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Abstract. We accomplish the Kaehler version of Choi’s characteri-
zations of rotationally symmetric manifolds.

0. Introduction.

A Kaehler manifold $M$ of complex dimension $n$ is said to be unitary-
symmetric at a point $m$ of $M$ if the linear isotropy group of automorphisms
(that is, holomorphic isometries) of $M$ is the unitary group $U(n)$ .

A unitary-symmetric Kaehler manifold is a Kaehler version of a rotationally
symmetric manifold (cf. Choi [1], Greene-Wu [2]). The second author [8] has
given a characterization of such a Kaehler manifold. Using the result, the
present authors have constructed a one parameter family of complete Kaehler
metrics on $CP^{n}$ , the complex projective n-space, which are compatible with
the canonical complex structure on it, and have studied the geometry of unitary-
symmetric Kaehler manifolds (cf. Watanabe [8], Mori-Watanabe [4], [5], [6]).

Let us fix some notations. Let $M$ be a Kaehler manifold with Kaehler
structure $(ds^{2}, J)$ . We denote by $\nabla$ the Levi-Civita connection. The curvature
tensor $R$ is defined to be

$R(X, Y)Z=\nabla_{X}\nabla_{Y}Z-\nabla_{Y}\nabla_{X}Z-\nabla_{[X.Y]}Z$

for any vector fields $X,$ $Y,$ $Z$ on $M$ and the Ricci tensor is denoted by $Ric$ .
Further, we denote by $\Omega$ the fundamental 2-form, that is, $\Omega(X, Y)=ds^{2}(JX, Y)$ .
Let $m\in M$. We define $\delta$ to be the distance from the origin $O$ of the tangent
space $T_{m}(M)$ at $m$ to the first conjugate locus $\tilde{Q}_{m}$ in $T_{m}(M)$ . Define $\tilde{B}_{\delta}=$

$\{X\in T_{m}(M)||X|<\delta\}$ . Then it is clear that $\tilde{B}_{\delta}$ becomes a Riemannian manifold
equipped with the metric $exp_{m}^{*}ds^{2}$ , since $exp_{m}$ : $\tilde{B}_{\delta}\rightarrow M$ is non-singular. Now
we consider the following four conditions.
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(I) $(M, ds^{2}, J)$ is unitary-symmetric at $m$ .
(II) The metric $exp_{m}^{*}ds^{2}$ and the fundamental 2-form $ exp_{m}^{*}\Omega$ , pulled back

under the exponential mapping $exp_{m}$ , are given by

$ exp_{m}^{*}ds^{2}=dr^{2}+f(r)^{2}d\Theta^{2}+f(r)^{2}(f^{\prime}(r)^{2}-1)\eta\otimes\eta$ ,

$ exp_{m}^{*}\Omega=2f(r)f^{\prime}(r)\eta\wedge dr+f(r)^{2}\Psi$

on the punctured ball $\tilde{B}_{\delta}-\{0\}$ of radius $\delta$ in $T_{m}(M)$ , where $f$ is a $C^{\infty}$ odd
function on $(-\delta, \delta)$ such that $f^{\prime}(O)=1$ and $f^{\prime}(r)>0$ . Here we assume that $\delta$ is
infinite when $M$ is non-compact, and we denote by $(r, \Theta)$ the usual polar coordi-
nate system of $C^{n}\equiv T_{m}(M)$ , by $(d\Theta^{2}, \phi, \xi, \eta)$ the standard Sasakian structure
on the unit sphere $S^{2n-1}$ in $T_{m}(M)$ , and set $\Psi(X, Y)=d\Theta^{2}(\phi X, Y)$ .

(III) The Riemannian curvature tensor $R$ satisfies

$R(J\gamma^{\prime}, \gamma^{\prime})\gamma^{\prime}=h(r)J\gamma^{\prime}$ $R(E(r), \gamma^{\prime})\gamma^{\prime}=k(r)E(r)$ ,

where $\gamma^{\prime}$ is the tangent vector field of a radial geodesic 7 starting from $m$ ,
$h(r),$ $k(r)$ are functions depending only on the geodesic distance $r$ from the origin
$O$ , and $E(r)$ is a parallel vector field along $\gamma$ which is perpendicular to both
$\gamma^{\prime}$ and $J\gamma^{\prime}$ .

(IV) The exponential image of any complex linear subspace (resp. real
subspace spanned by $u,$ $w$ ) of $T_{\mathfrak{m}}(M)$ is a closed, totally geodesic, complex
(resp. real) submanifold of $M$, where $u,$ $Ju$ and $w$ are orthonormal.

Then our assertion is as follows.

THEOREM. Let $(M, ds^{2}, J)$ be a complete, connected, simply-connected, Kaehler
manifold of complex dimension $n\geqq 2$ and $m$ be a point of M. Then the above
conditions $I,$ $II,$ $III$ and IV are equivalent.

1. Proof of Theorem.

We have already known that (I) is equivalent to (II) (see Watanabe [8]).

We shall show that (III) implies (II). Let 7 be a geodesic issuing from $m$

and $E=E(r)$ a parallel vector field along $\gamma$ such that $E(O)$ is perpendicular to

both $\gamma^{\prime}(0)$ and $J\gamma^{\prime}(0)$ . Then we have the following two kinds of Jacobi fields
$V$ and $\Xi$ along $\gamma$ ,

$V(r)=f(r)E(r)$ , $\Xi(r)=g(r)J\gamma^{\prime}$

for some functions $f,$ $g$ , which satisfy the differential equations

$f^{\prime/}(r)+k(r)f(r)=0$ , $g^{\prime\prime}(r)+h(r)g(r)=0$
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with initial conditions

$f(O)=0$ , $f^{\prime}(O)=1$ , $g(O)=0$ , $g^{\prime}(O)=1$ ,

respectively. By applying the Jacobi field argument, a long calculation shows
that the Riemannian metric $exp_{m}^{*}ds^{2}$ is given by the form

$ exp_{m}^{*}ds^{2}=dr^{2}+f^{2}(d\Theta^{2}-\eta\otimes\eta)+g^{2}\eta\otimes\eta$

(cf. Nakashima-Watanabe [7]). Since $(ds^{2}, J)$ is a Kaehler structure, we can
see that $g=ff^{\prime}$ . Further, since $f>0$ and $f^{\prime}>0$ on $(0, \delta)$ , it follows from the
assumption on $\delta$ that if $\delta<\infty$ , then $f^{\prime}(\delta)=0$ . Thus we have the condition (II).

We shall show that (I) and (II) imply (IV). Let $W$ be a complex linear
subspace of $T_{m}(M)$ . Then there exists a unitary matrix $\varphi$ which leaves $W$

pointwise fixed but $\varphi(X)\pm X$ for every $X\in T_{m}(M)-W$ . From the assumption
that $(M, ds^{2}, J)$ is unitary-symmetric at $m$ , it follows that there exists an auto-
morphims $\Phi$ of $(M, ds^{2}, J)$ such that $(\Phi_{*})_{m}=\varphi$ From this the image of $W$

under the exponential map $exp_{m}$ is the fixed point set of the isometry $\Phi$ of
$(M, ds^{2})$ , which implies that the image set $exp_{m}(W)$ is a totally geodesic sub-
manifold of $(M, ds^{2})$ . By restricting the structures $(ds^{2}, J)$ to the vectors tan-
gent to $exp_{m}(W)$ we see that $exp_{m}(W)$ is an almost Hermitian submanifold of
$(M, ds^{2}, J)$ . Thus the first assertion is true (see Kobayashi-Nomizu [3], p. 171).

From the first assertion, it suffices to prove the second assertion in the
case $n=2$ . We adopt a polar coordinate system $\psi(t, \theta_{1}, \theta_{2}, \theta_{3})=(tcos\theta_{1}cos\theta_{2}cos\theta_{3}$ ,
$tcos\theta_{1}cos\theta_{2}sin\theta_{3},$ $tcos\theta_{1}sin\theta_{2},$ $tsin\theta_{1}$ )

$,$

$ 0<t<\infty$ , $-\pi/2<\theta_{1},$ $\theta_{2}<\pi/2,$ $-\pi<\theta_{s}$

$<\pi$ for $T_{m}(M)\equiv C^{2}$ . Then we shall show that the submanifold $exp_{m}\{\psi(t, 0, \theta_{2},0)$

$|t\in R,$ $-\pi/2\leqq\theta_{2}\leqq\pi/2$ } is a closed, totally geoderic submanifold. We find that
with respect to local coordinates $w_{1}=t,$ $w_{i+1}=\theta_{i},$ $i=1,2,3$ , the components $g_{ij}$

of the Riemannian metric $g$ are given by $g_{1j}=\delta_{1j},$ $j=1,2,3,4,$ $g_{i+1i+1}=$

$f(t)^{2}(\lambda_{i}+(f^{\prime}(t)^{2}-1)\eta_{i}^{2}),$ $i=1,2,3,$ $g_{i+1j+1}=f(t)^{2}(f^{\prime}(t)^{2}-1)\eta_{i}\eta_{j},$ $i\neq j$ , where $\lambda_{1}=1$ ,
$\lambda_{2}=cos^{2}w_{2},$ $\lambda_{3}=\eta_{3}=cos^{2}w_{2}cos^{2}w_{3},$ $\eta_{1}=sinw_{3},$ $\eta_{2}=-sinw_{2}cosw_{2}cosw_{3}$ . From this
observation it follows that the Christoffel’s symbols satisfy $\Gamma_{jk}^{i}=0$ for $i=2,4$

and $j,$ $k=1,3$ , when $0<|w_{1}|<\infty,$ $-\pi/2<w_{3}<z/2$ and $w_{2}=w_{4}=0$ . Thus, the
second assertion is true.

Finally, we shall show that (IV) implies (III). Let $u,$ $Ju$ and $w$ be ortho-
normal vectors in $T_{m}(M)$ and consider the geodesic $\gamma(r)=exp_{m}ru,$ $r\in R$ . Set
$P=exp_{m}span\{u, Ju\},$ $Q=exp_{m}span\{u, w\}$ . Denote by $E(r)$ a unit vector field
(in $Q$ ) along $\gamma(r)$ which is perpendicular to $\gamma^{\prime}(r)$ and satisfies $E(O)=w$ . Since
$P$ and $Q$ are 2-dimensional totally geodesic submanifolds of $M$, we find that
$E(r)$ is a (uniquely determined) parallel field along $\gamma$ which is perpendicular to
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both 7’ and $J\gamma^{\prime}$ and that

$R(J\gamma^{\prime}(r), \gamma^{\prime}(r))\gamma^{\prime}(r)=h(r)J\gamma^{\prime}(r)$ , $R(E(r), \gamma^{\prime}(r))\gamma^{\prime}(r)=k(r)E(r)$ ,

for some functions $h(r)$ and $k(r)$ . Thus we have the condition (III).
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