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1. Introduction.

Let $\omega$ be a real quadratic irrational number with $0<\omega<1$ , and put

(1) $F_{\omega}(z_{1}, z_{2})=\sum_{h_{1}=1}^{\infty}\sum_{h_{2}=1}^{[h_{1}\omega]}z_{1^{h_{1}}}z_{2}^{h_{2}}$ .

The series $F_{\omega}(z_{1}, z_{2})$ converges in the domain

$\{|z_{1}|<1, |z_{1}||z_{2}|^{\omega}<1\}$ .
Mahler [3] proves that $F_{\omega}(\alpha_{1}, \alpha_{2})$ is transcendental for algebraic $\alpha_{1},$ $\alpha_{2}$ with

suitable properties. In the succeeding paper [4], he studies the algebraic inde-
pendence of the values

(2) $\frac{\partial^{k_{1}+k_{2}}F_{\omega}(z_{1},z_{2})}{\partial z_{1}^{k_{1}}\partial z_{2}^{k_{2}}}|_{(a_{1}.\alpha_{2})}$ , $k_{1}\geqq 0,$ $k_{2}\geqq 0$ .

To prove the algebraic independence of the values, he asserts the functions

(3) $\frac{\partial^{k_{1}+k_{2}}F_{\omega}(z_{1},z_{2})}{\partial z_{1}^{k_{1}}\partial z_{2}^{k_{2}}}$ $k_{1}\geqq 0,$ $k_{2}\geqq 0$ ,

are algebraically independent over the rational function field $C(z_{1}, z_{2})$ . But it
is pointed out in Kubota [1] and Loxton and van der Poorten [2] that Mahler’s

criterion for algebraic independence (Satz 1 in [4]) is not correct. Although

the correct criterion is given in [1] and [2], it seems that there is no proof of
the algebraic independence of the functions (3). Here we will prove the fol-
lowing theorems.

THEOREM 1. The functions (3) are algebraically independent over $C(z_{1}, z_{2})$ .

Let $\omega$ be expanded in the continued fraction

(4)
$\omega=\frac{1}{a_{1}+\frac{1}{a_{2}+}}$

,
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and
$p_{-1}=0$ , $p_{0}=1$ , $p_{1}=a_{1}$ , $p_{\mu+1}=a_{\mu+\iota}p_{\mu}+p_{\mu-1}$ ,

(5)
$q_{-1}=1$ , $q_{0}=0$ , $q_{1}=1$ , $q_{\mu+1}=a_{\mu+1}q_{\mu}+q_{\mu-\iota}$ .

From Theorem 1 and the main theorem in [4], we obtain the following theorem.

THEOREM 2. Let $\alpha_{1},$ $\alpha_{2}$ be algebraic numbers satisfying

(6) $0<|\alpha_{1}|<1$ , $0<|\alpha_{1}||\alpha_{2}|^{\omega}<1$ , $\alpha_{1}^{p_{\mu}}\alpha_{2}^{q_{\mu}}\neq 1$ $(\mu\geqq 0)$ .
$7hen$ the values (2) are algebraically independent.

COROLLARY. Let $f(z)=\sum_{h\Rightarrow 1}^{\infty}[h\omega]z^{h}$ and $\alpha$ an algebraic number with $0<|\alpha|$

$<1$ . Then
$f^{(k)}(\alpha)$ , $k\geqq 0$

are algebraically independent.

2. Proof of the theorems.

Define $\omega_{1},$ $\omega_{2},$ $\cdots$ by

$\omega=\frac{1}{a_{1}+\omega_{1}}$ , $\omega_{1}=\frac{1}{a_{2}+\omega_{2}},$ $\cdots$

Because of the equality (see [3])

(7) $F_{\ell\prime J}(z_{1}, z_{2})=\sum_{\mu=0}^{\nu-\iota}(-1)/l\frac{z_{1}^{p_{l^{p}}+1+p_{\mu_{Z_{2}}}q_{\mu}+1+q_{\mu}}}{(1-z_{1}^{p_{\mu+1}}z_{2}^{q_{l^{\ell+1}}})(1-z_{1}^{p_{\mu/p}}z_{2}^{q})}$

$+(-1)^{\nu}F_{\omega_{\nu}}(z_{1}^{p_{\nu}}z_{2}^{q_{\nu}}, z_{1}^{p_{\nu-1}}z_{2}^{q_{\nu-1}})$ ,

we may assume that the continued fraction of $\omega$ is purely periodic. Therefore
there exists a natural number $\nu$ such that $\omega=\omega_{\nu}$ . We may assume $\nu$ is even.
Put

$\Omega=(p_{\nu}p_{\nu-1}$
$q_{\nu}q_{\nu-1}$ and $\Omega(z_{1}, z_{2})=(z_{1}^{p_{\nu}}z_{2}^{q_{\nu}}, z_{1}^{p_{\nu- 1}}z_{2}^{q_{\nu- 1}})$ .

Then we have

(8) $F_{\omega}(z_{1}, z_{2})=F_{\omega}(\Omega(z_{1}, z_{2}))+b(z_{1}, z_{2})$ , $b(z_{1}, z_{2})\in Q(z_{1}, z_{2})$ .

Let $\rho_{1}=p_{\nu}+p_{\nu-1}\omega,$ $\rho_{2}=q_{\nu- 1}-p_{\nu- 1}\omega$ . Then $\rho_{1},$ $\rho_{2}$ are the eigen values of the
matrix $\Omega$ and

$\left(\begin{array}{l}o_{1}^{(\lambda)}\\o_{2}^{(\lambda)}\end{array}\right)=\left(\begin{array}{ll}q_{\nu- 1}-\rho & \lambda\\-p_{\nu- 1} & \end{array}\right)$

is an eigenvector belonging to $\rho\lambda(\lambda=1,2)$ . Put
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$D_{\lambda}=0_{1}^{(\lambda)}z_{1}\frac{\partial}{\partial_{Z_{1}}}+o_{2}^{(\lambda)}z_{2}\frac{\partial}{\partial z_{2}}$ , $\lambda=1,2$ .

Then we have ([4], \S 9),

$D_{1}^{k_{1}}D_{2}^{k_{2}}f(\Omega(z_{1}, z_{2}))$

$=\rho_{1}^{\hslash_{1}}\rho_{2}^{k_{2}}D_{1}^{k_{1}}D_{2}^{k_{2}}f(z_{1}, z_{2})|_{\Omega(z_{1}.z_{2})},$ $k_{1},$ $k_{2}\geqq 0$ .
where $f(z_{1}, z_{2})$ is any analytic function. By the equality (8), we have

(9) $D_{1}^{k_{1}}D_{2}^{k_{2}}F_{\omega}^{\urcorner}(z_{1}, z_{2})$

$=\rho_{1}^{k_{1}}\rho_{2}^{k_{2}}D_{1}^{k_{1}}D_{2}^{k_{2}}F_{\omega}(z_{1}, z_{2})|_{\Omega(z_{1}.z_{2})}+D_{1}^{k_{1}}D_{z^{k_{2}}}b(z_{1}, z_{2})$ .
We shall prove that the functions

(10) $D_{1}^{k_{1}}D_{2}^{k_{2}}F_{\omega}(z_{1}, z_{2})$ , $k_{1},$ $k_{2}\geqq 0$ ,

are algebraically independent over $C(z_{1}, z_{2})$ , from which Theorem 1 and Theo-

rem 2 follow, since $\det\left(\begin{array}{ll}o_{1}^{(1)} & o_{1}^{(2)}\\o_{2}^{(1)} & o_{2}^{(2)}\end{array}\right)\neq 0$ . The proof is by contradiction. We

assume the functions (10) were algebraically dependent over $C(z_{1}, z_{2})$ . Let
$K=Q(\omega)$ . Since the Taylor coefficients of the functions (10) are in $K$, the
functions are algebraically dependent over $K(z_{1}, z_{2})$ . By Corollary 9 in [1],

the functions (10) are K-linearly dependent $mod K(z_{1}, z_{2})$ . (Kubota [1] states
the corollary over the field $C$ , but it is easily checked that the above statement
is also valid.) Therefore the functions

$F^{(k_{1}.k_{2})}(z_{1}, z_{2})=(z_{1}\frac{\partial}{\partial z_{1}})^{k_{1}}(z_{2}\frac{\partial}{\partial z_{2}})^{k_{8}}F_{\omega}(z_{1}, z_{2})$ , $k_{1},$ $k_{2}\geqq 0$ ,

are also K-linearly dependent $mod K(z_{1}, z_{2})$ . Hence the functions

$F^{(t_{1}.k_{2})}(z, 1)$ , $k_{1},$ $k_{2}\geqq 0$

are K-linearly dependent $mod K(z)$ . We have

$F^{(k_{1}.h_{2})}(z, 1)=\sum_{h=1}^{\infty}h^{k_{1}}\{1+2^{k_{2}}+\cdots+[h\omega]^{i_{2}}\}z^{h}$ .

Put

(11) $f_{ij}(z)=\sum_{h=1}^{\infty}h^{i}[h\omega]^{j}z^{h}$ , $i\geqq 0,$ $j\geqq 1$ .

Then $\{F^{(k_{1}.k_{2})}(z, 1)\}_{0\leq k_{1},k_{2}\leq M}$ and $\{f_{ij}(z)\}_{0\leq i\leq M.1\leq j\leq M+1}$ generate the same vector
space over $K$ , and so $\{f_{ij}(z)\}_{i\geqq 0.j\geq 1}$ are K-linearly dependent $mod K(z)$ . Since
the coefficients of $f_{ij}(z)$ are all in $Q,$ $\{f_{ij}(z)\}_{i\geq 0.j\geq 1}$ are Q-linearly dependent
$mod Q(z)$ . Then there are integers $e_{ij}$ , not all zero, such that
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(12) $g(z)=\sum_{i=0}\sum_{j=1}e_{ij}f_{ij}(z)=p(z)/q(z)\in Q(z)$ ,

where $p(z)$ and $q(z)$ are relatively prime polynomials with integer coefficients.

Let $\xi_{1},$ $\cdots$ , $\xi_{n}$ be the distinct roots of $q(z)$ and $g(z)=\sum_{h=0}^{\infty}c_{h}z^{h}$ . Then we have

$c_{h}\in Z$ and
$c_{h}=P_{1}(h)\xi_{1}^{h}+\cdots+P_{n}(h)\xi_{n^{h}}$ , $h\gg O$ .

We choose a subset $S$ of $\{\xi_{1}, \cdots, \xi_{n}\}$ such that for every $i(1\leqq i\leqq n)$ , there

exists an unique $\xi\in S$ with $\xi_{i}/\xi$ is a root of unity. We may assume $S=$

$\{\xi_{1}, \cdots , \xi_{m}\}$ . By the choice of $S,$ $\xi_{i}/\xi_{j}$ is not a root of unity for any distinct
$i,$ $j$ . For a suitable natunrnal number $N$, we have

$c_{hN}=Q_{1}(h)\xi_{1}^{hN}+\cdots+Q_{m^{\prime}}(h)\xi_{m^{\prime}}^{hN}$ $h\geqq 1$ ,

where $Q_{i}(h)$ are nonzero polynomials of $h$ and $m^{\prime}\leqq m$ . By (11) and (12), $c_{h}$ are
rational integers and

$|c_{h}|\leqq c_{1}h^{c_{2}}$ , $h\geqq 1$ ,

where $c_{1}$ and $c_{2}$ are positive constants. When $m^{\prime}\geqq 1$ , by the lemma in [5], we
have

$|\xi_{i^{\sigma}}|_{p}\leqq 1$ , $i=1,$ $\cdots,$
$m^{\prime}$ ,

where $p$ is $\infty$ or a prime number and $\sigma$ is any automorphism of $\overline{Q}$ . There-
fore we conclude that $\xi_{i}$ are roots of unity. Hence we have

(13) $c_{hN}=a_{\ell}h^{*}+a_{S-1}h^{\iota-1}+\cdots+a_{0}$ , $h\geqq 1$ ,

for a suitable natural number $N$ . If $m^{\prime}=0$ , then $c_{hN}=0$ for any $h\geqq 1$ . In any
case, we have the equality (13). On the other hand, by (12), we have

(14) $c_{hN}=\sum_{i=0}\sum_{j=1}e_{ij}(hN)^{i}(hN\omega-\{hN\omega\})^{j}$

$=P_{t}(\{hN\omega\})h^{t}+P_{\iota- 1}(\{hN\omega\})h^{t-1}+\cdots+P_{0}(\{hN\omega\})$ ,

where $\{x\}$ denotes the fractional part of $x,$ $P_{i}$ are polynomials, $P_{t}\neq 0$ and at
least one of $P_{t},$

$\cdots,$
$P_{0}$ is not constant. Let $t_{0}$ be the largest integer such that

$p_{\iota_{0}}$ is not constant. Comparing (13) and (14), we see that $s=t,$ $a_{i}=P_{i}$ for $i=$

$t_{0}+1,$ $\cdots,$
$t$ and

$a_{t_{0}}=\lim_{h\rightarrow\infty}P_{t_{0}}(\{hN\omega\})$ .

This is a contradiction, since $\{\{hN\omega\}\}_{h=1}^{\infty}$ is dense in the interval $[0,1$ ).
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