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ON THE INTERVALS BETEEN CONSECUTIVE NUMBERS
THAT ARE SUMS OF TWO PRIMES
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1. Introduction.
It is the well known conjecture of H. Cramér that

pn+1'_ pn <<(10g pn)z

where p, is the n-th prime. In 1940 P. Erd6és proposed the problem to esti-
mate the sum

2 (pn+1—pn)2 )
Ppsx
and A. Selberg showed that it is
& x(log x)®

under the Riemann hypothesis. This problem has been stimulating the several
authors, vide [2, 3, 10, 11, 13].
Let (g,) denote in ascending order even integers that are representable as
the sum of two primes. The Goldbach conjecture is then interpreted as that
gn+1_‘gn:2

for all n. In 1952 Ju. V. Linnik proved, on assuming the Rieman hypo-
thesis, that
8nn1—gnk(log ga)***

for any >0 and all n. Also see [1]. In this paper we shall estimate the

third moment of it.

‘THEOREM.
KZS (gns1—&n)* <K x(log x)*° .
ns¥

COROLLARY. For 0=57r<3, we have

gzﬂ(gnﬂ—gn)f=(2"‘+0(1))x .
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Our assertion should be compared with the known results in Goldbach’s
problem. Let E(x) be the number of even integers not exceeding x that may
not be expressed as a sum of two primes, and D(x) be the maximum of
(gne1—ga) for g,<x. It was proved by H.L. Montgomery and R.C. Vaughan

[9] that
E(x)gxt?

with some 8>0. As for D(x), the argument in [9] runs as follows. Suppose
that one knows the equi-distribution of primes in intervals [x, x+x?] for
almost all x, and in [x, x+x9] for all x. Then,

(1.1) D(x)&x%9 .

By an elementary consideration, see section 3, we find
gzsz(gnn—"gn)z:zx+O(D(x)E(x)) .

It seems that no unconditional result leads 06 <Jd.

Our argument is based upon Linnik’s method [6, 7] and D. Wolke’s trick
[13]. The limitation of our estimate comes from A. E. Ingham’s bound for
zeros of the Riemann zeta-function.

I would like to thank Professor Uchiyama and Dr. Kawada for encourage-
ment and valuable comment.

2. Notation and Lemmas.

We use the standard notation in number theory. p stands for the non-
trivial zeros of the Riemann zeta-function. For 1/2<¢<1 and T7>0, N(e, T)
denotes the number of p such that ¢<Re(p) and |Im (p)|<T.

LEMMA 1. Uniformly for x, T=3, we have

xP:—%A’(X)-FO(x(lOg xT)*)

1Im(p)1sT

where A’(x) is equal to the von Mangoldt function if x is an integer, and A’(x)
=0 otherwise.

This is a formula of E. Landau [5]. Though his estimate is not uniform
for x, it is easy to alter the proof of to be suitable for our aim. The
following is due to Ingham and Montgomery [8, Theorem 1].
follows from [8, Theorem 2].
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LEMMA 2. For T>2, we have
N(a, T)KT* -9 (log T)'

where

if 1/20<4/5
Ao)=

3
2 .
" if 4/550<1.

LEMMA 3. If 9/10<0<1, then
N(g, T)KT @ 90-9(log T)1®
where ¢ is a positive absolute constant.
In sections 3 and 4 we use the convention L=log X. For a real x, write
e(x)=¢**. * and * mean that frg(x)=|"fGx—»gmdy and fw=|"r)-

e(—xy)dy, respectively. The implied constants in O and < are absolute, except
for the proof of Corollary.

3. Reduction of the problem

In this section we first reduce the proof of Theorem to that of
below. will be verified in section 5. Next we derive Corollary from
Theorem. Put d,=g,,.—g., for simplicity.

PROOF OF THEOREM. It is sufficient to prove

F(x)::z'qz S dn*< x(log x)**

for all large x and x'=(5/7)x. We have

F(x)K p d»*+(log x)  sup 2 dit.
2'<gpszx >(log 2)180 x'<gp=x
d,s(log x)150 d<d <20

Because of (1.1), 0<D(x)<x'¢, Put

F(x, 5): {gn: x,<gn_—<=x, 5<dn§25, gn+1§x}.
Then,

1) F(x)<(log x)™ 33 da-t(log x) 5 da*+3°D(x))

sup (
(log 2)160«8<x /6N g T (2,5)

< x(log x)**°+(log x) sup o2 X d,.

(log z)180<0<z /6 guel’ (z.0)

Here we state our main lemma.
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LEMMA 4. Let X be a large parameter,
5/2)X<x=(7/2)X and (1/2)log X)) <A< X E,

There exists a function R(x, A) such that

3.2)

/)X
S | R(x, A)|%dx < X*(log X)**
(6/2) X

and

(3.3) 22, AmAm=AX—|x—3X|)+0(AX(log X) 9+ R(x, 4),

r-A<m+nsz

uniformly for X, x and A.

Now, if t€[(gn+&r+1)/2, gns1) for g, (x, 6) then

_i gn+gn+l_d7l_
t 2 >’ 2 2 “gn-

Namely the interval (1—4/2, t] contains no sum of two primes. By in
with (7/2)X=x and 2A=40, we therefore have

0/2
?(7
for all t€[(gn+8&ns1)/2, Ens) With g,el'(x, d). Since these intervals are

R(t, 6/2)=— x—‘t—%xi)+0(5x(log x)™Y

mutually disjoint, we have

En+1

5 (gan— & orre 3 | |R(, 3/2)1%1

gnel(x.8) 2 gnel(x.0))(8n*8n41)/2

SY' | R(t, 8/2)|%d1 .

Hence in yields that
52 > d,,<<x(log x)?

gn€l (x,0)

uniformly for 4, (log x)'*°<d<<x!¢. Combining this with (3.1) we obtain

F(x)<x(log x)*°,
as required.

PrROOF OF COROLLARY. With the notation in section 1, we easily see that

S d.=x+0(D(x)),

£ %3
and
231: —%—x—l—O(l)—E(x).

8ns
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By subtraction, we have

(3.4) 2 d.&<Dx)+E(x)KE(x),
e
or
(3.5) S 1:%x+O(E(x)).
gnsg

Now, if 0<7<1 then

2 di=2" 5 1+0( 3 dn)=2""x+0(E(x))
gnsf

R

by (3.4) and [3.5). It is known [12; Kap. VI. Satz 7.1] that
(3.6) E(x)<x(log x)™4

for any A>0. Hence we get Corollary in case 0<yr<1.

Suppose 1<7<3. Let D be a positive constant, which will be specified
later. Then,

2 dit= 32 + > + 2

gpsx dp=2 2<dpsclogz)yD dp>(logx)D

=275+ 0(E(x)) +0((log x)7-2? 3 d,)+ 0((log x)77? 3 dy*)
Ensgf 8nsT

n

=27-1x +O0(E(x)(log x)7~>P+ x(log x)***~¢-1P)

because of and Theorem. On taking D=301/(3—7) we get, by [3.6),
that

2 d 7=2""x+0(x(log x)™1),

8nsT

as required.

4. Proof of Lemma 4, preliminaries.

We begin with modifying the explicit formula:

P
@ BAm=s— = S +0((1+7)log xT))
uniformly for x, T7=3. For T=3, define
“2) =guD=""" 5 ye-dy

n-1/2 |Im(p) |sT

if n<5, and ¢,=0 otherwise. Moreover we determine »,=r,(T) by the relation

4.3) An)=1—qp—7n .
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then gives
(4.4) gn, ¥n<(log nT)?.
For large x, it follows from the prime number theorem, and that

([x1+1/2)° +0<L))

(4.5) 2 Ga= |p|

nszx " |Im(p)isT( o
< x exp(—(log x)‘/2)+(l+ %)(log xT).
Similarly,
(4.6) P rn<<(l+ ,—;—)(log xT)?

nsx
by and [4.3).

Now, on choosing

T =

X s
ZL;

we consider the sum in question:

G= 22 Am)A(n).
X<m,ns2X
r-A<m+nsz

By [4.3), |
A(m)A(n):]-+0mqn~'(Qm+Qn)—rmA(n)_A(m)rn_rmrn .
Accordingly,
(4.7) G:G1+G2’_263—ZG4'—65 ’ say.
(4.8) Gi= 23 1
X<m, ns2X
x-A<m+nszx
= > #i{n: x—m—A<n=x—m}+0(4%
X<mseX
z-2X<m<r-A-X
=A > 1+0(X)
X<ms2X
z-2Xsmsz-X
=AX—|x—3X])+0(X).
On writing
4.9) Z=Z(y, T)= >  y°7',

1Im(p)1sT

we have
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m+1/2 n+1/2’ .
G,= > S S Z(u)Z(v)dudv
X<m,ns2XJm-1/2Jn-1/2
r—A<m+nsx

:SSDZ(u)Z(v)dudv, say.

We replace the domain D by
(4.10) D=DX, x, A)={u, v)e[X, 2X]*: x—Asu+v=x}.

The resulting error is
(4.11) <|i | Z)Z(w) | dudv< XL*,
(DUD)I\N(DAD)

because of Lemma 1.
(4.12) Gi= 22 Gn

X<m,n=2X
r-A<m+nsx

= > gn(A+01)+0(A’LY)
X<mseX
r-2X<msx-A-X

<Agup, |, Bn| + XL
KAXL*,
by [(4.4) and [45). Also, [4.4) and [4.6) give that
(4.13) G,= XE.anzx/l(m)rn

z-A<m+nszx

& 3 Am)sup | 3 7,
ms2X Nz2X |nsN
X
2 el 2
<XL (1+ T)L
KAXL*.
Similarly,
(4.14) Gs<KAXL*.

On summing up the above estimates (4.7)-(4.14) we obtain
(4.15) G=AX—|x—3X| )+O(AXL“‘)—{-SSDZ(u)Z(v)dudv

where Z and D are defined by [4.9) and [4.10), respectively.
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5. Proof of Lemma 4.

Put
N+(0', T):Tl(a)(l—a)Lw

where A is defined in Lemma 2. Since
T2(1/2):T1(1):()_( L8)2<X2L—280<<)Z( La)12/5:T1(3/4)<T1(4/5)
A ’
there exist » and ¢ such that 1/2<r<3/4, 4/5<t<1 and
Tl(r):Tl(c)zsz—zso .
Define s=min({, 9/10), and I=[r, s). We then see

(5.1) TA < X2 [ -0 for all e=[1/2, 9/10)\1,
and
(5.2) TA) > X2 [ -0 for all g=1I.

Now, we divide the sum Z(y), which is defined by [4.9).
(5.3) Z)=_ X2 + 2 =z)+zy), say.

Re(o)el! Re(prel

We first consider z,. By a familiar way,

°X
j____SX lzl(y)lZdy<<L2 2 X‘ZRe(p)—l

<<L2ll > 1413 sup X**"!'N(e, T).

m(p)1sT 1/2g0egl

Here, because of the zero-free region [12; Kap. VIII. Satz 6.2], the above
supremum may be taken over ¢ <1—x(T) only, where n(T)=(log T)"*®*. Lemmas
2 and 3 yield that

2

TA)\1-0 T2\1-0
3 16 I ~c(l-0
(6.4) JL'T+L X{x/zgggs}/m X? ) +9/1os§l§lP-r;(T)(Xz) = )}
<<L11XA—1_+_L]6X {(X—280)1/10+T—07}(T)}
KXL 1,

by (5.1).
We turn to the double integral in (4.15). Since

Z(w)Z(w)y=z2(u)z(v)+2:.(1)Z W)+ Z(u)z,(v)— z,(u)z,(v),
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SSD(Z(u)Z(v)—z(u)z(v\))dudu

<<SS e osayg BNUZO) H12@) Ndudy

r-Asutvsz
2X 2X
<A 1amidy+al] 1201
<<L2A(X2L—12)1/2+AXL—12
LAXL*,
by and (5.4). Combining this with we reach [3.3);

GC=AX—|x—3X)+0AXL *)+R(x, A
where

(5.5) R(x, A):SSDz(u)z(v)dudv.

It remains to prove [3.2). First we define z(y)=0 if y&[X, 2X]. Next we
split up z(y). Let z,v) be the partial sum of z(y) restricted by ¢=<Re (p)<
g(1+1/L). Then,

2(y)= > 24(y).

a=r(1+1/Ly"el
nzo

Furthermore let X(x) denote the characteristic function of [0, A]. Thus we

may rewrite as
R(x, A):SimSiMX(x——u—v)z(u)z(v)dudv
=X*xzxz(x) .

Now, by Plancherel’s relation, we have

(1/2)X 400
(5.6) I:S | R(x, A)[zdxgg | Xrzxz(x)|2dx

(6/2) X —o0

40
:S_ |Trzwz(x)|tdx

=\ 1218w dx

Here we see

sin TAx >2
X ’

1200 2=(

and, on using Holder’s inequality,
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Ié(x)l‘<<L3§a] [2a(x)]*.

Therefore becomes

5.7 I LiA® sup (sup | 24(x)] 2)Swl z24x)|%dx,
el x -o0

by Plancherel’s relation again.
We proceed to estimate the square integral of z,.

2

dy

o-1

.|

(.8) PSR

oKL 1/L)

L L*X* " 'N(g, T).
We turn to 2,. The simplest saddle point method [12; Kap I1X, Lemma 4.2]
leads that

2o(x)= S”y“ew-* exp (i(Im (p) log y—27x))dy

1Im
gSRe(p)<o(1+1/L)

<<LX"+ . 2 XRe(p)llm(p)]-l/z

«LX°(1+ sup t-2N(a, z)).

sstsT

We now appeal to Lemma 2. Since A(g)(1—0)=1/2 if 1/2<0<4/5 and <1/2
if 4/5<¢ <1, we have that

LX°T-'*N*(e, T) if 1/250<4/5

(5.9) éa(x><<{
L¥X if 4/5<0<1,

uniformly for x.

In conjunction with [(56.7), [5.8)] and [5.9)] we obtain

I« Lw( sup LAX 49 'T-'N*(a, T)*+ sup L*X**~'N*(q, T)).
el 95

Notice that

1
—aA0)20—1 if 1/2<g<4
2(0)(1—-0):{ 1 3'2(")( g—1) if 1/2<0=<4/5
2—A0)20—1) if 4/5<0<1.

Hence, by [5.2), we conclude
I<< Lqu sup Xw—sz—X(a)(za—n

gel

X2 \20-1
«LX* 508 (75w

<<){3Lﬁ87,
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as required.
This completes our proof.
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