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1. Introduction.

All spaces considered in this paper are separable metric and every mapping
is continuous unless otherwise stated. Let $X$ be a continuum1). If every con-
tinuous mapping $f:X\rightarrow X$ has at least one fixed point, $X$ is called to have the
fixed point property $(f.p.p.)$ . In this paper we investigate the existence of
essential components of the fixed point sets and the property $f^{*}p$ . $p.$ , which
are defined as follows: a component $C$ of the fixed point set of $f$ is called
essential, if for any $\epsilon>0$ there exists $\delta>0$ such that every continuous mapping
$f^{\prime}$ : $X\rightarrow X$ with $|f^{\prime}-f|<\delta$ has a fixed point in the $\epsilon$ -neighborhood $U_{\epsilon}(C)$ of $C$ ,
and if otherwise it is called non-essential; and $X$ has $f^{*}p.p.$ , if $X$ has $f$ . $p$ . $p.$ ,
and the fixed point set of every continuous mapping $f:X\rightarrow X$ has at least one
essential component (see [2], [7]). Note that there exists a space which has
$f$ . $p$ . $p.$ , but does not have $f^{*}p$ . $p$ . (see [6]).

The Hilbert cube $I^{\omega}$ has $f^{*}p$ . $p$ . and the property $f^{*}p$ . $p$ . is invariant under
retractions. Hence every compact absolute retract has $f^{*}p$ . $p$ . (see [2]). Further,
if $X$ and $Y$ are two continua with $f^{*}p$ . $p$ . and $X\cap Y$ is a single point, then
$X\cup Y$ has $f^{*}p$ . $p$ . (see [1], [4], [5]). The last statement has been extended to
the special case where the number of continua is countably infinite (see [5]).
The purpose of this paper is to extend the above property to a more general
setting; we prove that a continuum $X$ has $f^{*}p$ . $p$ . whenever it can be expressed
as the union of a null sequence of subcontinua $X_{\alpha}\prime s$ with $f^{*}p$ . $p$ . such that any
pair of $X_{\alpha}$ and $X_{\beta}(\alpha\neq\beta)$ has at most one point in common and that the
boundary of each component of $X-X_{\alpha}$ consists of a single point for every $\alpha$

(see the Main Theorem). When $X$ is locally connected, it means the cyclic
extensibility of $f^{*}p$ . $p$ . (see [3], [4] and the Corollary).
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Notation

$|f^{\prime}-f|=\sup_{x\in X}d(f^{\prime}(x), f(x))$ .
$\overline{A}$ : the closure of $A$ .
Bdry $A$ : the boundary of $A$ .
Int $A$ : the interior of $A$ .
diam$(A)$ : the diameter of $A$ .

2. Cyclic Extensibility and the Main Theorem.

The cyclic extensibility of $f$ . $p$ . $p$ . was proved by K. Borsuk [1]. We will
generalize it to our setting in Lemma 3.

DEFINITION 1. A point $s$ of a connected topological space $X$ is called a
separating point of $X$ if $X-s$ is the union of two disjoint sets and neither of
them contains a limit point of the other.

DEFINITION 2. A point $p\in X$ of order one in a continuum $X$ is called an
endpoint of $X$ , $i$ . $e.$ , $p$ is an endpoint of $X$ provided there exist arbitrarily

small open neighborhoods $V(p)s$ each boundary of which consists of a single

point (see [4], p. 64).

DEFINITION 3. In a metric space $X$ we shall call a subset $A$ of $X$ an
A-set provided that $X-A=\cup.G.$ , where (1) $G_{\alpha}$ is open, (2) $ G_{\alpha}\cap G_{\beta}=\phi$ for
$\alpha\neq\beta,$ (3) Bdry $G_{\alpha}$ contains at most one point, and (4) diam $(G_{i})\rightarrow 0(i\rightarrow\infty)$ for
any infinite sequence $\langle G_{i}\rangle$ of $G_{a},$ $i$ . $e.,$ $X-A$ is the union of a finite number
of or a null sequence of disjoint open sets each having at most one boundary

point (see [4], p. 67).

DEFINITION 4. An A-set is a true A-set if either (1) it is non-degenerate,

or (2) it is a separating point or an endpoint of $X$ (see [4], p. 68).

MAIN THEOREM. Let $X$ be a continuum and $\{X_{\alpha}\}$ a null sequence of true
A-sets of $X$ which satisfy the following conditions:

(1) $X=\bigcup_{\alpha}X_{a}$ ,

(2) whenever $X_{\alpha}\cap X_{\beta}\neq\phi(\alpha\neq\beta),$ $X_{\alpha}\cap X_{\beta}$ is a separating point of $X$ , and
(3) $X_{\alpha}$ has $f^{*}p$ . $p$ . for every $\alpha$ .

Then, $X$ has $f^{*}p.p$ .

REMARK 1. Note that Int $X_{\alpha}$ may contain a separating point of $X$ .
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Figure 1.

DEFINITION 5. Let $X$ be a locally connected continuum and $\{X_{\alpha}\}$ a null
sequence of true A-sets of $X$ which satisfy the following conditions:

(1) Int $X_{\alpha}$ contains no separating point for every $\alpha$ ,
(2) $X=\bigcup_{\alpha}X_{\alpha}$ , and
(3) whenever $X_{\alpha}\cap X_{\beta}\neq\phi(\alpha\simeq\pm\beta),$ $X_{\alpha}\cap X_{\beta}$ is a separating point of $X$ .

Then, each $X_{\alpha}$ , together with each separating point and endpoint, is called a
cyclic element of $X$ . A topological property $P$ is said to be cyclicly extensible,
if $X$ has the property $P$ whenever each cyclic element has the property $P(see$

$[3],$ $[4]$ ).

COROLLARY. $f^{*}p.p$ . is cyclicly extensible.

3. Some Preliminaries to the proof of Main Theorem.

In the following discussions, we assume that $X$ contains at least two $X_{\alpha}\prime s$ .
We always mean by $s_{\nu}$ a separating point of $X$ not contained in the interior
of any $X_{\alpha}$ .

DEFINITION 6. Let $z$ be a point of $X$ . For two points $x,$ $y\in X$, define the
partial order with base point $z\in X$ as follows:

(1) let $x=yz$ if $x$ and $y$ are contained in the interior of the same $X_{\alpha}$ , or
$x$ and $y$ are the same separating point or the same endpoint of $X$ .

(2) let $x>_{z}y$ , if $x$ and $y$ satisfy
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(i) $x\neq yz$

(ii) $X$ is the union of two subcontinua $A$ and $B$ with $A\cap B=s_{\nu}$ where
$A$ contains $x$ and $B$ contains both $y$ and $z$ , and

(iii) whenever $y\frac{\wedge}{t}z,$

$X$ is not the union of two subcontinua $A^{\prime}$ and $B^{\prime}$

with $A^{\prime}\cap B^{\prime}=s_{\nu}$ where $A^{\prime}$ contains both $x$ and $z$ , and $B^{\prime}$ contains $y$ .
Now, for the convenience of the proofs, we assign some special points of

$X$ for base points of the above partial order. Let $c$ be a point of $s_{\nu}\prime s$ and $x_{\alpha}$

a point of Int $X_{\alpha}$ for each non-degenerate $X_{a}$ . Then, we will use the partial

order with the four kinds of base points listed below:
$s_{\nu}$ : a separating point of $X$ not contained in the interior of any $X_{\alpha}$ .
$c$ ; the pre-assigned $s_{\nu}$ of $X$ .
$p$ : an endpoint of $X$ .
$x_{\alpha}$ : the pre-assigned point of Int $X_{a}$ for each non-degenerate $X_{\alpha}$ .

DEFINITION 7. We define the subspaces $R_{\nu(c)}$ and $K_{\mu(\nu)}$ of $X$ as follows:
Let $R_{\nu(c)}=\{x|x\geqq s_{\nu}\}c$ and $K_{\mu^{(\nu)}}$ be the closure of one of the components of

$X-s_{\nu}$ .
We also define the retractions $r_{\nu(c)}$ ; $X\rightarrow R_{\nu(c)},$

$r_{\mu^{(\nu)}}$ : $X\rightarrow K_{\mu(\nu)}$ and $r_{\alpha}$ : $ X\rightarrow$

$X_{\alpha}$ by

$r_{\nu(c)}(x)=\left\{\begin{array}{l}x for x\in R_{\nu(c)},\\s_{\nu} for x\in X-R_{\nu(c)},\end{array}\right.$

$r_{\mu(\nu)}(x)=\{s_{\nu}x$ $forfor$ $x\in K_{\mu}x\in X-K_{\mu^{(\nu)}}(\nu)$

,

and

$r_{tV}(x)=\{sx_{\nu}$ $forfor$ $x\in R_{\nu tx_{a})}x\in X_{\alpha}$

,

where $s_{\nu}\in BdryX_{\alpha}$ .

Note that $\overline{X-X_{\alpha}}=\bigcup_{\nu}R_{\nu(x_{\alpha})}$ .
From above definitions, we have immediately the following two Lemmas.

LEMMA 1. Any open neighborhood $U(s_{\nu})$ of $s_{\nu}$ contains almost all $K_{\mu\nu}()$ but
a finite number of $\mu\prime s$ .

LEMMA 2. If the boundary $s_{\nu}$ of $K_{\mu\nu}()$ is not contained in any non-degenerate
$X_{\alpha}\subset K_{\mu(\nu)}$ , the point $s_{\nu}$ is an endpoint of $K_{\mu(\nu)}$ (see [4], p. 64).

First, we generalize the Borsuk’s theorem of cyclic extensibility of $f$ . $p$ . $p$ .
to our setting (see [4], p. 242).
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LEMMA 3. Let $X$ be a continuum and $\{X_{\alpha}\}$ a null sequence of true A-sets

of $X$ which satisfy the following conditions:
(1) $X=\bigcup_{\alpha}X_{\alpha}$ ,

(2) whenever $X_{\alpha}\cap X_{\beta}\neq\phi(\alpha\neq\beta),$ $X_{\alpha}\cap X_{\beta}$ is a separating point of $X$ , and
(3) $X_{\alpha}$ has $f.p.p$ . for every $\alpha$ .

Then, $X$ has $f.p.p$ .

PROOF. Assume on the contrary that there exists a mapping $f:X\rightarrow X$

which has no fixed point. If there exists non-degenerate $X_{\alpha}$ such that every
$s_{\nu}\in BdryX_{\alpha}$ satisfies $f(s_{\nu})_{x}\not\geqq_{\alpha}s_{\nu}$ , then $r_{\alpha}f|x_{\alpha}$ : $X_{\alpha}\rightarrow X_{\alpha}$ has no fixed point, which

is a contradiction. Hence, we consider the case where for every non-degenerate
$X_{\alpha}$ there exists $s_{\nu}\in BdryX_{\alpha}$ with $f(s_{\nu})>_{\alpha}s_{\nu}x$

Letting $c$ be the initial point, we construct the ordered set $\langle s_{\lambda}\rangle(\lambda$ is a
countable ordinal) of $s_{\nu}$ by the following procedure. Let $K_{m(\lambda)}$ be such that
$f(s_{\lambda})\in K_{m(\lambda)}$ .

1. Define the immediate successor of $s_{\lambda}$ as follows:
Case 1. $s_{\lambda}$ is a boundary point of non-degenerate $X_{\lambda}$ contained in $K_{m(\lambda)}$ .

In this case there exists $s_{\nu}\in BdryX_{\lambda}$ with $f(s_{\nu})>_{\lambda}S_{\nu}x$ Let $s_{\nu}$ be the immediate

successor of $s_{\lambda}$ .
Case 2. $s_{\lambda}$ is an endpoint of $K_{m(\lambda)}$ . Then, by the continuity of $f$ , there

exists $s_{\nu}(\perp,s_{\lambda})$ in a neighborhood of $s_{\lambda}$ in $K_{m(\lambda)}$ such that $f(s_{\nu})>_{\lambda}ls_{\nu}$ . Let $s_{\nu}$

be the immediate successor of $s_{\lambda}$ .
2. When $\lambda$ converges to $\nu$ , let $s_{\nu}$ be the limit point of $\langle s_{\lambda}\rangle$ if it is not an

endpoint of $X$ . We add $s_{\nu}$ to $\langle s_{\lambda}\rangle$ . Note that $s_{\nu}$ satisfies $f(s_{\nu})>s_{\nu}c$

By the construction of this ordered set, it is easy to see that $\langle s_{\lambda}\rangle$ and
$\langle K_{m(\lambda)}\rangle$ satisfy the following conditions:

(1) $f(s_{\lambda})>s_{\lambda}c$ for every $\lambda$ ,

(2) $K_{m(\lambda)}\supset K_{m(\lambda^{\prime})}^{\prime}(\lambda<\lambda^{\prime})$ , and
(3) either $\langle s_{\lambda}\rangle$ ends in $s_{e}$ which is the single boundary point of $X_{\alpha}$ , or

$\langle s_{\lambda}\rangle$ converges to an endpoint $p$ of $X$ .
Applying the above ordered set, we now prove the Lemma.
Case 1. $\langle s_{\lambda}\rangle$ ends in $s_{e}$ which is the single boundary point of $X_{\alpha}$ . In

this case, $r_{\alpha}f|_{X_{\alpha}}$ : $X_{\alpha}\rightarrow X_{\alpha}$ has no fixed point, which contradicts to the assump-
tion that $X_{\alpha}$ has $f$ . $p$ . $p$ .

Case 2. $\langle s_{\lambda}\rangle$ converges to an endpoint $p$ of $X$ . It is easy to see that $p$

is fixed by $f$ , which contradicts to our assumption.
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Next, we state some lemmas on essential components of the fixed point set
of a mapping $f:X\rightarrow X$ .

LEMMA 4. Let $X$ and $Y$ be compact metric spaces such that $X\supset Y$ . Assume
that there exists a retraction $r:X\rightarrow Y$ . Then, if a mapping $f:X\rightarrow X$ is con-
tinuous, for every $\epsilon>0$ there exists $\delta>0$ such that every continuous mapping $f^{\prime}$ :
$X\rightarrow X$ with $|f^{\prime}-f|<\delta$ satisfies $|rf^{\prime}-rf|<\epsilon$ .

PROOF. By the uniform continuity of $r$ , for given $\epsilon>0$ there exists $\delta>0$

such that $|rf^{\prime}(x)-rf(x)|<\epsilon$ for any pair of $f^{\prime}(x)$ and $f(x)$ with $|f^{\prime}(x)-f(x)|$

$<\delta$ . Then, if $|f^{\prime}(x)-f(x)|<\delta$ for every $x\in X$, we have $|rf^{\prime}(x)-rf(x)|<\epsilon$

for every $x\in X$ .

LEMMA 5. Let $C_{\gamma}$ be a component of the fixed point set of a mapping $f$ :
$X\rightarrow X$ such that $C_{\gamma}\subset IntX_{\alpha}$ for a non-degenerate $X_{\alpha}$ . If $C_{\gamma}$ is a non-essential
component of the fixed point set of $f$, then $C_{\gamma}$ is a non-essential component of the
fixed point set of $r_{\alpha}f|_{\chi_{\alpha}}$ : $X_{\alpha}\rightarrow X_{\alpha}$ .

PROOF. Since $C_{\gamma}$ is a non-essential component of the fixed point set of $f$ ,
$C_{\gamma}$ has an open neighborhood $U$ such that for each $n$ there exists a mapping
$f_{n}$ : $X\rightarrow X$ which satisfies

(i) $|f_{n}-f|<1/n$ , and
(ii) $f_{n}$ has no fixed point in $U_{\gamma}$ .

Since $C_{\gamma}$ is contained in Int $X_{\alpha}$ , there exists a neighborhood $U^{\prime}$ of $C_{\gamma}$ such that
$U^{\prime}\subset U\cap IntX_{\alpha}$ . Then for each $n^{\prime}$ there exists $r_{\alpha}f_{n}|_{X_{\alpha}}$ ; $X_{\alpha}\rightarrow X_{\alpha}$ which satisfies

$(i^{\prime})$ $|r_{\alpha}f_{n}|_{X_{\alpha}}-r_{\alpha}f|_{X_{\alpha}}|<1/n^{\prime}$ , and
(ii’) $r_{\alpha}f_{n}|_{X_{\alpha}}$ has no fixed point in $U^{\prime}$ ,

where condition $(i^{\prime})$ follows from Lemma 4.

LEMMA 6. Let $C_{\gamma}$ be a component of the fixed point set of a mapping $f$ :
$X\rightarrow X$ such that $C_{\gamma}\cap BdryX_{\alpha}=\{s_{\nu}\}$ for a non-degenerate $X_{\alpha}$ . Assume that $C_{\gamma}$

has an open neighborhood $U$ such that for each $n$ there exists a mapping $f_{n}$ :
$X\rightarrow X$ which satisfies

(i) $|f_{n}-f|<1/n$ ,

(ii) $f_{n}$ has no fixed point in $U$ , and
(iii)

$f_{n}(s_{\nu})_{x}\not\geqq_{\alpha}s_{\nu}$ for every $s_{\nu}\in U\cap BdryX_{\alpha}$ .
Then, $C_{\gamma}\cap X_{\alpha}$ is a non-essential component of the fixed point set of $r_{\alpha}f|_{X_{\alpha}}$ ;

$X_{\alpha}\rightarrow X_{\alpha}$ .
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PROOF. Note that any $s_{\nu}\in U\cap BdryX_{\alpha}$ is not fixed by $r_{\alpha}f_{n}|_{X_{\alpha}}$ : $X_{\alpha}\rightarrow X_{\alpha}$ .
Hence for each $n^{\prime}$ there exists $r_{\alpha}f_{n}|_{X_{\alpha}}$ : $X_{\alpha}\rightarrow X_{\alpha}$ which satisfies

(i) $|r_{\alpha}f_{n}|_{X_{\alpha}}-r_{\alpha}f|x_{\alpha}|<1/n^{\prime}$ , and
(ii) $r_{\alpha}f_{n}|x_{\alpha}$ has no fixed polnt in $U\cap X_{\alpha}$ .

LEMMA 7. Let $f:X\rightarrow X$ be a mapping and $p$ an endpoint of X. Assume

that there exist arbitrarily small open neighborhoods $V(p)s(V(p)\ni c)$ such that
Bdry $V(p)$ is a single point $s_{\nu}$ which satisfies $f(s_{\nu})>s_{\nu}c$ Then, $p$ is an essential

component of the fixed point set of $f$ .

PROOF. Assume on the contrary that $p$ is a non-essential component of

the fixed point set of $f$ . Then, $p$ has an open neighborhood $U$ such that for
every $\delta>0$ there exists a mapping $f^{\prime}$ : $X\rightarrow X$ which satisfies

(i) $|f^{\prime}-f|<\delta$ , and
(ii) $f^{\prime}$ has no fixed point in $U$ .

By the assumption of the lemma, we can choose $s_{\nu}$ such that $R_{\nu(c)}\subset U$ and

$f(s,)>s_{\nu}c$ Let $d(f(s_{\nu}), s_{\nu})=a$ and $\delta=a/2$ . By condition (i), we have $f^{\prime}(s_{\nu})>_{c}s_{\nu}$ .

Since $f^{\prime}$ has no fixed point in $R_{\nu(c)}\subset U,$ $r_{\nu(c)}f^{\prime}|_{R_{\nu}(c)}$ : $R_{\nu(c)}\rightarrow R_{\nu(c)}$ has no fixed

point. Note that $R_{\nu(c)}$ has $f$ . $p$ . $p$ . by Lemma 3. Hence we have a contradiction.

LEMMA 8. Let $f:X\rightarrow X$ be a mapping and $p$ an endpoint of $X$ such that

$f(p)=p$ . Assume that $p$ belongs to a non-essential component $C$ of the fixed point

set of $f;i$. $e.,$ $C$ has an open neighborhood $U(C)$ such that for each $n$ there exists

a mapping $f_{n}$ : $X\rightarrow X$ with $|f_{n}-f|<1/n$ which has no fixed point in $U(C)$ . Then,

there exists an open neighborhood $V(p)$ such that every $s_{\nu}\in V(p)$ satisfies either

(a) $f(s_{\nu})>s_{\nu}p$ or

(b) $f(s_{\nu})=s_{\nu}p$ and $f_{n}$ : $X\rightarrow X$ which has no fixed point in $U(C)$ satisfies

$f_{n}(s_{\nu})>_{p}s_{\nu}$ .

PROOF. Since $p$ is an endpoint of $X$ , we can choose $s_{\nu_{0}}$ such that $ R_{\nu_{0}(c)}\subset$

$U(C)$ . Then, our statement follows from the fact that $R_{\nu_{0}(t)}$ has $f$ . $p$ . $p$ .

REMARK 2. Above Lemmas 7 and 8 can be applied to the endpoint $s_{\nu}$ of
$K_{\mu\nu}()$ and $r_{\mu(\nu)}f|_{K_{\mu}(\nu)}$ : $K_{\mu^{(\nu)}}\rightarrow K_{\mu\nu}()$ .

LEMMA 9. Let $f:X\rightarrow X$ be a mapping, $s_{\nu}$ an endpoint of $K_{\mu\nu}()(\ni c)$ and $C$

the component, containing $s_{\nu}$ , of the fixed point set of $f$ . Assume that there exist
arbitrarily small open neighborhoods $V(s_{\nu})s(V(s_{\nu})\not\equiv c)$ whose boundary in $K_{\mu\nu}()$ is
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a single point $s_{\nu^{\prime}}$ which satisfies
(1) $f(s_{v^{\prime}})=s_{\nu^{\prime}}$ , and
(2) $C$ has an open neighborhood $U(C)$ such that for each $n$ there exists a

mapping $f_{n}$ : $X\rightarrow X$ which satisfies
(i) $|f_{n}-f|<1/n$ ,

(ii) $f_{n}$ has no fixed point in $U(C)$ , and
(iii) $f_{n}(s_{\nu^{\prime}})>s_{\nu^{\prime}}c$

Then, the component $Cr$) $R_{\nu(c)}$ of the fixed point set of $r_{\nu(c)}f|_{R_{\nu}(c)}$ : $R_{\nu(c)}\rightarrow R_{\nu(c)}$

is non-essential.

PROOF. Choose $V(s_{\nu})$ such that $V(s_{\nu})\subset U(C)$ in the assumption. Then each
$f_{n}$ satisfies $f_{n}(s_{\nu})>s_{\nu}c$ because $\overline{R_{\nu^{\prime}(c)}-R_{\nu(c)}}$ has $f$ . $p$ . $p$ . Hence our conclusion
follows immediately.

LEMMA 10. Let $C_{\gamma}$ be a non-essential component of $t/\iota e$ fixed poinl set of a
mapping $f:X\rightarrow X$ such that $ C_{r^{(}}\eta s_{\nu}\neq\phi$ . Then, there exist $K_{m(\nu)}$ and an open
neighborhood $U_{m(\nu)}$ of $C_{\gamma}\cap K_{m(\nu)}$ in $K_{m(\nu)}$ such that for each $n$ there exists a
mapping $f_{n}$ : $X\rightarrow X$ which satisfies

(i) $|f_{n}-f|<1/n$ ,
(ii) $f_{n}$ has no fixed point in $U_{m(\nu)}$ , and
( $i$ ii) $f_{n}(s_{\nu})\in K_{m(\nu)}-s_{\nu}$ ,

$i$ . $e.,$ $C_{\gamma}\cap K_{m(\nu)}$ is a non-essential component of the fixed point set of $r_{m(\nu)}f|_{\kappa_{m^{(\nu)}}}$ ;
$K_{m(\nu)}\rightarrow K_{m(\nu)}$ .

PROOF. Since $C_{\gamma}$ is non-essential, $C_{\gamma}$ has an open neighborhood $U$ such
that for each $n$ there exists a mapping $f_{n}$ : $X\rightarrow X$ which satisfies

$(i^{\prime})$ $|f_{n}-f|<1/n$ , and
(ii’) $f_{n}$ has no fixed point in $U$ .

If there exists $n$ such that $f_{n}(s_{\nu})\in K_{\mu t\nu)}\subset U$ for a $K_{\mu(\nu)}$ , then by Lemma 4, $f_{n}$

has a fixed point in $U$ , which contradicts to above condition (ii’). Hence, we
are only to consider the case where, for each $n,$ $f_{n}(s_{\nu})$ belongs to some $K_{\mu(\nu)}$

not contained in $U$ . By Lemma 1, the number of $K_{\mu\nu}()$ not contained in $U$ is
finite. Then there exists $K_{m(\nu)}$ which contains $f_{n}(s_{\nu})$ for infinitely many $n$ .
Let $U_{m(\nu)}=U\cap K_{m(\nu)}$ . Then we have our conclusion.

4. Proof of Main Theorem.

Assume on the contrary that there exists a mapping $f:X\rightarrow X$ whose fixed
point set has no essential component. Then, each component $C_{\gamma}$ of the fixed
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point set of $f$ has an open set $U_{\gamma}$ such that for each $n$ there exists a mapping
$f_{n}$ : $X\rightarrow X$ satisfying

(i) $|f_{n}-f|<1/n$ , and
(ii) $f_{n}$ has no fixed point in $U_{\gamma}$ .

Since the fixed point set of $f$ is compact, we can choose a finite open covering
$\{W_{i}\}$ of this fixed point set such that (1) $W_{i}\subset U_{\gamma_{i}}$ and (2) $W_{i}\cap W_{j}=\phi(i\neq j)$ .
Let $C_{\gamma_{i}}$ be a component of the fixed point set of $f$ with $C_{\gamma_{i}}\subset W_{i}\subset U_{\gamma_{i}}$ .

Let $S$ be the set of all $s_{\nu}$ of $X$ and define the correspondence $F:S\rightarrow X$ as
follows:

Case 1. $s_{\nu}$ is not fixed by $f$ . In this case, let $F(s_{\nu})=f(s_{\nu})$ .
Case 2. $s_{\nu}$ is fixed by $f$ . Then, by Lemma 10, for the neighborhood $W_{i}$

containing $s_{\nu}$ , there exists $K_{m(\nu)}$ such that for each $n$ there exists a mapping
$f_{n}$ : $X\rightarrow X$ satisfying

(i) $|f_{n}-f|<1/n$ ,
(ii) $f_{n}$ has no fixed point in $W_{i}$ , and
(iii) $f_{n}(s_{\nu})\in K_{m(\nu)}-s_{\nu}$ .

Whenever there exists $K_{m(\nu)}\subset R_{\nu(c)}$ with the above conditions, we choose this
$K_{m(\nu)}$ , and let $F(s_{\nu})=k_{m}$ , where $k_{m}$ is a point of Int $K_{m(\nu)}$ .

First, we assume that there exists a non-degenerate $X_{\alpha}$ such that every
$s_{\nu}\in Bdry$ X. satisfies $\Gamma^{J}(s_{\nu})\not\geqq_{\alpha}s_{\nu}x$ It follows from Lemmas 5 and 6 that $C_{\gamma}\cap X_{\alpha}$

is a non-essential component of the fixed point set of $r_{\alpha}f|_{X_{\alpha}}$ : $X_{\alpha}\rightarrow X_{\alpha}$ if
$ C_{7}\cap X_{\alpha}\neq\phi$ , which contradicts to our assumption that $X_{\alpha}$ has $f^{*}p$ . $p$ . Then,
we consider the case where for any non-degenerate $X_{\alpha}$ there exists $s_{\nu}\in BdryX_{\alpha}$

such that $F(s_{\nu})_{x}>_{\alpha}s_{\nu}$ .

Letting $c$ be the initial point, we construct the ordered set $\langle s_{\lambda}\rangle(\lambda$ is a
countable ordinal) of $s_{\nu}$ by the following procedure. Let $K_{m(\lambda)}$ be such that
$F(s_{\lambda})\in K_{m(\lambda)}$ .

1. Define the immediate successor of $s_{\lambda}$ as follows:
Case 1. $s_{\lambda}$ is a boundary point of non-degenerate $X_{\lambda}$ contained in $K_{m(\lambda)}$ .

Then, there exists $s_{\nu}\in BdryX_{\lambda}$ with $F(s_{\nu})>_{\lambda}s_{\nu}x$ Let $s_{\nu}$ be the immediate suc-
cessor of $s_{\lambda}$ .

Case 2. $s_{\lambda}$ is an endpoint of $K_{m(\lambda)}$ .
Case (1). $f(s_{\lambda})>cs_{\lambda}$ . By the continuity of $f$ , there exists $s_{\nu}(\neq s_{\lambda})$ in a

neighborhood of $s_{\lambda}$ in $K_{m(\lambda)}$ such that $f(s_{\nu})>_{\lambda}ss_{\nu}$ .

Case (2). $f(s_{\lambda})=_{c}s_{\lambda}$ . By Lemma 8, there exists $s_{\nu}(\neq s_{\lambda})$ in a neighborhood

of $s_{\lambda}$ in $K_{m(\lambda)}$ such that $F(s_{\nu})>_{\lambda}ss_{\nu}$ .
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In the both cases, let each $s_{\nu}$ be the immediate successor of $s_{\lambda}$ .
2. When $\lambda$ converges to $\nu$ , let $s_{\nu}$ be the limit point of $\langle s_{\lambda}\rangle$ if it is not an

endpoint of $X$ . We add $s_{\nu}$ to $\langle s_{\lambda}\rangle$ . Note that $s_{\nu}$ is an endpoint of $K_{\mu^{(\nu)}}$ con-
taining $c$ and $s_{\nu}$ . Then, by Lemma 7 or 9, $s_{\nu}$ belongs to a non-essential com-
ponent of the fixed point set of $r_{\nu(c)}f|_{R_{\nu}(c)}$ : $R_{\nu(c)}\rightarrow R_{\nu(c)}$ . Hence, in this case,
$s_{\nu}$ satisfies $F(s_{\nu})>_{c}s_{\nu}$ .

From the construction of this ordered set, it is easy to see that $\langle s_{\lambda}\rangle$ and
$\langle K_{m(\lambda)}\rangle$ satisfy the following conditions:

(1) $F(s_{\lambda})>_{c}s_{\lambda}$ for every $\lambda$ ,

(2) $K_{m(\lambda)}\supset K_{m^{\prime}(\lambda^{\prime})}(\lambda<\lambda^{\prime})$ , and
(3) Either $\langle s_{\lambda}\rangle$ ends in $s_{e}$ which is the single boundary point of $X_{\alpha}$ , or

$\langle s_{\lambda}\rangle$ converges to an endpoint $p$ of $X$ .
Applying the above ordered set, we are going to complete our proof of

the Main Theorem.
Case 1. $\langle s_{\lambda}\rangle$ ends in $s_{e}$ which is the single boundary point of $X_{\alpha}$ . From

Lemmas 5 and 6 it follows that $X_{\alpha}$ does not have $f^{*}p$ . $p.$ , which contradicts
to the assumption of the Main Theorem.

Case 2. $\langle s_{\lambda}\rangle$ converges to an endpoint $p$ of $X$ . In this case, there exists
$s_{\lambda}$ in any neighborhood of $p$ such that $F(s_{\lambda})>s_{\lambda}c$ On the other hand, by our

assumtion, $p$ belongs to a non-essential component of the fixed point set of $f$ .
Then, by Lemma 8 we have a contradiction. Thus our proof is complete.

EXAMPLE. By letting $X_{\alpha}$ be a disk with a spiral about its boundary, which
is $s$hown to have $f^{*}p$ . $p$ . in [6], we obtain the following example of a not

Figure 2.
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locally connected continuum with $f^{*}p$ . $p$ . in our Main Theorem.
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