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GRADED COALGEBRAS

By

C. NASTASESCU and B. TORRECILLAS*

1. Introduction

The notion of graded coalgebra does not appear very frequently in the
literature of coalgebras, neither in papers nor in books (e.g. the well known
references [1], [10]). In the mentioned books one can find considered the case
when the group is £ and the components of negative degree are zero. The
aim of this paper is to investigate the general concept of graded coalgebra over
arbitrary groups and expound their more important properties. A very remark-
able point of this paper is the study of the so-called “strongly graded coalge-
bras” (see §5). The principal ideas, that we use to obtain the main results of
this paper, come from the theory of graded rings (see [7]); these become use-
ful by a clever interpretation of the codual methods. We finally remark that
a graded coalgebra is a comodule coalgebra over the Hopf algebra 2[G], but
we will not apply this idea here.

After the introduction and a section where we fix the notation and pre-
liminaries, we give the general properties of graded coalgebras. Proposition
3.1 is the main tool in the computations of the rest of the paper. We show
that the functor U: gr®—MF° admits a right adjoint functor F; moreover if the
group G is finite, then F is also a left adjoint functor.

In Section 4, using the cotensor product introduced by Takeuchi in we
define the induced functor and we study the more important properties of this
functor.

In Section 5 we consider the strongly graded coalgebras. We obtain some
nice results about the relation between the categories M¢: and g»°.

In the next section, we associate a graded ring R to any graded coalgebra
C and we study the conexion between the categories R—gr and gr¢. We con-
clude the paper with examples of graded coalgebras, some of them are very
well-known.

* Supported by the grant PB91-0706 from the DGICYT. In addition, the authors wish to
thank the referee for his careful comments.
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2. Notation and Preliminaries

Let & be a field. A coalgebra over k is a k-space C together with two k-
linear maps A: C—»C®C (the unadorned tensor product is understood to be
over k) and e: C—k such that (1QA)A=(AR1A and (1Re)A=(eR1)A=1. We
shall use the so-called “sigma notation” (see Sweedler’s book or Abe’s
book [I]), that is A(c)=(, ¢:Rc; if ceC.

If C is a coalgebra, a right C-comodule is a k-space M with a k-map
pu: M-MQ@C such that (0,QR)exr=(1RA)px and (1Re)py=1. We also use
the sigma notation for C-comodules, i.e. p(m)=3 ) m@m,, mcM, m,eC.
If M and N are C-comodules, a comodule map from M to N is a k-map
fiM—N such that (f®@1pxy=pnxf. The k-space of all comodule maps from
M to N is denoted by Com¢(M, N) and MC denote the category of right C-
comodules. In the same way we can construct the category of left C-comodules
°M.

It is well known that MC is an abelian category (see [1], etc.). In
fact M¢ is a Grothendieck category.

3. Graded coalgebras and graded comodules

Let G be a group with 1€G the identity element of G. Let C be a co-
algebra. C is called G-graded coalgebra if C admits a decomposition as a
direct sum of k-spaces C=,ecC, such that

) ACHED1p=0C:QRC, for any ¢=G;

ii) &(C,)=0 for any o+1.

If M is a right C-comodule then M is called G-graded comodule over C
if M admits a decomposition as a direct sum of k-spaces M=@,ecM, such that
ou(Ms)SE 3 1p=e M;QC, for any o=G. For any element me M we have the
decomposition m=73),c m, m,=M, (the sum has only a finite number of nonzero
elements). The nonzero elements m, ¢=G are called the homogeneous com-
ponent of m;m, is the homogeneous element of degree ¢ and we write
deg(m,)=o.

Associated to any G-graded coalgebra C=@,:C, we have the category
gr® of all right graded C-comodules. In this category if M=@,eeM, and N=
Pocc N, are two objects, then the morphism from M to N is the set

Comgy.c(M, N)={feComc(M, N)| f(M;)EN, for all 6=G}.

It is easy to verify that g»® is an abelian category. (In fact gr¢ is also a
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Grothendieck category (see §4)). Analogously we can define °gr the category
of all left G-graded C-comodules.

If M=P,ecM, is a graded right C-comodule for any ¢=G we denote by
M. M—M, the canonical projection. The following result is fundamental in
the study of graded coalgebras and graded comodules.

Proposition 3.1. Let M=®,ecM, a right G-graded C-comodule. If a, t€CG
there exists a unique k-morphism ul.: My—M,QC. such that the following dia-

gram is conmutative

MY mec

M
Tor WGM ® Wg

Ma'r E— Ma- ®C‘r
M

uar

Moreover the morphisms ul. have the following properties:
1) For any o, 7, A=G the diagram

Ma ® C‘n\
Ma-r,\ M" ® CT ® C'\
uﬁ',\ ug{‘f ® 1
M, ®Cx

is commutative.
2) If 6=G we have the commutatiwe diagram

uM,
M, ——> M, ® C;
1

1 ®e

M,
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Proor. If t: M,.—M is the inclusion map then we define ul.=
(¥ Qrl)puidt. If meM we can write m=m,.+3i4,. m; where m,.=M,, and
m;eM;. Since wX(m)=m,. then we can show that for any A#¢7 we have
(7 Q@nE)pu)m;)=0. Indeed, since py(m)eX -2 M,QC, then from xy+or
result x #¢ or yst and therefore (¥ Qn¢)(M.QC,)=0. Hence (z¥R7¢)pu(m,)
=0 for any A#0r. Now, since nX is surjective, then uX is unique.

Since M is a right C-comodule, we have the commutative diagram

Maf ® CA

/ /\ AN

Mah\<_—'M M®C®C‘_>Ma®CT®OA
\ N es /
Mc®C-n\

Now, if meM,.; we can write py(m)=3m,@m,+>miQm; where m,, m,,
my, m; are homogeneous with deg(m,)=¢7, and deg(m,)=2. Thus, by the de-
finition of u ;, we have that ul ,(m)=3m,Qm,. If we denote (o QRL)py)(m)
=(1RA)pu)(M)=2Im,@m,Q@m, (sigma notation) then it is easily seen that
(ud QDuk H(m)=3Tm,@m,@m, where deg(m,)=¢, deg(m,)=7, deg(m,)=A2.
On the other hand, since ((1®A)px)(m)=2m,Q@m,Q@m,, then (1QuE )u¥.)(m)
=2Im,@m,Q@m, where deg(m,)=a, deg(m,)=r, deg(m,)=A. Hence we have
the equality (w2 . Q@Dull :=01QuE Hul.;.

The commutativity of the diagram in the assertion 2) follows from the fact
that (1Re)px=1.

COROLLARY 3.2. Let C be a G-graded coalgebra. If we denote A=uf,:
C,—C,QC,, then (C,, Ay, €) is a coalgebra and =, : C—C, is a morphism of co-
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algebras. Moreover, if M=@ecM, is a right graded C-comodule, then for any
oG, M, is a right C,-module via the canonical map ull,: M;—M;KC,.

ProoF. If we consider M=C as right C-comodule and ¢=7=21=1, the
Proposition 3.1 yields that (C,, 4y, ¢) is a coalgebra.

The same Proposition 1.1 with 7=A4=1 tell us that M, is a right C,-como-
dule for any o=G.

Let M=P,ecM, N=P,ccN, two objects in gr’. Let feCom,.c(M, N).
Since f(M,) &N, for any ¢=G, we denote by f,: M,—N, the restriction of f,
for o=G.

COROLLARY 3.3. With the above notations for any e¢=G, f,is a morphism
in the category MPC°1.

PrOOF. We have to show that the following diagram is commutative

M, fe > N,

M > N

M®C —>NQ®C
fol

\4 v
MJ ® Cl Pl Ng ® Cl
fe®1

Let meM,. Since pu(My)E X ip=c MaQM,, then we can write

pM(vn)=d S m@my+ X meQ@my

eg mo=0
deg m(l)=l

and degmi#¢ or degm;#1. Then ul,(m)=degm,=c MM, and therefore
degmi=1

((fa®1)u§{1)(m):2gegmo=,, f(my)@m,. Since f is a morphism of comodules, then

egmi=1

onf=(f®Dpxy. Hence (u,f)m)=ug\(f(m)=(7FQni)px)(fm)=(75Qal)
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(f®]-)pM)(m):((7rax®7rlN)Z(dleg mo=a f(m0)®m1+ Ef(m(,l)@m;) — deg mo=0 f)m0)®m1'

egmy=1 egm=1
Hence uy, f,=(f.Q1)ul,.

Let M=@,cM, be an object in gr° and ¢=G. We can define another G-
graded comodule denoted by M(s): as C-comodule M(¢) coincides with M, i.e.
M(e)=M and py,=py, but the grading of M(e) is given by the equality
M(a);=M,; for any A€G. Since puw(M(0()=pu(Ms)EZzy=0r MoQCy=
Sey=r M(0).QC, results that M(g) is a graded C-comodule. M/(a) is called
the ¢-suspension of M. It is clear that M—MY(g) defines an isomorphism of
categories from g»° to gr°.

We denote by U:gr°—MC° the forgetful functor. Clearly U is an exact

functor.

PROPOSITION 3.4. With the above notation U has an exact right adjoint
functor F: MC—gr®. Moreover if the group G is finite, then F is also a left
adjoint of U.

PROOF. Let MeMC¢  We construct F(M)=@P,ecM’ where M’=M
for o=G. We have to define prun: F(M)—F(M)XC, but it is enough to
define it for the elements of the form x=(---, 0, m?, 0, ---), where m’=meM
and the other components of x are zero. Since py(m)e MRC =, MKC,, then
Pu(M)=(my my@mi where meM and mieC;. Now, we define ppu(x)=
e (-, me@ms, ---) where here m, is considered as element in M?*' It is
easy to see that since M is a right C-comodule, the map pry, defines on F(M)
a structure of right C-comodule. Clearly F(M) is a graded C-comodule where
the grading is given by F(M),=M?° for any ¢=G. The action of F on the
morphism is defined in the natural way. Then Fis a functor from M¢ to gr°.

Clearly F'is exact.
If Megr® and NeM® we define

Come(UM), N)(%Com“c(M, F(N))

For any ueCom¢(U(M), N), we define ¢(u)(m,)=u(m,)° where m,=M, and
u(m)’ is considered as element in F(N),=N’. It is easily seen that ¢(u) is a
morphism of C-comodules.

Now, if veComg.c(M, F(N)), we put ¢(v)=Bv where B: F(N)—N is the
canonical map, i.e. 8(---, n? ---)=3,ecn’. Clearly B is a morphism of C-
comodules. It is easy to show that ¢ and ¢ are inverse maps.
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Suppose now that G is a finite group. Let MeM° We define a: M—
F(M), by a(m)=(m, ---, m, ---, m), i.e. a(m) is an element of F(M) which has
the element m in every position ¢=G. a is a morphism of C-comodules, i.e.
the following diagram is commutative

M—= 5 F(M)

PM PF(M)

MQC —— FM)®C
a®1l
Indeed, if me M then (prana)m)=pru(Zeec (0, -+, m?, 0, --+)) (here m?=m,
for any c=G)=sec pran(0, -, m?, 0, ---). If ou(m)=>m) my@mi where
mieC, then (orana)m)= Seec (0, -+, myT 7 Q@mi, 0, ---) (here m§*™" =m,) =
teG

Sree Doec (0, -+, m§T'@mI, 0, ) = e (0, -+, my@mi, 0, ) = (aQ Dpu)m).
Now, let Me M and Negrf. We define the maps

Comg,.c(F(M), N) % Comc(M, U(N))

by ¢'(w)=ua, for any usCom,,c(F(M), N) and ¢ ()0, -, 0, m?, 0, ---, 0)=
v(m?), where v(m?), is the homogeneous component of degree ¢ of the element
v(m?°)eN. It is easy to see that ¢’ and ¢’ are inverse.

PROPOSITION 3.5. Let Megr®. Then (FUYXM)=PsecM(a).

PROOF. We have (FU)M)=@ecM?*. We consider in (FU)M) an element
x of degree r (r&G), i.e. x=(0, ---, 0, m*, 0, ---, 0) where m*=me M. But m=
Sl,eemy, where m,eM,. Since (BoccM(0)):=DoccM (6):=BsecM,: then we
define the canonical morphism a: (FUYM)— PeeM(a) by alx)=(---, my, )
where (.-, m,, ---) is the system that contains all the homogeneous components
of x (rest is zero) but m, is considered as an element in M(yz™!). It is easily
verified that a is an isomorphism of comodules.

COROLLARY 3.6. 1) If the category gr® has enough projective modules, then
MFC has enough projectives.

2) If the group is finite and Megr® is an injective object, then UM) is
also injective in M°.
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PrOOF. 1) Let Me M€, then there exists P=gr® and an epimorphism P—
F(M)—0 in the category gr®. Since U is exact then we have in MC¢ the exact
sequence U(P)—UF(M)—0. But we have in MC the canonical epimorphism
B:(UF)M)—M (see the proof of Proposition 3.4). On the other hand since F
is an exact right adjoint functor of U, then U(P) is projective. Hence we have
an epimorphism in M¢, U(P)—»M—0, where U(P) is projective. 2) Follows
from general properties of adjoint functors.

4. Cotensor products and induced functor

Let C be an arbitrary coalgebra, M be a right C-comodule and N be a left
C-comodule, the cotensor product M.\ is the kernel of the k-map en@1—1
Xonv: MIN-MQQCKRN. Following [3], the cotensor product is a left exact
functor M xX°M—M, (M, is the category of k-spaces). Moreover the mapping
mc—e(c)m and c@n—e(c)n yield a natural isomorphism MOJ.C=M and
COcN=N.

Now if C and D are two coalgebras and M is (C, D)-bicomodule, i.e.
(1X¥p")p =(p~X1)p*, where p~: M—-CX@M and p*: M—M®D are the structure
maps of M, and N is a left D-comodule, then the map p~®1: MQN—-CRQMRON
define over M@N a structure of left C-comodule. In this case MJp,N is a C-
subcomodule of MEN (cf. [3].

Now we consider the graded case. Let C be a G graded coalgebra. By
Corollary 3.1 C, is a coalgebra and the canonical map =,: C—C, is a morphism
of coalgebras. Let M M1 be a right C, comodule. Since C has in the natural
way (via the morphism =m,) a structure of (C,, C,)-bicomodule we can consider
MOc,CeM. Since C=@,ecC, and C, is a left C,-comodule (see Corollary
3.1) (in fact C, is a (C,, C,)-bicomodule), for any ¢<G, then MOc¢ C=
Doec(MT¢,C,) (the functor cotensor product commute with direct sums). Thus,
M{c,C has the natural graduation if we put (M¢,C)e=M[1¢,C,. In fact
MO¢,C=Ker(onQ®@1—1KKp,) where p,=(7,®1)A. Indeed the canonical mor-
phism which defines the structure of right C-comodule of M{O¢,C is the restric-
tion of 1RA: MQC—-MQQCKRC to MO¢,C. Since A(Co)E 2 p=0 C2QC,, then
(1AM T, C)e) EZap=e (MOc,C)QC,. Hence M, C is a right G-graded
C-comodule.

Clearly, in this way, we obtain the functor —¢,C : MC1—gr°, M—-M0O¢,C,
Me M€, This functor is called induced functor and it is left exact.

On the other hand we have the functor (—),: gr*—>M°1 defined by M—M,,
for any Megr®. This functor is exact. More general for any ¢=G we have
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the exact functor (—),: gr®—M?¢1, defined by M—M,, where M= ;ccM;.
Let M=@,ccM; an object in gr®, we will show that there exists a natural
morphism a(M): M—M,0¢,C. Indeed we consider the diagram

PM1
M,0c,C —> M ®C SMQRC,®C
1® ((7f ®1)A) T
PM - |
M—>MQC SMRCRC
M 1®A

Since oy, =(x¥ R ox?Y then (o, QYR oxw=(0u,7I)RDox=(7!&
79)om)RLoy=(r¥Qr¢QL)ox@L)ox = (¥ QTIRLARA) p 1= (¥ QUTIR1)A) o 1
=(1QR(r¢RAN7Y¥R1)px, then the image of the morphism (z{@1)ox is con-
tained in M;(J.,C. Hence we define a(M): M—M,0¢,C by a(M)=(z¥&@1)px.
Since M is graded in gr°®, then a(M) is a morphism in gr®. Next we observe
that a(M),: M\—M,¢,C, is an isomorphism. Indeed, since (1QRQe)N 7R ou=
(T R1)(1Re)puw=nY then the restriction of 1Qe to M,[J¢,C, is the inverse of
a(M),.

Now, by using the natural morphism a(M): M—M,;[J¢,C we can prove the
following result.

PROPOSITION 4.1. The functor —¢,C: MC1—gr® is a right adjoint of the
functor (—),: gr®—>MC1. Moreover we have the composition (—),(— O¢,C)=1ycn.

Proor. Let M=P,ecM,cgr® and Ne M. We define the maps
®
Come (M,, N) == Comgz,c(M, NO¢,C)
¢
Indeed, if ueCome (M,, N) then we put pw)=uO¢,Da(M) and if ve
Comg,c(M, NO¢,C), ¢v)=(1Ke), where v, : M,—N0O¢,C, is the morphism in-

duced by v. Now (Pe)uw)=d(p(u)=01ARQe)(uc,1)p(M),. Since the following
diagram is commutative

‘chll
M,00,C; ——> NO¢,Cy

1®e¢ 1®¢€

M, > N
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then (¢p)u)=u(lQXe)a(M),=u. On the other hand, ¢(¢)=¢(1Rev,)=
(1Qew) Oe,Da(M)=((1Qe) D¢, )a(N T¢,Clv=v (since a is a functorial mor-
phism.)

5. Strongly graded coalgebras

Let C=@,cC, be a G-graded coalgebra. By Proposition 3.1 for any o, =
€G we have the canonical morphisms u¢.: C,.—C,QC,. If uf. are mono-
morphisms for any ¢, tG then C is called a strongly graded coalgebra. Since
ug 4-1: C;—C,QC,-1 are monomorphisms, it follows that if C,#0, then C,#0
for any ¢=C in a strongly graded coalgebra.

The following result characterizes the strongly graded coalgebras.

PROPOSITION 5.1. Let C=P,cC, be a graded coalgebra. The following
assertions are equivalent
i) C is strongly graded;
ii) for any o=G the morphism uf ,-1: C,—C,QC,-1 is monomorphism ;
iii) If M=®@secM, is a right graded C-comodule, then for any o, r=G the
canonical morphisms ul,: M,—M,QC, are monomorphisms.

PROOF. i)=ii) and iii)=1i) are clear. We prove only that ii)=iii). From
the diagram in the first part of Proposition 3.1 with A=7"! we have the com-
mutative diagram

1 ® uf:,_l

G

ix
®
/9

M, M,C,QC,-
uA ug.l'r ®1

Md‘r ® Cf"l

Since uf.-: is monomorphism by hypothesis then 1®u¢ .., is a monomor-
phism. Since (1Qe)ul,=1y,, then also u¥, is a monomorphism. Hence from
the equality (1Quf.-nHul,=wd . QDul -1 result that uX ._,: M,—M, QC,.-: is
monomorphism. Now if we change o7 by ¢ and 7! by 7, then we obtain that
uM: My.—M,RC. is a monomorphism.
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COROLLARY 5.2. Let C=PyecCs be a strongly graded coalgebra. If M=
PocaM,=gr° then the following assertions are equivalent:

1) M=0,

2) M,=0,

3) M,=0 for some a=G.

PrROOF. 1)=32) is clear.

2)=33) Follows from the fact that u#,: M,—M,QC, is monomorphism.

3)=1) Since uX: M,.—M,RQC. is monomorphism, then M,.=0 for the 7&G.
Therefore M=0.

COROLLARY 5.3. Let C=P,ecC, be a strongly graded coalgebra. Let M=
PoecM, and N=B,ecN, two objects in gr® and f&Comgz,c(M, N). The follow-
ing assertions hold :

1) f is injective & f,: M,—N, is injective.

2) f is surjective & f,: M,—N, is surjective.

3) f is an isomorphism & f,: M,—N, is an isomorphism.

PrOOF. We apply Corollary 5.2.
Now, we are in position to show the main result of this section.

THEOREM 5.4. Let C=P,ecC, be a G-graded coalgebra. The following
statements are equivalent :

1) C is strongly graded coalgebra.

2) The induction functor —O¢,C: MC1—grC is an equivalence of categories.

3) The functor (—),: gr°—MPC1 is an equivalence of categories

PrOOF. From Proposition 4.1 it is enough to show the equivalence 1)=2).

Assume 1). By Proposition 4.1, we know that (—),(—0¢,C)=1,61. Hence
we can show only that (—0O,,C)(—)=1,,c. For this we consider M=@,ccM,
cgr®. We have the canonical morphism a(M): M—M,0¢,C such that a(M),:
M,—(M;0¢,C), is an isomorphism. By Corollary 5.2 it follows that a(M) is an
isomorphism. Hence (—O¢,C)X(—)1=1,4c.

2)=1) Since (—)0¢,C: M°1—gr® is an equivalence of categories, then Pro-
position 4.1 yields that the functor (—),:gr°—MC is its inverse. Thus, if
Megr®, then the canonical morphism a(M): M—M;0¢,C is an isomorphism.
Let =G and M=C(¢) (the g-suspension of C, where C is considered as right
graded C-comodule). Hence a(C(eg)):C(e)—C(g),0¢,C is an isomorphism.
Since C(0),=C,, then for any 7= G we have the canonical isomorphism a(C(a)). :
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C(ot)—C(0),0¢,C.. Since C(6),0¢,C.SC,RC-, then a(C(a)).: Clar)—C(a),RC.
is a monomorphism. We observe that a(C(g)). is exactly u, . and the result
follows.

COROLLARY 5.5. If C=@,cC, is a strongly graded coalgebra and M=
DBoccM,=grC then for any o, T=G, M,Cc,Ce=M,.. In particular for any oG,
C,0¢,Co-1=C,, i.e. C, are coinvertible (C,, C,)-bicomodules.

If C is a coalgebra, following [8], C is called right semiperfect if the
category MC has enough projectives.

COROLLARY 5.6. Let C=@,ecC, be a strongly graded coalgebra. If C, is
right semiperfect coalgebra, then C is right semiperfect coalgebra.

ProOF. By Theorem 3.4, the category gr° has enough projectives. Now
the Corollary 3.2 tell us that M¢ has enough projectives.

COROLLARY 5.7. If C=@,ecC, is a strongly graded coalgebra and C, is a
coalgebra of finite dimension, then C is a left and right semiperfect coalgebra.

PrROOF. Since C, has finite dimension, then M€ and °1M are isomorphic
to the category of left and right modules over the ring C*, respectively. Hence
MF®: (resp. ©*M) has enough projectives. By Corollary 5.4 the result follows.

6. The graded ring associated to a graded coalgebra

Let C=@,cC, be a coalgebra. Following or [10], C*=Hom,(C, k)
has a natural structure of ring. Indeed if f, g&C* then fg=(f®g)A (here
kQk=k). Hence if ceC and A(c)=2 ) c:Qc. then (fg)c)= f(c)g(cs).

If V is a k-vector space, then V*=Hom,(V, k). If S is any subset of V,
we set St={feV*| f(x)=0, for any xS} and if X is a subset of V* we set
Xt={xeV|f(x)=0, for any feX}. Given feV*, by letting the family of
subsets of V*, {f+S*|SSV is a finite set} be a base for a system of neighbor-
hoods of f, V* becomes a linear topological space. This topology is called the
finite topology. If XS V* is an arbitrary subspace then the closure X of X in
the finite topology of V* is exactly (X*)*. In particular any finite dimensional
subespace of V* is closed (e. g. [10] page 68). When V=C, then C* is a linear
topological space (In fact C* is a topological ring). Let p)y: M—ME®C be a
right C-comodule, then M has a natural structure of left C*-module. Indeed,
if meM and c*eC*, then c*m=3(n) moc*(m,) where pu(m)=3(n, my@m,.
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Following [10], if c«M is a left C*-module, we have the canonical morphisms

M®C <> Homi(C*, M)

M

where a(m@Qc)(c*)=mc*(c) for any me M, c=C and ¢*=C*. Here a is an injec-
tive morphism of vector spaces. If meM, then we define B(m)(c*)=c*m.
When B factorizes through a, i.e. for any me M there exists a unique element

Tm@c;eM@C such that Bm)=a(X7 m,Qc;), then M is called rational
module. If we denote by Rat®* the class of all (left) rational C*-modules then
by [11, [10], the category M€ is isomorphic with the category Ratc*.

Let now A be a Grothendieck category and C a full subcategory of A. C
is called closed ([4], page 395), if C is closed under subobjects, quotient objects
and direct sums. If C is furthermore closed under extensions, then C is called
a localizing subcategory A. It may be easily seen that a closed subcategory of
a Grothendieck category is also a Grothendieck category (indeed, if U A is the
generator, then {U/K|U/K<C} is a family of generators of C and the direct
sum is the generator).

By [1], [10], it follows that Rat®* is a closed subcategory of the category
o«M (the category of all left C*-modules). Under certain hypotheses (cf. [8])
Rat®* is also a localizing subcategory of c«M.

Let A be any Grothendieck category and M= A and object. We denote by
c4[M] (or shortly ¢[M7]) the class of all the objects of A subgenerated by M,
i.e. the objects isomorphic to subjects of quotient objects of direct sums
of copies of M. It is easily seen that ¢,[M] is a closed subcategory of A (in
fact o4,[M] is the smallest closed subcategory of A containing M). By [10],
if C is an arbitrary coalgebra, then Rat C*=¢[+«C]. Moreover .C is a injec-
tive cogenerator in ¢[¢«CJ.

Let C=@B,6cC, be a G-graded coalgebra. For any =G we put R,=—
{feC* f(C.)=0 for all t#0}. R, is a k-subspace of C*. In fact R,=
(Zr26Co)* and therefore R,=C} as vector spaces. It is easy to see that the
sum >),c¢ R, is direct. We define R=3,c¢ Ro=Doecc Ko

PROPOSITION 6.1. With the above notations R is a G-graded ring with
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e: C—Fk the identity element.

PROOF. We can show that R,R.S R,. for any ¢, r&G. Let feR,, g=R,.,
ceC; where A#¢7, then (fg)c)=3f(c))g(cs), where A(c)=3 () ¢:Qcs. Since
A(C)E zy=2 CoQC,, then from xy+gr results either x+¢ or y+#t. Hence
f(g@)(c)=0 and fge R,,. The observation that e R, and ¢ is the identity ele-
ment of R is clear.

PROPOSITION 6.2. Let C=@P,ecC, be a G-graded coalgebra such that C, has
finite dimension for any ¢<G. Then the coalgebra C is strongly graded if and
only if R is a strongly graded ring.

PROOF. Assume that C is a strongly graded coalgebra. We know that
the canonical maps u¢.: C.—C,QC. are injective for any greG. Hence the
canonical morphisms

(ude)*

(CoQRC)* > Ch 0

are surjective. Since (C.QC.)*=C*RC¥ via the canonical morphism
[ 3 C:@C?‘ -_—> (C0®C1*)* )

defined by a(u@v)(xRy)=u(x)v(y), where usC¥, veC¥, x(C, yeC,. Now
if f=CX, then there exists an element 3%, ¥, Qu;eCIRQC¥ such that f=
(u&)*a)(Dty u;Qu;). If we consider now, 4,.: R,QR.— R, . the canonical map,
i.e. 0, .(rsQr.)=r,y. where r,R,, r.€R.. We claim that 0, (3%, u;,Qv,)=
Sk, uv)=f. Let ceC,. Since A(Cor)E X apu=0r C2QC,, we can write A(c)=
S R+ 6:Q¢:, Where o 6:Qc.EC.RQC, and o) viQCE 5T, per
C.®C,. Clearly (27 uv)(€)=371 Zo us(c)vi(ce). On the other hand f=
(D a(u;Quul .. Hence f(o)=(i a(u;Qui)(uf(c)). But uf ()= a1Qc,.
Thus f(c)=37; 3N ui(c)vi(c,). This proves the claim and it follows that R
is a strongly graded ring.

Conversely, if R is strongly graded, then the canonical maps 6, .: R,QR.
—R,. are surjective for any ¢, r=G. Hence the map 6F.: RX—(R,QR.)*=
R*QR¥ is injective. The canonical isomorphism R*=C,, R¥=C, RX=C,.
yield that the natural map u$.: C,.—C,XRC. is injective for any ¢, r=G.
Hence C is a strongly graded coalgebra.

If C=@,eC, is a G-graded coalgebra and M=@,ccM, together with
ou: M—-MQRC is a right graded C-comodule, by [1] or [10], M has a natural
structure of C*-module. Indeed if fC* meM then fm=3)n, mof(m,) where
eu(Mm)=22(m) my@m,. Since M is a graded comodule we define a left graded
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R-module, M, in the following way: M=M as k-space but for any c¢=G we
put M,=M,.,. Now, if feR, and meM,=M,.,, then we have fm=3cm,
m, f(m,), where pu(m)=33m me@m,. Since AM;-1)E X zy=c-1 M2QC, and since
fER,, then fm=3(n, m,f(m,), where m,eC,. Hence mycM,-1,-1=M,.. Thus
R,M.SM,. and M is left graded R-module. If we denote by R—gr the cate-
gory of left graded R-module, we have obtained a functor F: gr°—R—gr,
F(M)=M.

Let M=@®,ccM, a left G-graded R-module. We consider the natural mor-
phisms

Hom(C*, M)

Rl
*

prd
.~

M®C —> Hom(R,M)
a

oy
d

where a(m&c)(r)=mr(c), reR; amPc) f)=mf(c), f=C*, and *:. Hom(C*, M)
—Hom (R, M) is the canonical epimorphism given by the inclusion 7: R, C*.
Since Me R—gr we can define B(m)(r)=rm. Clearly a« and & are monomor-
phisms and a=i*@. We observe that a(MKQC,)S Hom(R, M) for any ¢&G.
(Here Hom(R,, M)={feHom (R, M)| f(R,)=0 for any r#¢}). Now if B fac-
torizes through a, i.e. there exists a (unique) morphism py: M—M&C such
that apy=p, then M is called gr-rational. Thus, M is gr-rational if and only
if there exists an element 37, m,Qc; e MQC such that rm=3%, m;r(c;) for
any r=R. In particular, if M is gr-rational and me M then Rm has finite
dimension over k.

Clearly if M is a right graded C-comodule, then M is gr-rational in R—gr.
Assume Me R—gr is gr-rational, we define a right graded C-comodule M in
the following way : M=M as vector space; for any ¢=G we put M,=M,,
and py:M—M®C is the canonical map. We can prove that pu(M,<
Sey=eM:QC,. Indeed, if meM,=M,.,, then pu(m)=3%,m,Qc;, where
(D7 m;Qc;)=p(m). Since M@C:@jggM,]@Cﬂ, we can assume that m, and

¢; are homogeneous. Then p(m)=X7,m;Qc; where m;eM,,, c;€C,,. Also
we can assume that ¢; are linear independent over the field 2. Since c;€C,,,
there exists »;& R, such that r,(c;)=0; ;. Now a(Xj-, m;Qc;(r:)=p(m)(r:), it
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2t it
results clearly that py(M,)E3:,-, M:QC,. By the same argument as the
Sweedler’s book ([1I0], page 37), we can prove that M with the map py: M—
M®C is a right C-comodule.

If we denote by Rat(R—gr) the full subcategory of R—gr of all gr-rational
modules, we obtain the functor G : Rat(R—gr)—gr®, defined by H(M)=M. 1t
is easy to see that Rat(R—gr) is a closed subcategory of R—gr. Moreover
Rat(R—gr) is rigid (or G-invariant) closed subcategory of R—gr. i.e. for any
MeRat(R—gr) the o-suspension M(o)=Rat(R—gr) for every o=G (Here be-
cause M is left graded module, M(¢).=M,, for all r=G (see [7])). Then with
the above notation we have the following resuit.

follows that m;=rm. Therefore A;'=g;67' and },=gu;'. Since M;,=M

THEOREM 6.3. If C=@P.wcC, is a G-graded coalgebra, then the categories
gr¢ and Rat(R—gr) are isomorphic via the functors F and H. Moreover if for
any 6=G, C, has finite dimension, then gr® is isomorphic with the subcategory
{(Xe R—gr|dim,(Rx)<o for all x=X}. In particular if MeR—gr with
dim,M< oo, then McRat(R—gr).

Proor. For the first part we make the same proof as in the case non-
graduate (see Sweedler [10] or Abe [1]). Assume now that C, has finite
dimension for any ¢=G. Since a(MQC,)S Ham(R, M) and R,=C¥ then we
obtain that a(MQC,)=Hom (R, M). Hence every object in R—gr is gr-rational.

COROLLARY 6.4. If C=@,ecC, is a G-strongly graded coalgebra, then the
group G is finite.

ProoF. Since C,:#0 we take ceC,. We consider zC as left graded R-
module. Since M= Rc¢ is a graded submodule of zC, then M as C-comodule is
a right graded C-comodule. But M has finite dimension over % and hence
M=P,cM, has only a finite nonzero homogeneous components M, c=G. If
we now apply the Corollary 5.2, then it follows that G is a finite group.

REMARKS. 1) Let C be a G-graded coalgebra with R the graded ring as-
sociated and let feC*. For any ¢=G we define f,= R, such that f,c)=f(¢)
if ceC, and f,{C.)=0 for any r+0. We obtain a family (f,),e¢ Where f,&R
(eeG). If we consider C* with the finite topology then f=3.c¢ f, i.€. the
family (fs)see iS summable to f, i.e. for any neighbourhood V(f) of f there
exists a finite subset FSG such that 3eer fo=V(f) for any finite subset F’ of
G such that FSF’. Indeed it is sufficient to consider the neighbourhood of the
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form f+S* where S is a finite subset of C. Since C is a graded coalgebra
we can assume that S contains only homogeneous elements. Assume S=
{xi, ---, x,} where the x; are homogeneous. If deg(x;,)=g;, then F={0,, 1=i=n}.
Clearly Ser fo=f+S* for any finite subset // of G such that F&F’.

2) Now if Me R—gr is gr-rational we can define over M an structure of
C*-module. Indeed we assume me M, m homogeneous. Since M is gr-rational
then Rm is a graded submodule of M and has finite dimension over k. Hence
for the twosided ideal I=Anng(Rm), R/I has finite dimension over k. Since
R/I is a graded ring with the grading R/I=@secR,/INR, and R/I has finite
dimension, then R,=I for almost all s=G. Assume that F={c=G|R,%1},
then F is finite. If feC* is an arbitrary element of C* then we define

(*) fm=2 fom.
ekl

If geC* is another element, we observe that gofocl if a£F or &l (1 is
twosided). Hence (gf)m=3)ver(gsfsym. On the other hand, since fome Rm,
reF

then IS Ann(Rf,m). Hence g(fm)=(Seer go)SM=(Soecr £:)(Zoer fom). There-
fore (gf)m=g(fm) and M with the multiplication given in (*) is a C*-module.
Clearly M is also a rational C*-module.

3) If C* is a G-graded coalgebra, then C is, in particular, a right graded
C-comodule. Exactly as in ([3] Corollary 1) gC, as graded R-module, is injec-
tive in Rat(R—gr»). Moreover the family {C(g)},ec is a family of injective
cogenerators in Rat(R—gr), then P,ecC(g) is an injective cogenerator of
Rat(R—gr) (or @,ecC(0) is an injective cogenerator in gr°). In fact Rat(R—gr)
=0r-g+r[DoccC(a)].

4) Let M=@pecM, and N=@,ecN, two objects in gr°. Then for any
oc=G we can define

COMM, N),={feComc(M, N)| f(M)SN,,, for all 2z&G}.
Clearly COM(M, N), is a subgroup of Comq(M, N) and the sum

S COMM, N)g

oG

is direct. We denote by

COM(M, N)y= 3 COM(M, N)y=@BwecCOMM, N),.

[4=1¢4
COM(M, N) is subgroup of Comc(M, N). We observe that COM(M, N),=
Comg.c(M, N). 1If M (resp. N) are the left graded R-modules associated to M
and N, then it is easy to see that
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COM(M, N),=HOMy(M, N),-: .

Now by ([7]), we have the following result: If M has finite dimension over
k or the group is finite then COM (M, N)=Comc(M, N).

7. Examples

1) If £ is a field and G a finite group then we note by kG the free k-
module generated by G. If we define the k-linear maps

A: kG —> RGRRG, e kG —> £k

such that A(g)=sec gh™'@h and e(g)=4,., where §,,, is the Kronecker symbol,
then (kG, A, ¢) is G-graded coalgebra with the grading (£G),=*kg, for all geG.
Here the graded ring associated to the coalgebra (£G, A, ¢) is exactly the group
ring £[G] with the natural grading. Here (kG, A, ¢) is a strongly graded co-
algebra.

2) If S={c,, ¢y, co, -}, we set C=£~S, where kS is the free k-module
generated by S. We define A: kS—kES®ES such that A(c,)=37 c:Qcn_i)
€(€a)=0o,,. C=(kS, A, ¢) is Z-graded coalgebra where the grading is given by
the equality C,=+ks, if n=0 and C,=0 if n<0. It is well known (see [1],
pag. 56) that the ring C* is the ring of power series in one variable over k.
On the other hand it is easy to see that the graded ring associated to a graded
coalgebra C is exactly the ring of polynomes in one variable over £ with the
natural grading. Clearly dim,(C,)=1 but g7° is not isomorphic to R—gr, when
R=~Fk[x] is the graded ring associated to the graded coalgebra C.

3) If V is a vector space, then the symmetric k-algebra S(V) over the k-
linear space V is a Z-graded coalgebra (in fact is a Z-graded Hopf algebra)
(see Example 2.10 [1], page 92).

4) Let R=@P,eR, be a G-graded k-algebra (assume here that the group G
is finite). Then R*=@,ccR¥. Let R° be the dual k-coalgebra

R°={f= R*|Ker f contains a finite codimensional ideal of R}
= {f& R*|there exists an ideal IS R, IS Ker f and dim,(R/I)< oo}

If I is an ideal of R, then (/),=3,c6(Rs\I)is a graded ideal of R and (I), is
the greatest graded ideal of R contained in I. Since we have the monomor-
phism 0—R,/R,NI—R/I for any ¢=G, then dim,(R,/R,~I)<c. On the other
hand R/(I);=@P,ceR,/(R,NI) and therefore dim,(R/I);)< . Hence

R°={f= R*|Ker f contains a finite codimensional graded ideal of R}.
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If for any =G we put

(R),={feR| f(R)=0Vr+0}

Clearly we have R°=@,eq(R°), It is easy to see that R° is a G-graded co-
algebra. Moreover if the ring R is strongly graded, then R° is strongly gladed

coalgebra.
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