigcap_{n \in \omega} F_n = \emptyset$.

The following lemma shows that there is no essential difference between the winning strategy and the stationary winning strategy. LEMMA 2.1 (F. Galvin and R. Telgársky [10]). Player I has a winning strategy in $G(\mathcal{DC}, X)$ if and only if he has a stationary winning strategy in it.

As described in the introduction, a space X is \mathcal{DC} -like if Player I has a winning strategy in $G(\mathcal{DC}, X)$.

LEMMA 2.2 (R. Telgársky [19]). If a space X has a countable closed cover by \mathcal{DC} -like sets, then X is a \mathcal{DC} -like space.

Recall that a space X is *scattered* if every non-empty subset A of X has an isolated point of A, and C-scattered if for every non-empty closed subset A of X, there is a point of A which has a compact neighborhood in A. Then scattered spaces and locally compact Hausdorff spaces are C-scattered. Let X be a space. For each $F \in 2^X$, let

 $F^{(1)} = \{x \in F : x \text{ has no compact neighborhood in } F\}$.

Let $X^{(\mathfrak{o})} = X$. For each successor ordinal α , let $X^{(\mathfrak{a})} = (X^{(\mathfrak{a}-1)})^{(1)}$. If α is a limit ordinal, let $X^{(\mathfrak{a})} = \bigcap_{\beta < \alpha} X^{(\beta)}$. Notice that a space X is C-scattered if and only if $X^{(\mathfrak{a})} = \emptyset$ for some ordinal α . If X is C-scattered, let $\mathfrak{s}(X) = \inf\{\alpha : X^{(\mathfrak{a})} = \emptyset\}$. We say that $\mathfrak{s}(X)$ is the C-scattered height of X. For each $x \in X$, we denote by $\alpha_X(x)$ the ordinal such that $x \in X^{(\mathfrak{a}_X(x))} - X^{(\mathfrak{a}_X(x)+1)}$. Let X be a regular C-scattered space. If A is either open or closed in X, then A is C-scattered. More precisely, if A is an open subset of X, then $A^{(\mathfrak{a})} = X^{(\mathfrak{a})} \cap A$ for each $\alpha < \mathfrak{s}(X)$ and if A is a closed subset of X, then $A^{(\mathfrak{a})} = A \cap X^{(\mathfrak{a})}$ for each $\alpha < \mathfrak{s}(X)$. Therefore, if $x \in A$, then $\alpha_A(x) \leq \alpha_X(x)$ and hence, $\mathfrak{s}(A) \leq \mathfrak{s}(X)$. A space X is said to be σ -scattered (σ -C-scattered) if X is the union of countably many closed scattered (C-scattered) subspaces.

- LEMMA 2.3 (R. Telgársky [19]). (a) If a space X has a σ -closure-preserving closed cover by compact sets, then X is a \mathcal{DC} -like space.
- (b) If X is a regular subparacompact, σ -C-scattered space, then X is \mathfrak{DC} -like space.
- LEMMA 2.4 (G. Gruenhage and Y. Yajima [11], Y. Yajima [21]). (a) If X is a regular subparacompact (metacompact) \mathcal{DC} -like space, then $X \times Y$ is subparacompact (metacompact) for every subparacompact (metacompact) space Y.
- (b) If X is a regular C-scattered metacompact space, then $X \times Y$ is metacompact for every metacompact space Y.

For topological games, the reder is referred to R. Telgársky [18], [19] and Y. Yajima [21].

3. Preliminaries.

Let Z be a space and $\{Y_i\colon i\in\omega\}$ be a countable collection of spaces. For $Z\times\prod_{i\in\omega}Y_i$, we denote by $\mathcal B$ the collection of all basic open subsets of $Z\times\prod_{i\in\omega}Y_i$. Let us denote by $\mathcal R$ the collection of closed subsets of $Z\times\prod_{i\in\omega}Y_i$ consisting of sets of the form $R=E_R\times\prod_{i\in\omega}R_i$, where E_R is a closed subset of Z and there is an $n\in\omega$ such that for each $i\le n$, R_i is a closed subset of Y_i and for each i>n, $R_i=Y_i$. For each $B=U_B\times\prod_{i\in\omega}B_i\in\mathcal B$ and $R=E_R\times\prod_{i\in\omega}R_i\in\mathcal R$, we define $n(B)=\inf\{i\in\omega\colon B_j=Y_j \text{ for } j\ge i\}$ and $n(R)=\inf\{i\in\omega\colon R_j=Y_j \text{ for } j\ge i\}$. We call n(B) and n(R) the length of B and R respectively. Let $\mathcal K=\{\prod_{i\in\omega}K_i\colon K_i \text{ is a compact subset of } Y_i \text{ for each } i\in\omega\}$. For each $z\in Z$ and $K\in\mathcal K$, let $K_{(z,K)}=\{z\}\times K$.

LEMMA 3.1 (D. K. Burke [3], [4]). The following are equivalent for a space X.

- (a) X is subparacompact,
- (b) Every open cover of X has a σ -locally finite closed refinement,
- (c) For every open cover \mathcal{U} of X, there is a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ of open refinements of \mathcal{U} such that for each $x\in X$, there is an $n\in\omega$ with $\operatorname{ord}(x,\mathcal{V}_n)=1$.

It is well known that a space X is metacompact (metalindelöf) if and only if for every open cover $\mathcal U$ of X, $\mathcal U^F$ has a point finite (point countable) open refinement. In order to study subparacompactness of $Z \times \prod_{i \in \omega} Y_i$, we need the following lemma.

LEMMA 3.2. Let Z be a space and $\{Y_i \colon i \in \omega\}$ be a countable collection of spaces. Assume that all finite subproducts of $Z \times \prod_{i \in \omega} Y_i$ are subparacompact. If, for every open cover $\mathcal O$ of $Z \times \prod_{i \in \omega} Y_i$, $\mathcal O^F$ has a σ -locally finite refinement consisting of elements of $\mathcal R$, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

PROOF. Let \mathcal{O} be an open cover of $Z \times \prod_{i \in \omega} Y_i$. We may assume that $\mathcal{O} \subset \mathcal{B}$. By the assumption, there is a σ -locally finite refinement $\bigcup_{m \in \omega} \mathcal{R}_m$ of \mathcal{O}^F , consisting of elements of \mathcal{R} . Fix $m \in \omega$. For each $R = E_R \times \prod_{i \in \omega} R_i \in \mathcal{R}_m$, let $\{O(R, k) : e^{-ik(R-k)}\}$

 $k=0, \, \cdots, \, j(R)$ } be a finite subcollection of $\mathcal O$ such that $R\subset \bigcup_{k=0}^{j(R)}O(R,\,k)$. Let $O(R,\,k)=U_{R,\,k}\times\prod_{t\in\omega}O(R,\,k)_t$ for each $k\leq j(R)$, and let $n=\max\{n(R),\,n(O(R,\,k)):k\leq j(R)\}$. Put $R(n)=E_R\times\prod_{t=0}^nR_i$ and $O(R,\,k,\,n)=U_{R,\,k}\times\prod_{t=0}^nO(R,\,k)_i$ for each $k\leq j(R)$. Let $\mathcal O(R)=\{O(R,\,k,\,n):\,k\leq j(R)\}$. Then $R(n)\subset \cup \mathcal O(R)$. Rince $Z\times\prod_{t=0}^nY_t$ is subparacompact and R(n) is a closed subspace of $Z\times\prod_{t=0}^nY_t,\,R(n)$ is subparacompact. Thus there is a σ -discrete closed refinement $\bigcup_{t\in\omega} \mathcal D_t(R)$ of $\mathcal O(R)|R(n)$. For each $t\in\omega$, let $\mathcal D_t'(R)=\{D\times\prod_{t\geq n}Y_t:\,D\in \mathcal D_t\}$. Put $\mathcal G_{m,\,t}=\cup\{\mathcal D_t'(R):\,R\in \mathcal R_m\}$ for each $m,\,t\in\omega$. Then $\bigcup_{m,\,t\in\omega} \mathcal G_{m,\,t}$ is a σ -locally finite closed refinement of $\mathcal O$. It follows from Lemma 3.1 that $Z\times\prod_{t\in\omega} Y_t$ is subparacompact. The proof is completed.

In order to study metacompactness and metalindelöf property of countable products of *C*-scattered spaces, we need the following.

LEMMA 3.3. Let X be a regular C-scattered metacompact (metalindelöf) space. For every open over U of X, there is a point finite (point countable) open cover V of X such that: For each $V \in V$,

- (a) clV is contained in some member of U,
- (b) $(clV)^{(\alpha)}$ is compact for some $\alpha < \varepsilon(X)$.

PROOF. We prove this lemma by induction on the C-scattered height $\varepsilon(X)$ for the sake of completeness. Let X be a locally compact metacompact (metalindelöf) Hausdorff space (i. e. $\varepsilon(X)=1$). Thus there is a point finite (point countable) open cover $\mathscr C$ of X satisfying the condition (a) such that for each $V \in \mathscr C$, clW is compact. Clearly $\mathscr C$ satisfies the condition (b). Let X be a regular C-scattered metacompact (metalindelöf) space and $\varepsilon = \varepsilon(X)$, and assume that for each $\alpha < \varepsilon$, the lemma holds. Then there is a point finite (point countable) open cover $\mathscr W$ of X such that (cf. $\mathbb R$. Telgársky [18, Theorem 1.6]): Let $W \in \mathscr W$.

- (i) clW is contained in some member of U,
- (ii) If ε is a successor ordinal, then $(clW)^{(\varepsilon-1)}$ is compact,
- (iii) If ε is a limit ordinal, then $(clW)^{(\alpha)} = \emptyset$ for some $\alpha < \varepsilon$.

Case 1. ε is a limit ordinal. By induction hypothesis, for each $W \in \mathcal{W}$, there is a point finite (point countable) open collection $\mathcal{C}V'(W)$ in clW such that $\mathcal{C}V'(W)$ covers clW and for each $V \in \mathcal{C}V'(W)$, $(clV)^{(\alpha)}$ is compact for some $\alpha < \varepsilon$. Put $\mathcal{C}V(W) = \mathcal{C}V'(W) | W$ for each $W \in \mathcal{W}$ and $\mathcal{C}V = \bigcup \{\mathcal{C}V(W) : W \in \mathcal{W}\}$. Then $\mathcal{C}V$ satisfies the conditions (a) and (b).

Case 2. ε is a successor ordinal. Let $\mathcal{W}_0 = \{W \in \mathcal{W} : \varepsilon(clW) = \varepsilon\}$, and $\mathcal{W}_1 = \mathcal{W} - \mathcal{W}_0$. Take a $W \in \mathcal{W}_1$. Then $\varepsilon(clW) < \varepsilon$. By induction hypothesis, there is a point finite (point countable) open collection $\mathcal{C}'(W)$ in clW such that $\mathcal{C}'(W)$ covers clW and for each $V \in \mathcal{C}'(W)$, $(clV)^{(\alpha)}$ is compact for some $\alpha < \varepsilon$. Put $\mathcal{C}V(W) = \mathcal{C}V'(W) | W$ for each $W \in \mathcal{W}_1$. Take a $W \in \mathcal{W}_0$. Since $\varepsilon(clW) = \varepsilon$, $(clW)^{(\varepsilon-1)}$ is compact. Let $\mathcal{C}V = \mathcal{W}_0 \cup (\cup \{\mathcal{C}V(W) : W \in \mathcal{W}_1\})$. Then $\mathcal{C}V$ satisfies the conditions (a) and (b).

The proof is completed.

4. Subparacompactness.

We firstly study subparacompactness of $Z \times \prod_{i \in \omega} Y_i$.

THEOREM 4.1. If Z is a perfect subparacompact space and Y_i is a regular subparacompact \mathcal{DC} -like space for each $i \in \omega$,, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

PROOF. Without loss of generality, we may assume that $Y_i = X$ for each $i \in \omega$ and there is an isolated point a in X. Indeed, put $X = \bigoplus_{i \in \omega} Y_i \cup \{a\}$, where $a \notin \bigcup_{i \in \omega} Y_i$. The topology of X is as follows: Every Y_i is an open-and-closed subspace of X and a is an isolated point in X. Since every Y_i is a regular subparacompact \mathscr{DC} -like space, by Lemma 2.2, X is a regular subparacompact \mathscr{DC} -like space. $Z \times \prod_{i \in \omega} Y_i$ is a closed subspace of $Z \times X^\omega$. Therefore, if $Z \times X^\omega$ is subparacompact, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

Let \mathcal{O} be an open cover of $Z \times X^{\omega}$. Put $\mathcal{O}' = \{B \in \mathcal{B} : B \subset O \text{ for some } O \in \mathcal{O}^F\}$. For each $z \in Z$ and $K \in \mathcal{K}$, there is an $O \in \mathcal{O}^F$ such that $K_{(z,K)} \subset O$. Then, by Wallace theorem in R. Engelking [8], there is a $B \in \mathcal{B}$ such that $K_{(z,K)} \subset B \subset O$. Thus we have $B \in \mathcal{O}'$. Define $n(K_{(z,K)}) = \inf\{n(O) : O \in \mathcal{O}' \text{ and } K_{(z,K)} \subset O\}$.

Let s be a stationary winning strategy for Player I in $G(\mathcal{DC}, X)$. Let $R = E_R \times \prod_{i \in \omega} R_i \in \mathcal{R}$ such that for each $i \leq n(R)$, we have already obtained a compact set $C_{\lambda(R,i)}$ of R_i . $(C_{\lambda(R,n(R))} = \emptyset$. $C_{\lambda(R,i)} = \emptyset$ may be occur for i < n(R).) Fix $i \leq n(R)$. If $C_{\lambda(R,i)} \neq \emptyset$, let $F_{T(R,i,m)} = R_i$ for each $m \in \omega$. Put $\Lambda(R,i) = \{\lambda(R,i)\}$ and $\Gamma(R,i,m) = \{\gamma(R,i,m)\}$ for each $m \in \omega$. Let $\mathcal{C}(R,i) = \{C_{\lambda} : \lambda \in \Lambda(R,i)\} = \{C_{\lambda(R,i)}\}$ and $\mathcal{F}(R,i,m) = \{F_{\tau} : \gamma \in \Gamma(R,i,m)\} = \{F_{\tau(R,i,m)}\}$ for each $m \in \omega$. Put $\mathcal{F}(R,i) = \bigcup_{m \in \omega} \mathcal{F}(R,i,m)$. Assume that $C_{\lambda(R,i)} = \emptyset$. Then there is a discrete collection $\mathcal{C}(R,i) = \{C_{\lambda} : \lambda \in \Lambda(R,i)\}$ of compact subsets of X such that $s(R_i) = \bigcup_{m \in \omega} \mathcal{C}(R,i)$. Since R_i is a closed subspace of X, R_i is a subparacompact space.

Then there is a family $\mathfrak{F}(R, i) = \bigcup_{m \in \omega} \mathfrak{F}(R, i, m)$, where $\mathfrak{F}(R, i, m) = \{F_{\gamma} : \gamma \in \Gamma(R, i, m)\}$, of collections of closed subsets in R_i (and hence, in X), satisfying

- (1) $\mathfrak{F}(R, i)$ covers R_i ,
- (2) Every member of $\mathcal{F}(R, i)$ meets at most one member of $\mathcal{C}(R, i)$,
- (3) $\mathcal{F}(R, i, m)$ is discrete in X for each $m \in \omega$.

In each case, for $\gamma \in \bigcup_{m \in \omega} \Gamma(R, i, m)$, let $K_{\gamma} = F_{\gamma} \cap C_{\lambda}$ if $F_{\gamma} \cap C_{\lambda} \neq \emptyset$ for some (unique) C_{λ} . If $F_{\gamma} \cap (\bigcup \mathcal{C}(R, i)) = \emptyset$, then we take a point $p_{\gamma} \in F_{\gamma}$ and let $K_{\gamma} = \{p_{\gamma}\}$. Thus, if $C_{\lambda(R,i)} \neq \emptyset$, then $K_{\gamma(R,i,m)} = F_{\gamma(R,i,m)} \cap C_{\lambda(R,i)} = C_{\lambda(R,i)}$ for each $m \in \omega$. For $\eta = (m_{0}, \dots, m_{n(R)}) \in \omega^{n(R)+1}$, let $\Delta_{R,\eta} = \Gamma(R, 0, m_{0}) \times \dots \times \Gamma(R, n(R), m_{n(R)})$. For each $\eta \in \omega^{n(R)+1}$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(R))) \in \Delta_{R,\eta}$, let $K(\delta) = K_{\gamma(\delta,0)} \times \dots \times K_{\gamma(\delta,n(R))} \times \{a\} \times \dots \times \{a\} \times \dots$, and let $\mathcal{K}_{R,\eta} = \{K(\delta) : \delta \in \Delta_{R,\eta}\}$. Then $\mathcal{K}_{R,\eta} \subset \mathcal{K}$. For each $z \in E_{R}$, $\eta \in \omega^{n(R)+1}$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(R))) \in \Delta_{R,\eta}$, let $r(K_{(z,K(\delta))}) = \max\{n(K_{(z,K(\delta))}), n(R)\}$. Fix $z \in E_{R}$, $\eta \in \omega^{n(R)+1}$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(R))) \in \Delta_{R,\eta}$. Take an $O_{z,\delta} = U_{z,\delta} \times \prod_{i \in \omega} O_{z,\delta,i} \in \mathcal{O}'$ such that $K_{(z,K(\delta))} \subset O_{z,\delta}$ and $n(K_{(z,K(\delta))}) = n(O_{z,\delta})$. Then we can take a subset $H_{(z,K(\delta))} = H_{z,\delta} \times \prod_{i \in \omega} H_{(z,K(\delta)),i}$ of $Z \times X^{\omega}$ such that

- (4) $H_{z,\delta}$ is an open neighborhood of z in E_R such that $H_{z,\delta} \subset U_{z,\delta}$,
- (5) $H_{z,\delta} \times \prod_{i=0}^{n(K_{(z,K(\delta))})-1} clH_{(z,K(\delta)),i} \times X \times \cdots \times X \times \cdots \subset O_{z,\delta},$
- (6-1) For each i with $n(K_{(z,K(\delta))}) \leq i \leq r(K_{z,K(\delta))}$, let $H_{(z,K(\delta)),i} = F_{\gamma(\delta,i)}$,
- (6-2) For each $i < n(K_{(z, K(\delta))})$ with $i \le n(R)$, $H_{(z, K(\delta)), i}$ be an open subset of $F_{T(\delta, i)}$ such that $K_{T(\delta, i)} \subset H_{(z, K(\delta)), i} \subset clH_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,
 - (6-3) For each i with $n(R) < i < n(K_{(z, K(\delta))})$, let $H_{(z, K(\delta)), i} = \{a\}$,
- (6-4) In case of that $r(K_{(z,K(\delta))})=n(R)$, let $H_{(z,K(\delta)),i}=X$ for n(R)< i. In case of that $r(K_{(z,K(\delta))})=n(K_{(z,K(\delta))})>n(R)$, let $H_{(z,K(\delta)),i}=X$ for $n(K_{(z,K(\delta))})\leq i$.

Then we have $K_{(z,K(\delta))} \subset H_{(z,K(\delta))}$. For each $j \in \omega$, let $V_j(K(\delta)) = \{z \in E_R : n(K_{(z,K(\delta))}) = j\}$ and $\mathcal{H}_j(K(\delta)) = \{H_{z,\delta} : n(K_{(z,K(\delta))}) = j\}$. Fix $j \in \omega$. Then $\bigcup_{k=0}^j V_k(K(\delta)) = \bigcup_{k=0}^j (I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j\} = j$ where $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a perfect space, $I_{z,\delta} : n(K_{(z,K(\delta))}) \leq j$ is a

- (7) Every member of $\mathcal{D}_{\eta,\delta,j}$ is contained in some member of $\mathcal{H}_{j}(K(\delta))|$ $V_{j}(K(\delta)),$
 - (8) $\mathcal{D}_{n,\delta,j}$ covers $V_{j}(K(\delta))$,
 - (9) $\mathcal{D}_{\eta,\delta,j,k}$ is discrete in Z for each $k \in \omega$.

For $k \in \omega$ and $\xi \in \mathcal{Z}_{\eta, \delta, j, k}$, take a $z(\xi) \in V_j(K(\delta))$ such that $D_{\xi} \subset H_{z(\xi), \delta} \cap V_j(K(\delta))$.

Put $F_{\delta} = \prod_{i=0}^{n(R)} F_{\gamma(\delta,i)} \times X \times \cdots X \times \cdots$ and $D_{\xi,\delta} = D_{\xi} \times F_{\delta}$. Then $\{D_{\xi,\delta} : \eta \in \omega^{n(R)+1}, \delta \in \Delta_{R,\eta}, j, k \in \omega \text{ and } \xi \in \Xi_{\eta,\delta,j,k}\}$ is a collection of elements of \mathcal{R} such that for each $\eta \in \omega^{n(R)+1}$, $\delta \in \Delta_{R,\eta}$, $j, k \in \omega$ and $\xi \in \Xi_{\eta,\delta,j,k}$, $D_{\xi,\delta} \subset R$ and $\{D_{\xi,\delta} : \eta \in \omega^{n(R)+1}, \delta \in \Delta_{R,\eta}, j, k \in \omega \text{ and } \xi \in \Xi_{\eta,\delta,j,k}\}$ covers R.

(10) For each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$, $\{D_{\xi,\delta} : \delta \in \mathcal{A}_{R,\eta} \text{ and } \xi \in \mathcal{Z}_{\eta,\delta,j,k}\}$ is discrete in $Z \times X^{\omega}$.

Fix $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$. Let $(z, x) \in Z \times X^{\omega}$ and $x = (x_i)_{i \in \omega}$. For each $i \leq n(R)$, since R_i is a closed subset of X, we may assume that $x_i \in R_i$. Then, for each $i \leq n(R)$, there is an open neighborhood $B(x_i)$ of x_i in X such that $|\{\delta \in \Delta_{R,\eta} : \prod_{i=0}^{n(R)} B(x_i) \cap F_{\delta}(n(R)) \neq \emptyset\}| | \leq 1$, where $F_{\delta}(n(R)) = \prod_{i=0}^{n(R)} F_{\gamma(\delta,i)}$ for each $\delta \in \Delta_{R,\eta}$. Put $B'(x) = \prod_{i=0}^{n(R)} B(x_i)$ and $B(x) = B'(x) \times \prod_{i>n(R)} X_i$, where X_i is a copy of X for i > n(R). If $B'(x) \cap F_{\delta}(n(R)) = \emptyset$ for each $\delta \in \Delta_{R,\eta}$, then $Z \times B(x) \in \mathcal{B}$ and $(Z \times B(x)) \cap D_{\xi,\delta} = \emptyset$ for each $\delta \in \Delta_{R,\eta}$ and $\xi \in \Xi_{\eta,\delta,j,k}$. Otherwise, take a unique $\delta \in \Delta_{R,\eta}$ such that $B'(x) \cap F_{\delta}(n(R)) \neq \emptyset$. Since $\mathcal{D}_{\eta,\delta,j,k}$ is discrete in Z, there is an open neighborhood U of z in Z such that $|\{\xi \in \Xi_{\eta,\delta,j,k} : U \cap D_{\xi} \neq \emptyset\}| \leq 1$. Then $U \times B(x) \in \mathcal{B}$ and $|\{D_{\xi,\delta'} : D_{\xi,\delta'} \cap (U \times B(x)) \neq \emptyset, \delta' \in \Delta_{R,\eta} \text{ and } \xi \in \Xi_{\eta,\delta',j,k}\}|$ ≤ 1 . Thus $\{D_{\xi,\delta} : \delta \in \Delta_{R,\eta} \text{ and } \xi \in \Xi_{\eta,\delta,j,k}\}$ is discrete in $Z \times X^{\omega}$.

For each $\eta \in \omega^{n(R)+1}$, $\delta \in \mathcal{L}_{R,\eta}$, $j, k \in \omega$ and $\xi \in \mathcal{Z}_{\eta,\delta,j,k}$, let $G_{\xi,\delta} = D_{\xi} \times \prod_{i \in \omega} clH_{(z(\xi),K(\delta)),i} \subset D_{\xi,\delta}$ and $\mathcal{L}_{\eta,\delta,j,k}(R) = \{G_{\xi,\delta} : \xi \in \mathcal{L}_{\eta,\delta,j,k}\}$. Define $\mathcal{L}_{\eta,j,k}(R) = \bigcup \{\mathcal{L}_{\eta,\delta,j,k}(R) : \delta \in \mathcal{L}_{R,\eta}\}$ for each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$. Then we have

- (11) For each $\eta \in \omega^{n(R)+1}$, j, $k \in \omega$, every member of $\mathcal{G}_{\eta,j,k}(R)$ is contained in some member of \mathcal{O}' .
 - (12) For each $\eta \in \omega^{n(R)+1}$, $j, k \in \omega$, $\mathcal{G}_{\eta, j, k}(R)$ is discrete in $Z \times X^{\omega}$. This is clear from (10).
- (13) For each $\eta \in \omega^{n(R)+1}$, j, $k \in \omega$, every element of $\mathcal{G}_{\eta, j, k}$ has the length $\max\{j, n(R)+1\}$.

Fix $\eta \in \omega^{n(R)+1}$, $\delta = (\gamma(\delta), 0)$, \cdots , $\gamma(\delta, n(R))) \in \Delta_{R, \eta}$, $j, k \in \omega$ and $\xi \in \Xi_{\eta, \delta, j, k}$. Then $n(K_{(z(\xi), K(\delta))}) = j$ and hence, $r(K_{(z(\xi), K(\delta))}) = \max\{j, n(R)\}$. Let $A \in \mathcal{L}(\{0, 1, \cdots, r(K_{(z(\xi), K(\delta))})\})$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(R)$, i. e., $n(R) \geq j$. For each $i \in A$, let $R_{\xi, A, i} = F_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leq n(R)$, let $R_{\xi, A, i} = clH_{(z(\xi), K(\delta)), i}$. For each $i \in A$ with $i \leq n(R)$, let $R_{\xi, A, i} = r_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leq n(R)$, let $R_{\xi, A, i} = F_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leq n(R)$, let $R_{\xi, A, i} = clH_{(z(\xi), K(\delta)), i}$. Let n(R) < i < j. If $i \in A$, let $R_{\xi, A, i} = X - H_{(z(\xi), K(\delta)), i} = X - \{a\}$. If $i \notin A$, let $R_{\xi, A, i} = clH_{(z(\xi), K(\delta)), i}$. In each $i \in A$. For $i \geq j$, let $R_{\xi, A, i} = X$. Put $R_{\xi, A} = D_{\xi} \times \prod_{i \in \omega} R_{\xi, A, i}$. In each

case, $R_{\xi,A,i} \subset R_i$ for each $i \in \omega$. Notice that if $R_{\xi,A} \neq \emptyset$, then $n(R) < n(R_{\xi,A})$. By the definition, $D_{\xi,\delta} = G_{\xi,\delta} \cup \{\cup \{R_{\xi,A} : A \in \mathcal{Q}(\{0,1,\cdots,\max\{j,n(R)\}\})\}\})$. For each $A \in \mathcal{Q}(\{0,1,\cdots,\max\{j,n(R)\}\})$, let $\mathcal{R}_{\eta,\delta,j,k,A}(R) = \{R_{\xi,A} : \xi \in \mathcal{Z}_{\eta,\delta,j,k} \text{ and } R_{\xi,A} \neq \emptyset\}$. For $j, k \in \omega$ and $A \in \mathcal{Q}(\{0,1,\cdots,\max\{j,n(R)\}\})$, define $\mathcal{R}_{\eta,j,k,A}(R) = \bigcup \{\mathcal{R}_{\eta,\delta,j,k,A}(R) : \delta \in \mathcal{L}_{R,\eta}\}$. Then, by (10), we have

(14) Every $\mathcal{R}_{\eta,j,k,A}(R)$ is discrete in $Z \times X^{\omega}$.

Let $\mathcal{R}_{\eta, j, k}(R) = \bigcup \{\mathcal{R}_{\eta, j, k, A}(R) : A \in \mathcal{Q}(\{0, 1, \dots, \max\{j, n(R)\}\})\}$. Then, by (14),

- (15) For each $\eta \in \omega^{n(R)+1}$, $j, k \in \omega$, $\mathcal{R}_{\eta,j,k}(R)$ is locally finite in $Z \times X^{\omega}$.
- (16) For each $\eta \in \omega^{n(R)+1}$ and j, $k \in \omega$ with $\mathcal{R}_{\eta,j,k} \neq \emptyset$, every element of $\mathcal{R}_{\eta,j,k}$ has the length max $\{j, n(R)+1\}$.

Fix a $R_{\xi,A} = D_{\xi} \times \prod_{i \in \omega} R_{\xi,A,i} \in \mathcal{R}_{\eta,\delta,j,k,A}(R)$ for $\eta \in \omega^{n(R)+1}$, $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_{R,\eta}$, $j, k \in \omega$, $\xi \in \mathcal{E}_{\eta,\delta,j,k}$ and $A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(R)\}\})$.

(17) For each $i \in A$ with $i \le n(R)$ such that $C_{\lambda(R,i)} = \emptyset$, $s(R_i) \cap R_{\xi,A,i} = \emptyset$.

Since $R_{\xi,A,i} = F_{\gamma(\delta,i)} - H_{(z(\xi),K(\delta)),i}$, $s(R_i) \cap R_{\xi,A,i} = (\bigcup \mathcal{C}(R,i)) \cap (F_{\gamma(\delta,i)} - H_{(z(\xi),K(\delta)),i}) = K_{\gamma(\delta,i)} - H_{(z(\xi),K(\delta)),i} = \emptyset$.

For each $i \notin A$ with $i \le n(R)$, a compact set $K_{\gamma(\delta,i)}$ is contained in $R_{\xi,A,i} = clH_{(z(\xi),K(\delta)),i}$. Let $C_{\lambda(R\xi,A,i)} = K_{\gamma(\delta,i)}$. For each $i \notin A$ with n(R) < i < j, let $C_{\lambda(R\xi,A,i)} = \{a\}$. For each $i \in A$, let $C_{\lambda(R\xi,A,i)} = \emptyset$.

For $t \in \omega$, we shall inductively construct an index set Φ_t and two collections \mathcal{G}_{τ} and \mathcal{R}_{τ} for each $\tau \in \Phi_t$ satisfying

- (18) For $t \ge 1$ and $\tau \in \Phi_t$, $\tau_- \in \Phi_{t-1}$,
- (19) For $t \in \omega$ and $\tau \in \Phi_t$, \mathcal{G}_{τ} and \mathcal{R}_{τ} are collections of elements of \mathcal{R} ,
- (20) For $t \in \omega$ and $\tau \in \Phi_t$ with $\mathfrak{R}_{\tau} \neq \emptyset$, elements of \mathfrak{R}_{τ} have the same length.

Let $\Phi_0 = \omega^3$. For each $\tau = (m, j, k) \in \Phi_0$, let $\mathcal{G}_\tau = \mathcal{G}_\tau(Z \times X^\omega) = \mathcal{G}_{m,j,k}(Z \times X^\omega)$ and $\mathcal{R}_\tau = \mathcal{R}_\tau(Z \times X^\omega) = \mathcal{R}_{m,j,k}(Z \times X^\omega)$. Let $\tau = (m, j, k) \in \Phi_0$. By the construction, \mathcal{G}_τ and \mathcal{R}_τ are collections of elements of \mathcal{R} . Assume that $\mathcal{R}_\tau \neq \emptyset$. By (16), elements of \mathcal{R}_τ have the same length. Thus \mathcal{G}_τ and \mathcal{R}_τ , $\tau \in \Phi_0$, satisfy the conditions (19) and (20). Assume that for $t \in \omega$, we have already obtained an index set Φ_i , for $i \leq t$, and families $\left\{\mathcal{G}_\tau \colon \tau \in \bigcup_{t=0}^t \Phi_t\right\}$, $\left\{\mathcal{R}_\tau \colon \tau \in \bigcup_{t=0}^t \Phi_t\right\}$ satisfying the conditions (18), (19) and (20). Take a $\tau \in \Phi_t$ with $\mathcal{R}_\tau \neq \emptyset$. By (20), elements of \mathcal{R}_τ have the same length. So we denote this length by $n(\tau)$. Let $\Phi_\tau = \{\tau \oplus (\eta, j, k) \colon \eta \in \omega^{n(\tau)+1}, j, k \in \omega\}$. For each $R \in \mathcal{R}_\tau$ and $\eta \in \omega^{n(\tau)+1}, j, k \in \omega$, we denote $\mathcal{G}_{\eta,j,k}(R)$ and $\mathcal{R}_{\eta,j,k}(R)$ by $\mathcal{G}_{\tau \oplus (\eta,j,k)}(R)$ and $\mathcal{R}_{\tau \oplus (\eta,j,k)}(R)$ respectively. Define $\mathcal{G}_{\tau \oplus (\eta,j,k)} = \cup \{\mathcal{G}_{\tau \oplus (\eta,j,k)}(R) \colon R \in \mathcal{R}_\tau\}$ and $\mathcal{R}_{\tau \oplus (\eta,j,k)} = \cup \{\mathcal{R}_{\tau \oplus (\eta,j,k)}(R) \colon R \in \mathcal{R}_\tau\}$ and $\mathcal{R}_{\tau \oplus (\eta,j,k)}(R) \colon R \in \mathcal{R}_\tau\}$. Let $\Phi_{t+1} = \cup \{\Phi_\tau \colon \tau \in \Phi_t \text{ and } \mathcal{R}_\tau \neq \emptyset\}$. Then, by (16) and the construction, Φ_{t+1} , families $\{\mathcal{G}_\mu \colon \mu \in \Phi_{t+1}\}$ and $\{\mathcal{R}_\mu \colon \mu \in \Phi_{t+1}\}$ satisfy the conditions (18),

(19) and (20). Thus, for each $t \in \omega$, we heve an index set Φ_t , families $\{\mathcal{G}_{\tau}: \tau \in \Phi_t\}$ and $\{\mathcal{R}_{\tau}: \tau \in \Phi_t\}$ satisfying the conditions (18), (19) and (20). Let $\Phi = \bigcup \{\Phi_t: t \in \omega\}$. Then $|\Phi| \leq \omega$.

By Lemmas 2.4 and 3.2, our proof is complete if we show

CLAIM. $\cup \{\mathcal{G}_{\tau} : \tau \in \Phi\}$ is a σ -locally finite closed refinement of \mathcal{O}' .

PROOF OF CLAIM. Let $\tau \in \Phi$. By (19), $\mathcal{G}_{\tau} \subset \mathcal{R}$. By (11), every member of \mathcal{G}_{τ} is contained in some member of \mathcal{O}' . By (12), (15) and induction, \mathcal{G}_{τ} is locally finite in $Z \times X^{\omega}$. Assume that $\bigcup \{ \mathcal{G}_{\tau} : \tau \in \Phi \}$ does not cover $Z \times X^{\omega}$. Take a point $(z, x) \in Z \times X^{\omega} - \bigcup \{ \bigcup \mathcal{G}_{\tau} : \tau \in \Phi \}$. Let $x = (x_i)_{i \in \omega}$. Take an $\eta(0) = m(0) \in \omega$ and $\delta(0) = \gamma(\delta(0), 0) \in \Delta_{Z \times X} \omega, \gamma(0) = \Gamma(Z \times X^{\omega}, 0, m(0))$ such that $x \in F_{\delta(0)}$. Put $\mathfrak{F}(0) = \Gamma(Z \times X^{\omega}, 0, m(0))$ $\{F_{i(\delta(0),0)}\}$. Let $K(0)=K(\delta(0))\in \mathcal{K}_{Z\times X}$ w, $\eta(0)$ and let $j(0)=n(K_{(z,K(0))})$. Choose a $k(0) \in \omega$ such that $(z, x) \in \bigcup \mathcal{G}_{\eta(0), j(0), k(0)}(Z \times X^{\omega}) \cup (\bigcup \mathcal{R}_{\eta(0), j(0), k(0)}(Z \times X^{\omega}))$. Let $\tau(0) = (\eta(0), j(0), k(0)) \in \Phi_0. \quad \text{Take a } \xi(0) \in \mathcal{Z}_{\eta(0), \delta(0), j(0), k(0)} \quad \text{such that } z \in D_{\xi(0)}.$ Put $\mathcal{H}(0) = \{H_{(z(\xi(0)), K(0)), i} : i \leq j(0)\}$. Since $(z, x) \notin \bigcup \mathcal{G}_{\tau(0)}$, there is an $A(0) \in$ $\mathcal{L}(\{0, 1, \dots, j(0)\})$ such that $(z, x) \in R_{\xi(0), A(0)}, R_{\xi(0), A(0)} \in \mathcal{R}_{\tau(0)}(Z \times X^{\omega})$. By the definition, if $0 \in A(0)$, then $R_{\xi(0), A(0), 0} = F_{\chi(\delta(0), 0)} - H_{(z(\xi(0)), K(0)), 0}$. We have 0 = $n(Z\times X^{\omega})< n(R_{\xi(0),A(0)}). \quad \text{For } R_{\xi(0),A(0)}, \quad \text{take} \quad \eta(1)\in \pmb{\omega}^{n(R_{\xi(0),A(0)})+1}, \quad \pmb{\delta}(1)=(\gamma(\pmb{\delta}(1)),A(0))^{-1})$ 0), ..., $\gamma(\delta(1), n(R_{\xi(0), A(0)}))) \in \Delta_{R_{\xi(0), A(0)}, \gamma(1)}$ such that $x \in F_{\delta(1)}$. Put $\mathfrak{F}(1) = \{F_{\gamma(\delta(1), i)}: \{F_{\gamma(\delta(1), i)}:$ $i \le n(R_{\xi(0), A(0)})$. Let $K(1) = K(\delta(1)) \in \mathcal{K}_{R_{\xi(0), A(0)}, \eta(1)}$ and $j(1) = n(K_{(z, K(1))})$. Take a $k(1) \in \omega$ such that $(z, x) \in \bigcup \mathcal{G}_{\eta(1), j(1), k(1)}(R_{\xi(0), A(0)}) \cup (\bigcup \mathcal{R}_{\eta(1), j(1), k(1)}(R_{\xi(0), A(0)})).$ Let $\tau(1) = ((\eta(0), j(0), k(0)), (\eta(1), j(1), k(1))) \in \Phi_1$. Take a $\xi(1) \in \Xi_{\eta(1), \delta(1), j(1), k(1)}$ such that $z \in D_{\xi(1)}$. Put $\mathcal{H}(1) = \{H_{(z(\xi(1)), K(1)), i} : i \leq \max\{j(1), n(R_{\xi(0), A(0)})\}\}$. Since $(z, x) \notin \bigcup \mathcal{G}_{\tau(1)}$, there is an $A(1) \in \mathcal{P}(\{0, 1, \dots, \max\{j(1), n(R_{\xi(0), A(0)})\}\})$ such that $(z, x) \in R_{\xi(1), A(1)}, R_{\xi(1), A(1)} \in \mathcal{R}_{\tau(1)}(R_{\xi(0), A(0)}).$ Then, if $i \in A(1)$ with $i \leq n(R_{\xi(0), A(0)}),$ then $R_{\xi(1),A(1),i} = F_{\gamma(\delta(1),i)} - H_{(z(\xi(1)),K(1)),i}$. We have $n(R_{\xi(0),A(0)}) < n(R_{\xi(1),A(1)})$. Continuing this matter, we can choose a sequence $\{\eta(t):t\in\omega\}$ of elements of $\boldsymbol{\omega}^{<\omega}$, a sequence $\{\boldsymbol{\delta}(t):t\in\boldsymbol{\omega}\}$, a sequence $\{\boldsymbol{\mathcal{F}}(t):t\in\boldsymbol{\omega}\}$ of collections, a sequence $\{K(t): t \in \omega\}$ of compact subsets in X^{ω} , where $K(t) = \prod_{i \in \omega} K(t)_i \in \mathcal{K}$, sequences $\{j(t): t \in \omega\}, \{k(t): t \in \omega\}$ of natural numbers, a sequence $\{\tau(t): t \in \omega\}$ of elements of Φ , where $\tau(t) = ((\eta(0), j(0), k(0)), \dots, (\eta(t), j(t), k(t))),$ a sequence $\{\xi(t): t \in \omega\}$, a sequence $\{\mathcal{H}(t):t\in\boldsymbol{\omega}\}\$ of collections, a sequence $\{A(t):t\in\boldsymbol{\omega}\}\$ of finite subsets of ω , a sequence $\{R_{\xi(t),A(t)}: t \in \omega\}$ of elements of \mathcal{R} containing (z, x), where $R_{\xi(t),A(t)} = D_{\xi(t)} \times \prod_{i \in \omega} R_{\xi(t),A(t),i}$, satisfying the following: Let $t \in \omega$. Assume that we have already obtained sequences $\{\eta(i): i \leq t\}$, $\{\delta(i): i \leq t\}$, $\{\mathcal{F}(i): i \leq t\}$, $\{K(i): i \leq t\}$ $i \le t$, $\{j(i): i \le t\}$, $\{k(i): i \le t\}$, $\{\tau(i): i \le t\}$ $\{\xi(i): i \le t\}$, $\{\mathcal{H}(i): i \le t\}$, $\{A(i): i \le t\}$ and $\{R_{\xi(i),A(i)}: i \leq t\}$. Then

- (21) $\eta(t+1) \in \boldsymbol{\omega}^{n(R_{\xi(t),A(t)})+1}$,
- (22) $\delta(t+1) = (\gamma(\delta(t+1), 0), \dots, \gamma(\delta(t+1), n(R_{\xi(t), A(t)}))) \in \mathcal{A}_{R\xi(t), A(t)}, \eta(t+1)$ such that $x \in F_{\delta(t+1)}$, and $\mathfrak{F}(t+1) = \{F_{\gamma(\delta(t+1), i)} : i \leq n(R_{\xi(t), A(t)})\}$,
 - (23) $K(t+1)=K(\delta(t+1))\in \mathcal{K}_{R\xi(t),A(t),\eta(t+1)}$,
- $(24) \quad j(t+1) = n(K_{(\mathbf{z}, K(t+1))}), \quad k(t+1) \in \boldsymbol{\omega} \quad \text{and} \quad \tau(t+1) = ((\eta(0), j(0), k(0)), \cdots, (\eta(t+1), j(t+1), k(t+1))) \in \boldsymbol{\Phi}_{t+1},$
- $(25) \quad \xi(t+1) \in \mathcal{Z}_{\xi(t+1),\delta(t+1),j(t+1),k(t+1)}, \quad \mathcal{H}(t+1) = \{H_{(z(\xi(t+1)),K(t+1)),i}: \quad i \leq \max\{j(t+1), n(R_{\xi(t),A(t)})\}\} \quad \text{and} \quad A(t+1) \in \mathcal{Q}(\{0,1,\cdots,\max\{j(t+1), n(R_{\xi(t),A(t)})\}),$
- (26) If $i \in A(t+1)$ with $i \le n(R_{\xi(t),A(t)})$, then $R_{\xi(t+1),A(t+1),i} = F_{\gamma(\delta(t+1),i)} H_{(z(\xi(t+1)),K(t+1)),i}$,
- $(27) \quad (z, \ x) \in R_{\xi(t+1), A(t+1)} = D_{\xi(t+1)} \times \prod_{t \in \omega} R_{\xi(t+1), A(t+1), i}, \ R_{\xi(t+1), A(t+1)} \in \mathcal{R}_{\tau(t+1)}(R_{\xi(t), A(t)}), \text{ and } n(R_{\xi(t), A(t)}) < nR_{\xi(t+1), A(t+1)}),$
- (28) For each $i \leq n(R_{\xi(t),A(t)})$ with $i \in A(t+1)$ such that $C_{\lambda(R_{\xi(t),A(t)},i)} = \emptyset$, $s(R_{\xi(t),A(t),i}) \cap R_{\xi(t+1),A(t+1),i} = \emptyset$,
- (29) For each $i \leq n(R_{\xi(t),A(t)})$ with $i \notin A(t+1)$ such that $C_{\lambda(R_{\xi(t),A(t)},i)} \neq \emptyset$, $K(t+1)_i = C_{\lambda(R_{\xi(t),A(t)},i)}$.

The rest of the proof is similar to that of Theorem 3.2 in the author [17]. However we include it here, because the method of it plays the fundamental role in this paper.

Assume that for each $i \in \omega$, $|\{t \in \omega : i \in A(t)\}| < \omega$. Then for each $i \in \omega$, there is a $t_i \in \omega$ such that $i \le t_i$ and if $t \ge t_i$, then $i \notin A(t)$. Then, by (29),

(30) For each $i \in \omega$ and $t \ge t_i$, $K(t)_i = K(t_i)_i$.

Let $K = \prod K(t_i)_i \in \mathcal{K}$. There is an $O \in \mathcal{O}'$ such that $K_{(z,K)} \subset O$. By (27) and (30), take a $t \ge 1$ such that $n(O) \le n(R_{\xi(t-1),A(t-1)})$ and if $i \le n(O)$, then $K(t)_i =$ $K(t_i)_i$. Then we have $K_{(z,K(t))} \subset O$ and hence, $j(t) = n(K_{(z,K(t))}) \leq n(O)$. Since $\xi(t) \in \mathcal{Z}_{\eta(t), \delta(t), j(t), k(t)}, \ n(K_{(z(\xi(t)), K(t))}) = j(t).$ For $i \text{ with } n(O) \le i \le n(R_{\xi(t-1), A(t-1)}),$ by the definition, $H_{(z(\xi(t)),K(t)),i}=F_{r(\delta(t),i)}$. Hence $A(t)\cap\{n(O),\cdots,n(R_{\xi(t-1),A(t-1)})\}$ $=\emptyset$. Since $(z, x) \in R_{\xi(t), A(t)}$ and $R_{\xi(t), A(t)} \in \mathcal{R}_{\tau(t)}(R_{\xi(t-1), A(t-1)})$, there is an $i \in \mathbb{R}$ A(t) such that $x_i \notin H_{(z(\xi(t)), K(t)), i}$. Thus i < n(O) and $x_i \in R_{\xi(t), A(t), i} = F_{\gamma(\delta(t), i)}$ $H_{(z(\xi(t)), K(t)), i}$. Since $i \in A(t)$, $t < t_i$. For each t' > t, $K(t')_i \subset R_{\xi(t), A(t), i}$. Thus $K(t_i)_i \subset R_{\xi(t), A(t), i}$. Since $K(t)_i \subset H_{(z(\xi(t)), K(t)), i}$, we have $K(t)_i \neq K(t_i)_i$. This is a contradiction. Therefore there is an $i \in \omega$ such that $|\{t \in \omega : i \in A(t)\}| = \omega$. Let $\{t \in \omega : i \in A(t) \text{ and } i \leq n(R_{\xi(t),A(t)})\} = \{t_{\rho} : \rho \in \omega\}$. Let $\rho \in \omega$. Since $C_{\lambda(R\xi(t_{\rho}),A(t_{\rho}),i)} = \emptyset$, if $t_{\rho+1} = t_{\rho} + 1$, then, by (28), $s(R_{\xi(t_{\rho}),A(t_{\rho}),i}) \cap R_{\xi(t_{\rho+1}),A(t_{\rho+1}),i}$ $=\emptyset. \quad \text{Assume} \quad \text{that} \quad t_{\rho+1} > t_{\rho} + 1. \quad \text{Since} \quad K_{\gamma(\delta(t_{\rho}+1),\,i)} = C_{\lambda(R\xi(t_{\rho}+1),\,A(t_{\rho}+1),\,i)} =$ by the definition, we have $C_{\lambda(R\xi(t_{\rho+1}-1),A(t_{\rho+1}-1),i)} \subset H_{(z(\xi(t_{\rho+1})),K(t_{\rho+1})),i)}$ $s(R_{\xi(t_{\rho}),A(t_{\rho}),i}) \cap R_{\xi(t_{\rho+1}),A(t_{\rho+1}),i} = \emptyset$. Since s is a stationary winning strategy

for Player I in $G(\mathcal{DC}, X)$, $\bigcap_{\rho \in \omega} R_{\xi(t_{\rho}), A(t_{\rho}), i} = \emptyset$. But $x_i \in \bigcap_{\rho \in \omega} R_{\xi(t_{\rho}), A(t_{\rho}), i}$, which is a contradiction. It follows that $\bigcup \{\mathcal{G}_{\tau} \colon \tau \in \Phi\}$ is a cover of $Z \times X^{\omega}$. The proof is completed.

COROLLARY 4.2. If Z is a perfect subparacompact space and Y_i is a regular subparacompact space with a σ -closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

PROOF. This immediately follows from Theorem 4.1 and Lemma 2.3(a).

Similarly, by Theorem 4.1 and Lemma 2.3(b), we have

COROLLARY 4.3. If Z is a perfect subparacompact space and Y_i is a regular subparacompact, σ -C-scattered space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

REMARK 4.4. Let M be the Michael line and let P be the space of irrationals. P is homeomorphic to ω^{ω} . The following are well-known (see D. K. Burke [4]).

- (a) M is hereditarily paracompact but $M \times P$ is not normal and hence, not paracompact.
- (b) $M \times P$ is hereditarily subparacompact and hereditarily metacompact (see also P. Nyikos [15]).

5. Metacompactness, orthocompactness and metalindelöf property.

Theorem 5.1. If Y_i is a regular metacompact \mathcal{DC} -like space for each $i \in \omega$, then $\prod Y_i$ is metacompact.

PROOF. We may assume that $Y_i = X$ for each $i \in \omega$ and there is an isolated point a in X. Let \mathcal{O} be an open cover of $Z \times X^{\omega}$. Similarly, let $\mathcal{O}' = \{B \in \mathcal{B} : B \subset O \text{ for some } O \in \mathcal{O}^F\}$. For $K \in \mathcal{K}$, there is an $O \in \mathcal{O}^F$ such that $K \subset O$. Then there is a $B \in \mathcal{B}$ such that $K \subset B \subset O$. Define $n(K) = \inf\{n(O) : O \in \mathcal{O}' \text{ and } K \subset O\}$. It suffices to prove that \mathcal{O}' has a point finite open refinement.

Let s be a stationary winning strategy for Player I in $G(\mathcal{DC}, X)$. Let $B = \prod_{i \in \omega} B_i \in \mathcal{B}$ such that for each $i \leq n(B)$, we have already obtained a compact set $C_{\lambda(B,i)}$ of clB_i . $(C_{\lambda(B,n(B))} = \emptyset$. $C_{\lambda(B,i)} = \emptyset$ may be occur for i < n(B).) We define $\mathcal{G}(B)$ and $\mathcal{B}(B)$ of collections of elements of \mathcal{B} . Fix $i \leq n(B)$. If $C_{\lambda(B,i)}$

 $\neq \emptyset$, let $W_{\gamma(B,i)} = B_i$. Put $\Lambda(B,i) = \{\lambda(B,i)\}$ and $\Gamma(B,i) = \{\gamma(B,i)\}$. Let $\mathcal{C}(B,i) = \{C_{\lambda} : \lambda \in \Lambda(B,i)\} = \{C_{\lambda(B,i)}\}$, and $\mathcal{W}(B,i) = \{W_{\gamma} : \gamma \in \Gamma(B,i)\} = \{W_{\gamma(B,i)}\}$. Assume that $C_{\lambda(B,i)} = \emptyset$. Then there is a discrete collection $\mathcal{C}(B,i) = \{C_{\lambda} : \lambda \in \Lambda(B,i)\}$ of compact subsets of X such that $s(clB_i) = \bigcup \mathcal{C}(B,i)$. Since X is a regular metacompact space, there is a collection $\mathcal{W}(B,i) = \{W_{\gamma} : \gamma \in \Gamma(B,i)\}$ of open subsets in B_i (and hence, in X) satisfying

- (1) $\mathcal{W}(B, i)$ covers B_i ,
- (2) For each $\gamma \in \Gamma(B, i)$, clW_{γ} meets at most one member of C(B, i),
- (3) $\mathcal{W}(B, i)$ is point finite in B_i and hence, point finite in X.

In each case, for $\gamma \in \Gamma(B,i)$, $K_{\gamma} = clW_{\gamma} \cap C_{\lambda}$ if $clW_{\gamma} \cap C_{\lambda} \neq \emptyset$ for some (unique) C_{λ} . If $clW_{\gamma} \cap (\cup \mathcal{C}(B,i)) = \emptyset$, then we take a point $p \in W_{\gamma}$ and let $K_{\gamma} = \{p_{\gamma}\}$. Thus, if $C_{\lambda(B,i)} \neq \emptyset$, then $K_{\gamma(B,i)} = clW_{\gamma(B,i)} \cap C_{\lambda(B,i)} = C_{\lambda(B,i)}$. Put $\Delta_{B} = \Gamma(B,0) \times \cdots \times \Gamma(B,n(B))$. For each $\delta = (\gamma(\delta,0),\cdots,\gamma(\delta,n(B))) \in \Delta_{B}$, let $K(\delta) = K_{\gamma(\delta,0)} \times \cdots \times K_{\gamma(\delta,n(B))} \times \{a\} \times \cdots \times \{a\} \times \cdots$, and let $\mathcal{K}_{B} = \{K(\delta): \delta \in \Delta_{B}\}$. Then $\mathcal{K}_{B} \subset \mathcal{K}$. For each $\delta = (\gamma(\delta,0),\cdots,\gamma(\delta,n(B))) \in \Delta_{B}$, let $r(K(\delta)) = \max\{(n(K(\delta)),n(B))\}$. Fix a $\delta = (\gamma(\delta,0),\cdots,\gamma(\delta,n(B))) \in \Delta_{B}$. Take an $O(\delta) = \prod_{i \in \omega} O(\delta)_{i} \in \mathcal{O}'$ such that $K(\delta) \subset O(\delta)$ and $n(K(\delta)) = n(O(\delta))$. Since X is a regular space, there is an $H(\delta) = \prod_{i \in \omega} H(\delta)_{i} \in \mathcal{B}$ such that:

- (4) $\prod_{t=0}^{n(K(\delta))-1} clH(\delta)_i \times X \times \cdots \times X \times \cdots \subset O(\delta),$
- (5-1) For each i with $n(K(\delta)) \le i \le r(K(\delta))$, let $H(\delta)_i = X$,
- (5-2) For each $i < n(K(\delta))$ with $i \le n(B)$, let $H(\delta)_i$ be an open subset of X such that $K_{\gamma(\delta,i)} \subset H(\delta)_i \subset clH(\delta)_i \subset O(\delta)_i$,
 - (5-3) For each i with $n(B) < i < n(K(\delta))$, let $H(\delta)_i = \{a\}$,
- (5-4) In case of that $r(K(\delta)) = n(B)$, let $H(\delta)_i = X$ for n(B) < i. In case of that $r(K(\delta)) = n(K(\delta)) > n(B)$, let $H(\delta)_i = X$ for $n(K(\delta)) \le i$.

Then we have $K(\delta)(\subset H\delta)$. Put $W(\delta)=\prod_{i=0}^{n(B)}W_{r(\delta,i)}\times X\times\cdots\times X\times\cdots$. Then $\{W(\delta):\delta\in\varDelta_B\}$ is a collection of elements of $\mathcal B$ such that for each $\delta\in\varDelta_B$, $W(\delta)\subset B$ and $\{W(\delta):\delta\in\varDelta_B\}$ covers B. By the definition, we have

(6) $\{W(\delta): \delta \in \Delta_B\}$ is point finite in X^{ω} .

Fix a $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$. In case of that $r(K(\delta)) = n(B)$. For each $i \leq n(B)$, let $G(\delta)_i = O(\delta)_i \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $G(\delta)_i = X$. Put $G(\delta) = \prod_{i \in \omega} G(\delta)_i$. In case of that $r(K(\delta)) = n(K(\delta)) > n(B)$. For each $i \leq n(B)$, let $G(\delta)_i = O(\delta)_i \cap W_{\gamma(\delta, i)}$. For each i with $n(B) < i < n(K(\delta))$, let $G(\delta)_i = H(\delta)_i = \{a\}$. For each $i > n(K(\delta))$, let $G(\delta)_i = X$. Put $G(\delta) = \prod_{i \in \omega} G(\delta)_i$. Then we have $G(\delta) \subset W(\delta)$. Define $\mathcal{G}(B) = \{G(\delta) : \delta \in \Delta_B\}$. Then

- (7) Every member of $\mathcal{G}(B)$ is contained in some member of \mathcal{O}' .
- (8) $\mathcal{G}(B)$ is point finite in X^{ω} .

This is clear from (6).

Fix $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B$. Let $A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$. In case of that $r(K(\delta)) = n(B)$. For each $i \in A$, let $B_{\delta, A, i} = W_{\gamma(\delta, i)} - clH(\delta)_i$. For each $i \notin A$ with $i \le n(B)$, let $B_{\delta, A, i} = O(\delta)_i \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $B_{\delta, A, i} = X$. Put $B_{\delta, A} = \prod_{i \in \omega} B_{\delta, A, i}$. In case of that $r(K(\delta)) = n(K(\delta)) > n(B)$. For each $i \in A$ with $i \le n(B)$, let $B_{\delta, A, i} = W_{\gamma(\delta, i)} - clH(\delta)_i$. For each $i \notin A$ with $i \le n(B)$, let $B_{\delta, A, i} = O(\delta)_i \cap W_{\gamma(\delta, i)}$. Let $n(B) < i < n(K(\delta))$. If $i \in A$, let $B_{\delta, A, i} = X - clH(\delta)_i = X - \{a\}$. If $i \notin A$, let $B_{\delta, A, i} = H(\delta)_i = \{a\}$. For $i \ge n(K(\delta))$, let $B_{\delta, A, i} = X$. Put $B_{\delta, A} = \prod_{i \in \omega} B_{\delta, A, i}$. In each case, $B_{\delta, A, i} \subset B_i$ for each $i \in \omega$. We have that if $B_{\delta, A} \neq \emptyset$, then $n(B) < n(B_{\delta, A})$. Let $\mathcal{B}_{\delta}(B) = \{B_{\delta, A} : A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$ and $B_{\delta, A} \neq \emptyset$. By the definition, $W(\delta) = G(\delta) \cup (\cup \mathcal{B}_{\delta}(B))$. Define $\mathcal{B}(B) = \cup \{\mathcal{B}_{\delta}(B) : \delta \in \Delta_B\}$. Then, by (6), we have

(9) $\mathcal{B}(B)$ is point finite in X^{ω} .

Fix a $B_{\delta,A} = \prod_{i \in \omega} B_{\delta,A,i} \in \mathcal{B}_{\delta}(B)$ for $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_B$ and $A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$.

(10) For each $i \in A$ with $i \le n(B)$ such that $C_{\lambda(B,i)} = \emptyset$, $s(clB_i) \cap clB_{\delta,A,i} = \emptyset$. Since $B_{\delta,A,i} = W_{\gamma(\delta,i)} - clH(\delta)_i$, $s(clB_i) \cap clB_{\delta,A,i} \subset (\bigcup \mathcal{C}(B,i)) \cap (clW_{\gamma(\delta,i)} - H(\delta)_i) = K_{\gamma(\delta,i)} - H(\delta)_i = \emptyset$.

For each $i \notin A$ with $i \leq n(B)$, since $clB_{\delta, A, i} = cl(O(\delta)_i \cap W_{\gamma(\delta, i)}) \supset O(\delta)_i \cap clW_{\gamma(\delta, i)}$, a compact set $K_{\gamma(\delta, i)}$ is contained in $clB_{\delta, A, i}$. Let $C_{\lambda(B_{\delta, A}, i)} = K_{\gamma(\delta, i)}$. For each $i \notin A$ with $n(B) < i < n(K(\delta))$, let $C_{\lambda(B_{\delta, A}, i)} = \{a\}$. For each $i \in A$, let $C_{\lambda(B_{\delta, A}, i)} = \emptyset$.

Now we define \mathcal{G}_j and \mathcal{B}_j for each $j \in \omega$. Let $\mathcal{G}_0 = \mathcal{G}_0(X^\omega) = \mathcal{G}(X^\omega)$ and $\mathcal{B}_0 = \mathcal{B}_0(X^\omega) = \mathcal{B}(X^\omega)$. Assume that for $j \in \omega$, we have already obtained \mathcal{G}_j and \mathcal{B}_j . For each $B \in \mathcal{B}_j$, we denote $\mathcal{G}(B)$ and $\mathcal{B}(B)$ by $\mathcal{G}_{j+1}(B)$ and $\mathcal{B}_{j+1}(B)$ respectively. Define $\mathcal{G}_{j+1} = \bigcup \{\mathcal{G}_{j+1}(B) \colon B \in \mathcal{B}_j\}$ and $\mathcal{B}_{j+1} = \bigcup \{\mathcal{G}_{j+1}(B) \colon B \in \mathcal{B}_j\}$.

Our proof is complete if we show

CLAIM. $\bigcup \{\mathcal{G}_i : j \in \omega\}$ is a point finite open refinement of \mathcal{O}' .

PROOF OF CLAIM. Let $j \in \omega$. By the construction, $\mathcal{G}_j \subset \mathcal{B}$. By (7), every member of \mathcal{G}_j is contained in some member of \mathcal{O}' . By (8), (9) and induction, \mathcal{G}_j is point finite in X^ω . Take a $x = (x_i)_{i \in \omega} \in X^\omega$. Let $\Delta(0) = \{\delta \in \Delta_{X^\omega} : x \in W(\delta)\}$. Then, by (6), $1 \leq |\Delta(0)| < \omega$. Let $\mathcal{K}(0) = \{K(\delta) : \delta \in \Delta(0)\}$. Put $\mathcal{H}(0) = \{H(\delta) : \delta \in \Delta(0)\}$, $\mathcal{W}(0) = \{W(\delta) : \delta \in \Delta(0)\}$ and $\mathcal{G}(0) = \{G(\delta) : \delta \in \Delta(0)\} \subset \mathcal{G}_0$. For each $\delta \in \Delta(0)$, let $\mathcal{A}(\delta) = \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$, and let $\mathcal{A}(0) = \bigcup \{\mathcal{A}(\delta) : \delta \in \Delta(0)\}$. Let $\mathcal{B}(0) = \bigcup \{\mathcal{B}_{\delta}(X^\omega) : \delta \in \Delta(0)\}$. Then $\mathcal{B}(0) \subset \mathcal{B}_0$. By the definition, for each $\delta = \gamma(\delta, 0) \in \mathcal{A}(\delta)$

 $\Delta(0)$ and $A \in \mathcal{A}(\delta)$ with $0 \in A$, $B_{\delta, A, 0} = W_{\gamma(\delta, 0)} - clH(\delta)_0$. Since $W(\delta) = G(\delta) \cup \mathcal{A}(\delta)$ $(\cup \mathcal{B}_{\delta}(X^{\omega}))$ for each $\delta \in \Delta(0)$, $1 \leq |\mathcal{G}(0) \cup \mathcal{B}(0)| < \omega$. Observe that $(\mathcal{G}_0 \cup \mathcal{B}_0)_x \subset \mathcal{B}_0$ $\mathcal{G}(0) \cup \mathcal{B}(0)$. Take a $B \in \mathcal{B}(0)$. Let $\Delta(B) = \{\delta' \in \Delta_B : x \in W(\delta')\}$ and let $\Delta(1) = \{\delta' \in \Delta_B : x \in W(\delta')\}$ $\bigcup \{\Delta(B) \colon B \in \mathcal{B}(0)\}.$ Let $\mathcal{K}(1) = \{K(\delta) \colon \delta \in \Delta(1)\}.$ Put $\mathcal{K}(1) = \{H(\delta) \colon \delta \in \Delta(1)\},$ $\mathcal{W}(1) = \{W(\delta) : \delta \in \Delta(1)\}\$ and $\mathcal{G}(1) = \{G(\delta) : \delta \in \Delta(1)\} \subset \mathcal{G}_1$. Define $\mathcal{A}(\delta)$ for each $\delta \in \Delta(1)$ $\Delta(1)$, and A(1) as before. Let $\mathfrak{B}(1) = \bigcup \{\mathfrak{B}_{\delta}(B) : B \in \mathfrak{B}(0) \text{ and } \delta \in \Delta(B)\} \subset \mathfrak{B}_{1}$. Let $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta(B)$ and $B \in \mathcal{B}(0)$. For each $A \in \mathcal{A}(\delta)$, if $i \in A$ with $i \leq n(B)$, then $B_{\delta, A, i} = W_{\gamma(\delta, i)} - clH(\delta)_i$. We have $|\mathcal{G}(1) \cup \mathcal{B}(1)| < \omega$ and $(\mathcal{G}_1 \cup \mathcal{B}_1)_x \subset \mathcal{G}(1) \cup \mathcal{B}(1)$. Continuing this matter, we can choose a collection $\{\Delta(j): j \in \omega\}$, a family $\{\mathcal{K}(j): j \in \omega\}$ of collections of compact subsets of X^{ω} , where for each $K \in \mathcal{K}(j)$ and $j \in \omega$, $K = \prod_{i \in \omega} K_i \in \mathcal{K}$, families $\{\mathcal{H}(j): j \in \omega\}$, $\{\mathcal{W}(j): j \in \omega\}, \{\mathcal{G}(j): j \in \omega\}$ of collections of elements of \mathcal{B} , a family $\{\mathcal{A}(j): j \in \omega\}$ $j \in \omega$ of collections of finite subsets of ω and a family $\{\mathcal{B}(j): j \in \omega\}$ of collections of elements of \mathcal{B} such that for $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}(B), B \in$ $\mathcal{B}(j-1)$, where $B_{\delta(-1),A(-1)} = X^{\omega}$, and $\mathcal{B}_{-1} = \mathcal{B}(-1) = \{X^{\omega}\}$, and $A \in \mathcal{A}(\delta)$, if $i \in A$ with $i \le n(B)$, then $B_{\delta,A,i} = W_{\gamma(\delta,i)} - clH(\delta)_i$, and for each $j \in \omega$, $|\mathcal{G}(j) \cup \mathcal{B}(j)| < \omega$ and $(\mathcal{G}_j \cup \mathcal{B}_j)_x \subset \mathcal{G}(j) \cup \mathcal{B}(j)$. Assume that $x \in \bigcup \mathcal{B}_j$ for each $j \in \omega$. Then, by the construction, $x \in \bigcup \mathcal{B}(j)$ for each $j \in \omega$. Since $\mathcal{B}(j)_x$ is non-empty and finite for each $j \in \omega$, it follows from König's lemma (cf. K. Kunen [13]) that there are a sequence $\{\delta(j): j \in \omega\}$, a sequence $\{K(j): j \in \omega\}$ of compact subsets of X^{ω} , sequences $\{H(\delta(j)): j \in \omega\}$, $\{W(\delta(j)): j \in \omega\}$ of elements of \mathcal{B} , a sequence $\{A(j): j \in \omega\}$ of finite subsets of ω , a sequence $\{B_{\delta(j),A(j)}: j \in \omega\}$ of elements of \mathcal{B} such that: For each $j \in \omega$,

- $(11) \quad \delta(j) = (\gamma(\delta(j), 0), \cdots, \gamma(\delta(j), n(B_{\delta(j-1), A(j-1)}))) \in \Delta(j),$
- (12) $K(j) = K(\delta(j)),$
- (13) $A(j) \in \mathcal{A}(\boldsymbol{\delta}(j)),$
- (14) For each $i \in A(j)$ with $i \le n(B_{\delta(j-1),A(j-1)})$, $B_{\delta(j),A(j),i} = W_{\gamma(\delta(j),i)} clH(\delta(j))_i$,
 - (15) $x \in B_{\delta(j), A(j)}$ and $B_{\delta(j), A(j)} \in \mathcal{B}(B_{\delta(j-1), A(j-1)})$.

Furthermore we have

- (16) $n(B_{\delta(j),A(j)}) < n(B_{\delta(j+1),A(j+1)})$ for each $j \in \omega$,
- (17) For each $i \leq n(B_{\delta(j),A(j)})$ with $i \in A(j+1)$ such that $C_{\lambda(B_{\delta(j),A(j)},i)} = \emptyset$, $s(clB_{\delta(j),A(j)}) \cap clB_{\delta(j+1),A(j+1)} = \emptyset$,
- (18) For each $i \leq n(B_{\delta(j),A(j)})$ with $i \notin A(j+1)$ such that $C_{\lambda(B_{\delta(j),A(j)},i)} \neq \emptyset$, $K(j+1) = C_{\lambda(B_{\delta(j),A(j)},i)}$.

By the similar proof of Claim in Theorem 4.1, we can show that there is an $i \in \omega$ such that $|\{j \in \omega : i \in A(j)\}| = \omega$. Let $\{j \in \omega : i \in A(j) \text{ and } i \leq n(B_{\delta(j),A(j)})\}$

 $=\{j_k\colon k{\in}\pmb\omega\}. \quad \text{Then we can prove that } s(clB_{\delta(j_k),A(j_k)})\cap clB_{\delta(j_{k+1}),A(j_{k+1})}=\emptyset$ for each $k{\in}\pmb\omega$. Since s is a stationary winning strategy for Player I in $G(\mathcal{DC},X), \bigcap_{k{\in}\pmb\omega} clB_{\delta(j_k),A(j_k)}=\emptyset$. But $x_i{\in}\bigcap_{k{\in}\pmb\omega} B_{\delta(j_k),A(j_k)}$, which is a contradiction. Thus there is a $k{\in}\pmb\omega$ such that $x{\notin}\cup\mathcal{B}_k$. Let $j{=}\inf\{k{\in}\pmb\omega\colon x{\notin}\cup\mathcal{B}_k\}$. Since $x{\in}\cup\mathcal{B}_{j-1}$, we have $x{\in}\cup\mathcal{G}_j$. For each $k{>}j$, every element of \mathcal{G}_k is contained in some member of \mathcal{B}_j . Therefore $(\cup\{\mathcal{G}_k\colon k{\in}\pmb\omega\})_x{\subset}\cup\{\mathcal{G}_k\colon k{\leq}j\}$. Since every \mathcal{G}_k is point finite in X^ω , it follows that $\cup\{\mathcal{G}_k\colon k{\in}\pmb\omega\}$ is a point finite open refinement of \mathcal{O}' . The proof is completed.

COROLLARY 5.2. If Y_i is a regular metacompact space with a σ -closure-preserving cover by compact sets for each $i \in \omega$, then $\prod_{i \in \omega} Y_i$ is metacompact.

PROOF. This follows from Theorem 5.1 and Lemma 2.3(a).

For a T_1 -space X, let $\mathscr{F}[X]$ denote the Pixley-Roy hyperspace of X (cf. E. K. van Douwen [7]). Every Pixley-Roy hyperspace is a hereditarily meta-compact Tychonoff space and has a closure-preserving cover by finite sets. In [17], the author proved that if Z is a perfect paracompact Hausdorff space and Y_i is a T_1 -space such that $\mathscr{F}[Y_i]$ is paracompact for each $i \in \omega$, then $Z \times \prod_{i \in \omega} \mathscr{F}[Y_i]$ is paracompact.

COROLLARY 5.3. If Y_i is a T_1 -space for each $i \in \mathbf{\omega}$, then $\prod_{i \in \mathbf{\omega}} \mathcal{F}[Y_i]$ is metacompact.

By D. K. Burke [4] and M. M. Čoban [6], every perfect metacompact (metalindelöf) space is hereditarily metacompact (hereditarily metalindelöf). Next, we show the following result.

Theorem 5.4. Let Z be a hereditarily metacompact space and Y_i be a regular metacompact \mathcal{DC} -like space for each $i \in \omega$. Then the following are equivalent.

- (a) $Z \times \prod_{i \in \omega} Y_i$ is metacompact,
- (b) $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact,
- (c) $Z \times \prod_{i \in \omega} Y_i$ is orthocompact.

PROOF. (a) \rightarrow (c) Obvious.

(c) \rightarrow (b) We shall modify the proof of Theorem 2.1 in N. Kemoto and Y. Yajima [12]. Assume that $Z \times \prod_{i \in \omega} Y_i$ is orthocompct. Let $\mathcal{O} = \{O_j : j \in \omega\}$ be a

countable open cover of $Z \times \prod_{i \in \omega} Y_i$. By their proof, it suffices to prove that there is a countable open refinement $\mathcal U$ of $\mathcal O$ such that for every infinite subcollection $\mathcal U'$ of $\mathcal U$, $\operatorname{int}(\cap \mathcal U') = \emptyset$. Applying their technique to $Z \times \prod_{i \in \omega} Y_i$, we have a countable collection $\{G_{j,t} \colon j \in \omega \text{ and } t = 0, 1\}$, where $G_{j,t} = Z \times H_{j,t}$ for each $j \in \omega$ t = 0, 1, of open subsets of $Z \times \prod_{i \in \omega} Y_i$ such that

- (i) For each $j \in \omega$, $\prod_{i \in \omega} Y_i = H_{j,0} \cup H_{j,1}$ and hence, $Z \times \prod_{i \in \omega} Y_i = G_{j,0} \cup G_{j,1}$,
- (ii) For each infinite subset M of ω and each t=0, 1, $\inf\{\cap \{H_{j,t}: j \in M\}\}$ = \emptyset and hence, $\inf(\cap \{G_{j,t}: j \in M\})=Z \times \inf(\cap \{H_{j,t}: j \in M\})=\emptyset$.

Let $\mathcal{U} = \{O_j \cap G_{j,t} : j \in \omega \text{ and } t = 0, 1\}$. Then \mathcal{U} is a countable open refinement of \mathcal{O} such that for every infinite subcollection \mathcal{U}' of \mathcal{U} , $\operatorname{int}(\cap \mathcal{U}') = \emptyset$.

(b) \rightarrow (a) Assume that $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact. For each $i \in \omega$, take a point a_i in Y_i . Let $\mathcal O$ be an open cover of $Z \times \prod_{i \in \omega} Y_i$ and let $\mathcal O' = \{B \in \mathcal B: B \subset O \text{ for som } O \in \mathcal O^F\}$. For each $z \in Z$ and $K \in \mathcal K$, define $n(K_{(z,K)})$ as the proof of Theorem 4.1.

Let s_i be a stationary winning strategy for Player I in $G(\mathcal{DC}, Y_i)$ for $i \in \omega$. As Theorem 5.1, take a $B = U_B \times \prod_{i \in \omega} B_i \in \mathcal{B}$ satisfying the following condition: For each $i \leq n(B)$, we have already obtained a compact set $C_{\lambda(B,i)}$ of clB_i . $(C_{\lambda(B,n(B))} = \emptyset$. $C_{\lambda(B,i)} = \emptyset$ may be occur for i < n(B).) Fix $i \leq n(B)$. If $C_{\lambda(B,i)} \neq \emptyset$, take the same $W_{\gamma(B,i)}$, $\Lambda(B,i)$, $\Gamma(B,i)$, $\mathcal{C}(B,i)$ and $\mathcal{W}(B,i)$ in Theorem 5.1. Assume that $C_{\lambda(B,i)} = \emptyset$. Then we take a discrete collection $\mathcal{C}(B,i) = \{C_{\lambda}: \lambda \in \Lambda(B,i)\}$ of compact subset of Y_i such that $s_i(clB_i) = \cup \mathcal{C}(B,i)$, and a collection $\mathcal{W}(B,i) = \{W_{\gamma}: \gamma \in \Gamma(B,i)\}$ of open subsets in B_i (and hence, in Y_i) satisfying the condition (1')=(1), (2')=(2) in the proof of Theorem 5.1 and

(3') $\mathcal{W}(B, i)$ is point finite in B_i and hence, point finite in Y_i .

Define the same K_{γ} for $\gamma \in \Gamma(B, i)$ and Δ_B in Theorem 5.1. For $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$, let $K(\delta) = K_{\Gamma(\delta, 0)} \times \cdots \times K_{\Gamma(\delta, n(B))} \times \{a_{n(B)+1}\} \times \cdots \times \{a_k\} \times \cdots$. Define \mathcal{K}_B as before. For each $z \in U_B$ and $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$, let $r(K_{(z, K(\delta))}) = \max\{n(K_{(z, K(\delta))}), n(B)\}$. Fix $z \in U_B$ and $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$. Take an $O_{z,\delta} = U_{z,\delta} \times \prod_{i \in \omega} O_{z,\delta,i} \in \mathcal{O}'$ such that $K_{(z, K(\delta))} \subset O_{z,\delta}$ and $n(K_{(z, K(\delta))}) = n(O_{z,\delta})$. Since Y_i is a regular space, there is an $H_{(z, K(\delta))} = H_{z,\delta} \times \prod_{i \in \omega} H_{(z, K(\delta)),i} \in \mathcal{B}$ such that:

- $(4') \quad H_{\mathbf{z},\delta} \times \prod_{i=0}^{n(K_{(\mathbf{z},K(\delta))})^{-1}} clH_{(\mathbf{z},K(\delta)),i} \times Y_{n(K_{(\mathbf{z},K(\delta))})} \times \cdots \times Y_k \times \cdots \subset O_{\mathbf{z},\delta} \text{ and } \mathbf{z} \in H_{\mathbf{z},\delta} \subset U_B \cap U_{\mathbf{z},\delta},$
 - (5'-1) For each i with $n(K_{(\mathbf{z}, K(\delta))}) \leq i \leq r(K_{(\mathbf{z}, K(\delta))})$, let $H_{(\mathbf{z}, K(\delta)), i} = Y_i$,
 - (5'-2) For each $i < n(K_{(z, K(\delta))})$ with $i \le n(B)$, let $H_{(z, K(\delta)), i}$ be an open subset

- of Y_i such that $K_{\gamma(\delta,i)} \subset H_{(z,K(\delta)),i} \subset clH_{(z,K(\delta)),i} \subset O_{z,\delta,i}$,
- (5'-3) For each i with $n(B) < i < n(K_{(z, K(\delta))})$, let $H_{(z, K(\delta)), i}$ be an open subset of Y_i such that $a_i \in H_{(z, K(\delta)), i} \subset clH_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,
- (5'-4) In case of that $r(K_{(\mathbf{z}, K(\delta))}) = n(B)$, let $H_{(\mathbf{z}, K(\delta)), i} = Y_i$ for n(B) < i. In case of that $r(K_{(\mathbf{z}, K(\delta))}) = n(K_{(\mathbf{z}, K(\delta))}) > n(B)$, let $H_{(\mathbf{z}, K(\delta)), i} = Y_i$ for $n(K_{(\mathbf{z}, K(\delta))}) \le i$.

Then we have $K_{(z, K(\delta))} \subset H_{(z, K(\delta))}$. For each $j \in \omega$, let $\mathcal{H}_{\delta, j} = \{H_{z, \delta} : n(K_{(z, K(\delta))}) \le j\}$. Fix $j \in \omega$ and let $V_j(K(\delta)) = \{z \in U_B : n(K_{(z, K(\delta))}) \le j\}$. Then $V_j(K(\delta)) = \bigcup \mathcal{H}_{\delta, j}$. Since Z is a hereditarily metacompact space, there is a family $CV_{\delta, j} = \{V_{\xi} : \xi \in \mathcal{I}_{\delta, j}\}$, of collections of open sets in $V_j(K(\delta))$ (and hence, in Z) satisfying

- (6') Every member of $\mathcal{C}V_{\delta,j}$ is contained in some member of $\mathcal{A}_{\delta,j}$,
- (7') $\mathcal{CV}_{\delta,j}$ covers $V_j(K(\delta))$,
- (8') $\mathcal{CV}_{\delta,j}$ is point finite in $V_j(K(\delta))$ and hence, point finite in Z.

For each $\xi \in \mathcal{Z}_{\delta,j}$, take a $z(\xi) \in V_j(K(\delta))$ such that $V_{\xi} \subset H_{z(\xi),\delta}$. Put $W_{\delta} = \prod_{i=0}^{n(B)} W_{r(\delta,i)} \times Y_{n(B)+1} \times \cdots \times Y_k \times \cdots$ and $V_{\xi,\delta} = V_{\xi} \times W_{\delta}$. Then $\{V_{\xi,\delta} \colon \delta \in \Delta_B, j \in \omega \}$ and $\xi \in \mathcal{Z}_{\delta,j}$ is a collection of elements of \mathcal{B} such that for each $\delta \in \Delta_B, j \in \omega$ and $\xi \in \mathcal{Z}_{\delta,j}$ covers B. Clearly we have

(9') For each $j \in \omega$, $\{V_{\xi,\delta} : \delta \in \Delta_B \text{ and } \xi \in \Xi_{\delta,j}\}$ is point finite in $Z \times \prod_{i \in \omega} Y_i$.

Fix a $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$, $j \in \omega$ and $\xi \in \Xi_{\delta, j}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(B)$. For each $i \leq n(B)$, let $G_{(z(\xi), K(\delta)), i} = O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $G_{(z(\xi), K(\delta)), i} = Y_i$. Put $G_{(z(\xi), K(\delta))} = V_{\xi} \times \prod_{i \in \omega} G_{(z(\xi), K(\delta)), i}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(K_{(z(\xi), K(\delta))}) > n(B)$. For each $i \leq n(B)$, let $G_{(z(\xi), K(\delta)), i} = O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$. For each i with $n(B) < i < n(K_{(z(\xi), K(\delta))})$, let $G_{(z(\xi), K(\delta)), i} = O_{z(\xi), \delta, i}$. For each $i \geq n(K_{(z(\xi), K(\delta))})$, let $G_{(z(\xi), K(\delta)), i} = V_{\xi} \times \prod_{i \in \omega} G_{(z(\xi), K(\delta)), i}$. Then we have $G_{(z(\xi), K(\delta))} \subset V_{\xi, \delta}$. Define $\mathcal{G}_{\delta, j}(B) = \{G_{(z(\xi), K(\delta))} : \xi \in \Xi_{\delta, j}\}$ and $\mathcal{G}_{j}(B) = \cup \{\mathcal{G}_{\delta, j}(B) : \delta \in \Delta_{B}\}$. Then, by (9') and definition,

- (10') For each $j \in \omega$, every member of $\mathcal{G}_{j}(B)$ is contained in some member of \mathcal{O}' .
 - (11') For each $j \in \omega$, $\mathcal{Q}_j(B)$ is point finite in $Z \times \prod_{i \in \omega} Y_i$.

Fix $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B$, $j \in \omega$ and $\xi \in \Xi_{\delta, j}$. Let $A \in \mathcal{Q}(\{0, 1, \dots, r(K_{(z(\xi), K(\delta))})\})$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(B)$. For each $i \in A$, let $B_{\xi, A, i} = W_{\gamma(\delta, i)} - clH_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(B)$, let $B_{\xi, A, i} = O_{z, \delta, i} \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $B_{\xi, A, i} = Y_i$. Put $B_{\xi, A} = V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(K_{(z(\xi), K(\delta))}) > n(B)$. For each $i \in A$ with $i \le n(B)$, let $B_{\xi, A, i} = W_{\gamma(\delta, i)} - clH_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(B)$, let $B_{\xi, A, i} = O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$.

Let $n(B) < i < n(K_{(z(\xi), K(\delta))})$. If $i \in A$, let $B_{\xi, A, i} = Y_i - clH_{(z(\xi), K(\delta)), i}$. If $i \notin A$, let $B_{\xi, A, i} = O_{z(\xi), \delta, i}$. For $i > n(K_{(z(\xi), K(\delta))})$, let $B_{\xi, A, i} = Y_i$. Put $B_{\xi, A} = V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i}$. We have that $B_{\xi, A, i} \subset B_i$ for each $i \in \omega$ and if $B_{\xi, A} \neq \emptyset$, then $n(B) < n(B_{\xi, A})$. Since $n(K_{(z(\xi), K(\delta))}) \le j$, for a subset $A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(B)\}\})$, let $\mathcal{B}_{\delta, j, A}(B) = \{B_{\xi, A} : \xi \in \mathcal{Z}_{\delta, j}, B_{\xi, A} \text{ is defined and } B_{\xi, A} \neq \emptyset\}$. For $j \in \omega$, let $\mathcal{B}_{j}(B) = \bigcup \{\mathcal{B}_{\delta, j, A}(B) : \delta \in \Delta_B \text{ and } A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(B)\}\})\}$. Then we have

(12') Every $\mathcal{B}_{j}(B)$ is point finite in $Z \times \prod_{i \in \mathcal{I}} Y_{i}$.

Fix a $B_{\xi,A} = V_{\xi} \times \prod_{i \in \omega} B_{\xi,A,i} \in \mathcal{B}_{\delta,j,A}(B)$ for $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B$, $j \in \omega$, $\xi \in \Xi_{\delta,j}$ and $A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(B)\}\})$. Then

(13') For each $i \in A$ with $i \le n(B)$ such that $C_{\lambda(B,i)} = \emptyset$, $s_i(clB_i) \cap clB_{\xi,A,i} = \emptyset$. For each $i \le n(B_{\xi,A})$, define a compact set $C_{\lambda(B_{\xi,A,i})}$ in $clB_{\xi,A,i}$ as Theorem 5.1.

Now we define \mathcal{G}_{τ} and \mathcal{B}_{τ} for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$. For each $j \in \boldsymbol{\omega}$, let $\mathcal{G}_{j} = \mathcal{G}_{j}(Z \times \prod_{i \in \omega} Y_{i})$ and $\mathcal{B}_{j} = \mathcal{B}_{j}(Z \times \prod_{i \in \omega} Y_{i})$. Assume that for $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$, we have already obtained \mathcal{G}_{τ} and \mathcal{B}_{τ} . For each $B \in \mathcal{B}_{\tau}$ and $j \in \boldsymbol{\omega}$, we denote $\mathcal{G}_{j}(B)$ and $\mathcal{B}_{j}(B)$ by $\mathcal{G}_{\tau \oplus j}(B)$ and $\mathcal{B}_{\tau \oplus j}(B)$ respectively. Define $\mathcal{G}_{\tau \oplus j} = \bigcup \{\mathcal{G}_{\tau \oplus j}(B) : B \in \mathcal{B}_{\tau}\}$ and $\mathcal{B}_{\tau \oplus j} = \bigcup \{\mathcal{G}_{\tau \oplus j}(B) : B \in \mathcal{B}_{\tau}\}$.

Firstly we show that $\bigcup \{\mathcal{G}_{\tau} \colon \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset \}$ is a σ -point finite open refinement of \mathcal{O}' . Let $\tau \in \boldsymbol{\omega}^{<\omega}$ and $\tau \neq \emptyset$. By (10'), every element of \mathcal{G}_{τ} is contained in some member of \mathcal{O}' . By (11'), (12') and induction, for each $\tau \in \boldsymbol{\omega}^{<\omega}$ and $\tau \neq \emptyset$, \mathcal{G}_{τ} is point finite. Thus, it suffices to prove that $\bigcup \{\mathcal{G}_{\tau} \colon \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset \}$ is a cover of $Z \times \prod_{i \in \omega} Y_i$. However, the proof is similar to that of Claim in Theorem 4.1. Let $G_{\tau} = \bigcup \mathcal{G}_{\tau}$ for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$. Then $\{G_{\tau} \colon \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset \}$ is a countable open cover of $Z \times \prod_{i \in \omega} Y_i$. Since $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact, there is a point finite open refinement $\{G'_{\tau} \colon \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset \}$ such that $G'_{\tau} \subset G_{\tau}$ for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$. Then $\{G'_{\tau} \cap G \colon G \in \mathcal{G}_{\tau}, \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset \}$ is a point finite open refinement of \mathcal{O}' . It follows that $Z \times \prod_{i \in \omega} Y_i$ is metacompact. The proof is completed.

REMARK 5.5. B. Scott [16] showed that if Y is orthocompact and Z is compact, metric and infinite, then $Y \times Z$ is orthocompact if and only if Y is countably metacompact. J. Chaber [5] constructed a scattered hereditarily orthocompact space Y which is not countably metacompact. Thus, for J. Chaber's space Y, $Y \times (\omega + 1)$ is not orthocompact, even though both factors are hereditarily orthocompact and scattered (cf. Lemma 2.4).

COROLLARY 5.6. Let Z be a hereditarily metacompact space and Y_i be a regular metacompact space with a σ -closurepreserving cover by compact sets for each $i \in \omega$. Then the following are equivalent.

- (a) $Z \times \prod_{i \in \omega} Y_i$ is metacompact,
- (b) $Z \times \prod_{i \in \mathbb{N}} Y_i$ is countably metacompact,
- (c) $Z \times \prod_{i \in \omega} Y_i$ is orthocompact.

Since every σ -point countable collection of $Z \times \prod_{i \in \omega} Y_i$ is point countable, by the proof of the implication (b) \rightarrow (a) in Theorem 5.4, we have

THEOREM 5.7. If Z is a hereditarily metalindelöf space and Y_i is a regular metalindelöf \mathcal{DC} -like space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is metalindelöf.

COPOLLARY 5.8. If Z is a hereditarily metalindelöf space and Y_i is a regular metalindelöf space with a σ -closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is metalindelöf.

We consider metacompactness, orthocompactness and metalindelöf property of countable products using *C*-scattered spaces.

Theorem 5.9. If Y_i is a regular C-scattered metacompact space for each $i \in \omega$, then $\prod_{i \in \omega} Y_i$ is metacompact.

PROOF. We also assume that $Y_i = X$ for each $i \in \omega$ and there is an isolated point a in X. We shall modify the proof of Theorem 5.1. Let \mathcal{O} be an open cover of X^{ω} . Define the same \mathcal{O}' and n(K) for each $K \in \mathcal{K}$. We take a $B = \prod_{i \in \omega} B_i \in \mathcal{B}$ satisfying the condition of the proof of Theorem 5.1. Fix $i \leq n(B)$. If $C_{\lambda(B,i)} \neq \emptyset$, then we take the same $W_{\gamma(B,i)}$, $\Lambda(B,i)$, $\Gamma(B,i)$, C(B,i), and $\mathcal{W}(B,i)$. Assume that $C_{\lambda(B,i)} = \emptyset$. Since clB_i is a regular C-scattered metacompact space, by Lemma 3.3, there is a collection $\mathcal{W}(B,i) = \{W_{\gamma}: \gamma \in \Gamma(B,i)\}$ of open subsets in B_i satisfying the conditions (1'') = (1) and (2'') = (3) in the proof of Theorem 5.1 and

(3") For each $\gamma \in \Gamma(B, i)$, $(clW_{\gamma})^{(\alpha(\gamma))}$ is compact for some $\alpha(\gamma)$.

Let $\Lambda(B, i) = \Gamma(B, i)$ and $C(B, i) = \{(clW_{\lambda})^{(\alpha(\lambda))} : \lambda \in \Lambda(B, i)\}$.

Let $K_7 = (clW_7)^{(\alpha(7))}$ for $\gamma \in \Gamma(B, i)$ and take Δ_B , $K(\delta)$ for $\delta \in \Delta_B$, \mathcal{K}_B , $r(K(\delta))$, $H(\delta)$, $W(\delta)$ and $G(\delta)$ for $\delta \in \Delta_B$, $\mathcal{G}(B)$, $B_{\delta,A}$, $\mathcal{B}_{\delta}(B)$ and $\mathcal{B}(B)$ for $\delta \in \Delta(B)$, $A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$ as before satisfying the conditions (4'') = (4), (5'' - i) = (5 - i) for i = 1, 2, 3 and 4, (6'') = (6), (7'') = (7), (8'') = (8) and (9'') = (9). Furthermore, we

take the same \mathcal{G}_j and \mathcal{B}_j for each $j\in \omega$, and show that $\bigcup\{\mathcal{G}_j\colon j\in \omega\}$ is a point finite open refinement of \mathcal{O}' . Let $x=(x_i)_{i\in \omega}$. Take the same $\{\Delta(j)\colon j\in \omega\}$, $\{\mathcal{K}(j)\colon j\in \omega\}$ and $\{\mathcal{B}(j)\colon j\in \omega\}$. Assuming $x\in \bigcup\mathcal{B}_j$ for each $j\in \omega$, we similarly choose a sequence $\{\delta(j)\colon j\in \omega\}$, a sequence $\{K(j)\colon j\in \omega\}$ of compact subsets of X^ω , where for each $j\in \omega$, $K(j)=\prod_{i\in \omega}K(j)_i\in \mathcal{K}$, sequences $\{H(\delta(j))\colon j\in \omega\}$, $\{W(\delta(j))\colon j\in \omega\}$ of elements of \mathcal{B} , a sequence $\{A(j)\colon j\in \omega\}$ of finite subsets of ω , a sequence $\{B_{\delta(j),A(j)}\colon j\in \omega\}$ of elements of \mathcal{B} satisfying the conditions (10'')=(11), (11'')=(12), (12'')=(13), (13'')=(14), (14'')=(15), (15'')=(16) and (16'')=(18). Then there is an $i\in \omega$ such such that $|\{j\in \omega\colon i\in A(j)\}|=\omega$. Let $\{j\in \omega\colon i\in A(j) \text{ and } i\leq n(B_{\delta(j),A(j)})\}=\{j_k\colon k\in \omega\}$. We have

(17") For each $k \in \omega$, $\varepsilon(clW_{\gamma(\delta(j_{k+1}+1),i)}) < \varepsilon(clW_{\gamma(\delta(j_{k}+1),i)})$.

Fix $k \in \omega$ and take a $y \in clW_{\gamma(\delta(j_{k+1}+1),i)}$. Since $W_{\gamma(\delta(j_{k+1}+1),i)} \subset W_{\gamma(\delta(j_{k+1}),i)}$, $\alpha clW_{\gamma(\delta(j_{k+1}+1),i)}(y) \le \alpha clW_{\gamma(\delta(j_{k+1}),i)}(y)$. Assume that $j_{k+1} = j_k + 1$. Then $W_{\gamma(\delta(j_{k+1}+1),i)} \subset B_{\delta(j_{k+1}),A(j_{k+1}),i}$ and

$$K(j_{k+1})_i = K_{\gamma(\delta(j_{k+1}),i)} = (clW_{\gamma(\delta(j_{k+1}),i)})^{\alpha(\gamma(\delta(j_{k+1}),i))} \subset H(\delta(j_{k+1}))_i.$$

Assume that $j_{k+1} > j_k + 1$. Then

$$K(j_k+1)_i = K_{\gamma(\delta(j_k+1),i)} = C_{\lambda(B_{\delta(j_k+1),A(j_k+1),i})} = C_{\lambda(B_{\delta(j_k+1-1),A(j_{k+1}-1),i})} \subset H(\delta(j_{k+1}))_i.$$

In each case, we have $\alpha clW_{\gamma(\delta(j_{k+1}),i)}(y) < \alpha(\gamma(\delta(j_k+1),i))$. Hence $\alpha clW_{\gamma(\delta(j_{k+1}+1),i)}(y) < \alpha(\gamma(\delta(j_k+1),i))$. Therefore $\varepsilon(clW_{\gamma(\delta(j_{k+1}+1),i)}) \le \alpha(\gamma(\delta(j_k+1),i)$. Since $\varepsilon(clW_{\gamma(\delta(j_k+1),i)}) = \alpha(\gamma(\delta(j_k+1),i)+1)$, we have $\varepsilon(clW_{\gamma(j_{k+1}+1),i)}) < \varepsilon(clW_{\gamma(\delta(j_k+1),i)})$.

Thus $\{\varepsilon(clW_{\gamma(\delta(j_{k+1}),i)}): k \in \omega\}$ is an infinite decreasing sequence of ordinals, which is a contradiction. Thus there is a $k \in \omega$ such that $x \notin \bigcup \mathcal{B}_k$. Similarly, it follows that $\bigcup \{\mathcal{G}_j: j \in \omega\}$ is a point finite open refinement of \mathcal{O}' . The proof is completed.

Similarly, we have

THEOREM 5.10. Let Z be a hereditarily metacompact space and Y_i be a regular C-scattered metacompact space for each $i \in \omega$. Then the following are equivalent.

- (a) $Z \times \prod_{i \in \omega} Y_i$ is metacompact,
- (b) $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact,
- (c) $Z \times \prod_{i \in \omega} Y_i$ is orthocompact.

THEOREM 5.11. If Z is a hereditarily metalindelöf space and Y_i is a regular C-scattered metalindelöf space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is metalindelöf.

Acknowledgement.

The author would like to thank Mr. Seiji Fujii for his kindness.

References

- [1] Alster, K., A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181.
- [2] Alster, K., On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math. 127 (1987), 241-246.
- [3] Burke, D.K., On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- [4] Burke, D.K., Covering properties, in: Handbook of Set-Theoretic Topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, 347-422.
- [5] Chaber, J., Metacompactness and the class MOBI, Fund. Math. 91 (1976), 211-217.
- [6] Čoban, M.M., On the theory of p-spaces, Soviet Math. Dokl. 11 (1970), 1257-1260.
- [7] van Dowen, E.K., The Pixley-Roy topology on spaces of subsets, in: Set Theoretic Topology, ed. by G.M. Reed, Academic Press, New York, 1977, 111-134.
- [8] Engelking, General Topology, Heldermann, Berlin, 1989.
- [9] Frolik, Z., On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. 8 (1960), 747-750.
- [10] Galvin, F. and Telgársky, R., Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
- [11] Gruenhage, G. and Yajima, Y., A filter property of submetacompactness and its application to products, Topology Appl. 36 (1990), 43-55.
- [12] Kemoto, N. and Yajima, Y., Orthocompactness in infinite product spaces, preprint.
- [13] Kunen, K., Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [14] Michael, E., Paracompactness and the Lindelöf property in finite and countable Cartesian products, Comp. Math. 23 (1971), 199-214.
- [15] Nyikos, P., On the product of metacompact spaces I. Connections with hereditary compactness, Amer. Math. J. 100 (1978), 829-835.
- [16] Scott, B., Toward a product theory for orthocompactness, in: Studies in Topology ed. by N.M. Stavrakas and K.R. Allen, Academic Press, New York, 1975, 517-537.
- [17] Tanaka, H., A class of spaces whose countable product with a perfect paracompact space is paracompact, Tsukuba J. Math. 16 (1992), 503-512.
- [18] Telgársky, R., C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
- [19] Telgársky, R., Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.
- [20] Telgársky, R., Topological games: On the 50th Anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), 227-276.
- [21] Yajima, Y., Topological games and products III, Fund. Math. 117 (1983), 223-238.
- [22] Yajima, Y., Topological games and applications, in: Topics in General Topology, ed. by K. Morita and J. Nagata, North-Holland, Amsterdam, 1989, 523-562.

Department of Mathematics Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582, Japan