ON THE INTERVALS BETEEN CONSECUTIVE NUMBERS THAT ARE SUMS OF TWO PRIMES

By

Hiroshi MIKAWA

1. Introduction.

It is the well known conjecture of H. Cramér that

$$p_{n+1}-p_n \ll (\log p_n)^2$$

where p_n is the *n*-th prime. In 1940 P. Erdös proposed the problem to estimate the sum

$$\sum_{p_n \leq x} (p_{n+1} - p_n)^2,$$

and A. Selberg showed that it is

$$\ll x(\log x)^3$$

under the Riemann hypothesis. This problem has been stimulating the several authors, vide [2, 3, 10, 11, 13].

Let (g_n) denote in ascending order even integers that are representable as the sum of two primes. The Goldbach conjecture is then interpreted as that

$$g_{n+1} - g_n = 2$$

for all n. In 1952 Ju. V. Linnik [7] proved, on assuming the Rieman hypothesis, that

$$g_{n+1}-g_n \ll (\log g_n)^{3+\varepsilon}$$

for any $\varepsilon > 0$ and all n. Also see [1]. In this paper we shall estimate the third moment of it.

THEOREM.

$$\sum_{g_n \le x} (g_{n+1} - g_n)^3 \ll x (\log x)^{300}.$$

COROLLARY. For $0 \le \gamma < 3$, we have

$$\sum_{g_n \leq x} (g_{n+1} - g_n)^{\gamma} = (2^{\gamma-1} + o(1))x.$$

Received June 16, 1992.

Our assertion should be compared with the known results in Goldbach's problem. Let E(x) be the number of even integers not exceeding x that may not be expressed as a sum of two primes, and D(x) be the maximum of $(g_{n+1}-g_n)$ for $g_n \le x$. It was proved by H. L. Montgomery and R. C. Vaughan [9] that

$$E(x) \ll x^{1-\delta}$$

with some $\delta > 0$. As for D(x), the argument in [9] runs as follows. Suppose that one knows the equi-distribution of primes in intervals $[x, x+x^{\theta}]$ for almost all x, and in $[x, x+x^{\theta}]$ for all x. Then,

$$(1.1) D(x) \ll x^{\theta \theta}.$$

By an elementary consideration, see section 3, we find

$$\sum_{g_n \leq x} (g_{n+1} - g_n)^2 = 2x + O(D(x)E(x)).$$

It seems that no unconditional result leads $\theta\Theta \leq \delta$.

Our argument is based upon Linnik's method [6, 7] and D. Wolke's trick [13]. The limitation of our estimate comes from A. E. Ingham's bound [4] for zeros of the Riemann zeta-function.

I would like to thank Professor Uchiyama and Dr. Kawada for encouragement and valuable comment.

2. Notation and Lemmas.

We use the standard notation in number theory. ρ stands for the non-trivial zeros of the Riemann zeta-function. For $1/2 \le \sigma \le 1$ and T > 0, $N(\sigma, T)$ denotes the number of ρ such that $\sigma \le \text{Re}(\rho)$ and $|\text{Im}(\rho)| \le T$.

LEMMA 1. Uniformly for $x, T \ge 3$, we have

$$\sum_{|\operatorname{Im}(\rho)| \le T} x^{\rho} = -\frac{T}{\pi} \Lambda'(x) + O(x(\log xT)^2)$$

where $\Lambda'(x)$ is equal to the von Mangoldt function if x is an integer, and $\Lambda'(x) = 0$ otherwise.

This is a formula of E. Landau [5]. Though his estimate is not uniform for x, it is easy to alter the proof of [5] to be suitable for our aim. The following Lemma 2 is due to Ingham [4] and Montgomery [8, Theorem 1]. Lemma 3 follows from [8, Theorem 2].

LEMMA 2. For T>2, we have

$$N(\sigma, T) \ll T^{\lambda(\sigma)(1-\sigma)} (\log T)^{13}$$

where

$$\lambda(\sigma) = \begin{cases} \frac{3}{2 - \sigma} & \text{if } 1/2 \leq \sigma \leq 4/5 \\ \frac{2}{\sigma} & \text{if } 4/5 \leq \sigma \leq 1. \end{cases}$$

LEMMA 3. If $9/10 \le \sigma \le 1$, then

$$N(\sigma, T) \ll T^{(2-c)(1-\sigma)} (\log T)^{13}$$

where c is a positive absolute constant.

In sections 3 and 4 we use the convention $L = \log X$. For a real x, write $e(x) = e^{2\pi i x}$. * and ^ mean that $f * g(x) = \int_{-\infty}^{+\infty} f(x-y)g(y)dy$ and $\hat{f}(x) = \int_{-\infty}^{+\infty} f(y) \cdot e(-xy)dy$, respectively. The implied constants in O and \ll are absolute, except for the proof of Corollary.

3. Reduction of the problem

In this section we first reduce the proof of Theorem to that of Lemma 4 below. Lemma 4 will be verified in section 5. Next we derive Corollary from Theorem. Put $d_n=g_{n+1}-g_n$, for simplicity.

PROOF OF THEOREM. It is sufficient to prove

$$F(x) = \sum_{x' < \mathbf{g}_n \le x} d_n^3 \ll x (\log x)^{300}$$

for all large x and x'=(5/7)x. We have

$$F(x) \ll \sum_{\substack{x' < g_n \le x \\ d_n \le (\log x)^{150}}} d_n^3 + (\log x) \sup_{\delta > (\log x)^{150}} \sum_{\substack{x' < g_n \le x \\ \delta < d_n \le 2\delta}} d_n^3.$$

Because of (1.1), $\delta \leq D(x) < x^{1/6}$. Put

$$\Gamma(x, \delta) = \{g_n : x' < g_n \le x, \delta < d_n \le 2\delta, g_{n+1} \le x\}.$$

Then,

(3.1)
$$F(x) \ll (\log x)^{300} \sum_{g_n \leq x} d_n + (\log x) \sup_{(\log x)^{160} < \delta < x^{1/6}} \left(\sum_{g_n \in \Gamma(x, \delta)} d_n^3 + \delta^2 D(x) \right)$$
$$\ll x (\log x)^{300} + (\log x) \sup_{(\log x)^{150} < \delta < x^{1/6}} \frac{\delta^2}{g_n \in \Gamma(x, \delta)} d_n.$$

Here we state our main lemma.

LEMMA 4. Let X be a large parameter,

$$(5/2)X \le x \le (7/2)X$$
 and $(1/2)(\log X)^{150} < \Delta < X^{1/6}$.

There exists a function $R(x, \Delta)$ such that

(3.2)
$$\int_{(5/2)X}^{(7/2)X} |R(x, \Delta)|^2 dx \ll X^3 (\log X)^{299}$$

and

$$(3.3) \qquad \sum_{\substack{X < m, n \leq 2X \\ x - \Delta < m + n \leq x}} \Lambda(m) \Lambda(n) = \Delta(X - |x - 3X|) + O(\Delta X (\log X)^{-4}) + R(x, \Delta),$$

uniformly for X, x and Δ .

Now, if $t \in [(g_n + g_{n+1})/2, g_{n+1})$ for $g_n \in \Gamma(x, \delta)$ then

$$t-\frac{\delta}{2}>\frac{g_n+g_{n+1}}{2}-\frac{d_n}{2}=g_n$$
.

Namely the interval $(t-\delta/2, t]$ contains no sum of two primes. By (3.3) in Lemma 4 with (7/2)X=x and $2\Delta=\delta$, we therefore have

$$R(t, \delta/2) = -\frac{\delta}{2} \left(\frac{2}{7} x - \left| t - \frac{6}{7} x \right| \right) + O(\delta x (\log x)^{-4})$$

for all $t \in [(g_n + g_{n+1})/2, g_{n+1})$ with $g_n \in \Gamma(x, \delta)$. Since these intervals are mutually disjoint, we have

$$\sum_{g_n \in \Gamma(x,\delta)} \left(g_{n+1} - \frac{g_n + g_{n+1}}{2} \right) (\delta x)^2 \ll \sum_{g_n \in \Gamma(x,\delta)} \int_{(g_n + g_{n+1})/2}^{g_{n+1}} |R(t, \delta/2)|^2 dt$$

$$\leq \int_{x'}^{x} |R(t, \delta/2)|^2 dt.$$

Hence (3.2) in Lemma 4 yields that

$$\delta^2 \sum_{x_n \in \Gamma(x, \delta)} d_n \ll x (\log x)^{299}$$

uniformly for δ , $(\log x)^{150} < \delta < x^{1/6}$. Combining this with (3.1) we obtain

$$F(x) \ll x(\log x)^{300}$$
,

as required.

PROOF OF COROLLARY. With the notation in section 1, we easily see that

$$\sum_{g_n \leq x} d_n = x + O(D(x)),$$

and

$$\sum_{g_n \le x} 1 = \frac{1}{2} x + O(1) - E(x).$$

By subtraction, we have

(3.4)
$$\sum_{\substack{g \\ n \leq x \\ g \neq x}} d_n \ll D(x) + E(x) \ll E(x),$$

or

(3.5)
$$\sum_{\substack{g \\ n \leq x \\ g \neq x}} 1 = \frac{1}{2} x + O(E(x)).$$

Now, if $0 \le \gamma \le 1$ then

$$\sum_{\substack{g_n \le x \\ d_n = 2}} d_n^{\gamma} = 2^{\gamma} \sum_{\substack{g_n \le x \\ d_n = 2}} 1 + O\left(\sum_{\substack{g_n \le x \\ d_n \ge 2}} d_n\right) = 2^{\gamma - 1} x + O(E(x))$$

by (3.4) and (3.5). It is known [12; Kap. VI. Satz 7.1] that

$$(3.6) E(x) \ll x(\log x)^{-A}$$

for any A>0. Hence we get Corollary in case $0 \le \gamma \le 1$.

Suppose $1 < \gamma < 3$. Let D be a positive constant, which will be specified later. Then,

$$\begin{split} &\sum_{g_n \leq x} d_n^{\gamma} = \sum_{d_n = 2} + \sum_{2 < d_n \leq (\log x)D} + \sum_{d_n > (\log x)D} \\ &= 2^{\gamma - 1} x + O(E(x)) + O\Big((\log x)^{(\gamma - 1)D} \sum_{\substack{g_n \leq x \\ d_n > 2}} d_n\Big) + O\Big((\log x)^{-(3 - \gamma)D} \sum_{g_n \leq x} d_n^3\Big) \\ &= 2^{\gamma - 1} x + O(E(x)(\log x)^{(\gamma - 1)D} + x(\log x)^{300 - (3 - \gamma)D}) \end{split}$$

because of (3.4), (3.5) and Theorem. On taking $D=301/(3-\gamma)$ we get, by (3.6), that

$$\sum_{g_n \leq x} d_n^{\gamma} = 2^{\gamma - 1} x + O(x(\log x)^{-1}),$$

as required.

4. Proof of Lemma 4, preliminaries.

We begin with modifying the explicit formula:

uniformly for x, $T \ge 3$. For $T \ge 3$, define

(4.2)
$$q_n = q_n(T) = \int_{n-1/2}^{n+1/2} \sum_{|\mathbf{I}| \mathbf{I} \in \{0\}} y^{\rho-1} dy$$

if $n \le 5$, and $q_n = 0$ otherwise. Moreover we determine $r_n = r_n(T)$ by the relation

$$\Lambda(n) = 1 - q_n - r_n.$$

Lemma 1 then gives

$$(4.4) q_n, r_n \ll (\log nT)^2.$$

For large x, it follows from the prime number theorem, (4.1) and (4.2) that

Similarly,

$$(4.6) \qquad \qquad \sum_{n \leq x} r_n \ll \left(1 + \frac{x}{T}\right) (\log x T)^2$$

by (4.1), (4.2) and (4.3).

Now, on choosing

$$T = \frac{X}{\Lambda} L^8 ,$$

we consider the sum in question:

$$G = \sum_{\substack{X < m, n \leq 2X \\ x - \Delta < m + n \leq x}} \Lambda(m) \Lambda(n).$$

By (4.3),

$$\Lambda(m)\Lambda(n)=1+q_mq_n-(q_m+q_n)-r_m\Lambda(n)-\Lambda(m)r_n-r_mr_n.$$

Accordingly,

$$(4.7) G = G_1 + G_2 - 2G_3 - 2G_4 - G_5, say$$

(4.8)
$$G_{1} = \sum_{\substack{X < m, n \leq 2X \\ x - \Delta < m + n \leq x}} 1$$

$$= \sum_{\substack{X < m \leq 2X \\ x - 2X < m < x - \Delta - X}} \# \{n : x - m - \Delta < n \leq x - m\} + O(\Delta^{2})$$

$$= \Delta \sum_{\substack{X < m \leq 2X \\ x - 2X < m \leq x - X}} 1 + O(X)$$

$$= \Delta(X - |x - 3X|) + O(X).$$

On writing

(4.9)
$$Z(y) = Z(y, T) = \sum_{|Im(\rho)| \le T} y^{\rho-1},$$

we have

$$G_{2} = \sum_{\substack{X < m, n \leq 2X \\ x - \Delta < m + n \leq x}} \int_{m - 1/2}^{m + 1/2} \int_{n - 1/2}^{n + 1/2} Z(u)Z(v)dudv$$
$$= \iint_{D} Z(u)Z(v)dudv, \quad \text{say}.$$

We replace the domain D by

(4.10)
$$D = D(X, x, \Delta) = \{(u, v) \in [X, 2X]^2 : x - \Delta \le u + v \le x\}.$$

The resulting error is

$$\ll \iint_{(D \cup D) \setminus (D \cap D)} |Z(u)Z(v)| du dv \ll XL^4,$$

because of Lemma 1.

$$(4.12) \qquad G_{3} = \sum_{\substack{X < m, n \leq 2X \\ x - \Delta < m + n \leq X}} q_{m}$$

$$= \sum_{\substack{X < m \leq 2X \\ x - 2X < m \leq x - \Delta - X}} q_{m}(\Delta + O(1)) + O(\Delta^{2}L^{2})$$

$$\ll \Delta \sup_{M \leq 2X} \left| \sum_{m \leq M} q_{m} \right| + XL^{2}$$

$$\ll \Delta XL^{-4},$$

by (4.4) and (4.5). Also, (4.4) and (4.6) give that

$$G_{4} = \sum_{\substack{X < m, n \leq 2X \\ x - \Delta < m + n \leq x}} \Lambda(m) r_{n}$$

$$\ll \sum_{m \leq 2X} \Lambda(m) \sup_{N \leq 2X} \left| \sum_{n \leq N} r_{n} \right|$$

$$\ll X L^{2} \left(1 + \frac{X}{T} \right) L^{2}$$

$$\ll \Delta X L^{-4}$$

Similarly,

(4.14)
$$G_5 \ll \Delta X L^{-4}$$
.

On summing up the above estimates (4.7)–(4.14) we obtain

(4.15)
$$G = \Delta(X - |x - 3X|) + O(\Delta X L^{-4}) + \iint_{\mathbf{D}} Z(u)Z(v) du dv$$

where Z and D are defined by (4.9) and (4.10), respectively.

5. Proof of Lemma 4.

Put

$$N^+(\sigma, T) = T^{\lambda(\sigma)(1-\sigma)}L^{13}$$

where λ is defined in Lemma 2. Since

$$T^{\lambda_{(1/2)}} = T^{\lambda_{(1)}} = \left(\frac{X}{\Delta}L^{8}\right)^{2} < X^{2}L^{-280} < \left(\frac{X}{\Delta}L^{8}\right)^{12/5} = T^{\lambda_{(3/4)}} < T^{\lambda_{(4/5)}},$$

there exist r and t such that 1/2 < r < 3/4, 4/5 < t < 1 and

$$T^{\lambda(r)} = T^{\lambda(t)} = X^2 L^{-280}$$
.

Define $s = \min(t, 9/10)$, and I = [r, s). We then see

$$(5.1) T^{\lambda(\sigma)} \leq X^2 L^{-280} \text{for all } \sigma \in [1/2, 9/10) \setminus I,$$

and

$$(5.2) T^{\lambda(\sigma)} \ge X^2 L^{-280} \text{for all } \sigma \in I.$$

Now, we divide the sum Z(y), which is defined by (4.9).

(5.3)
$$Z(y) = \sum_{\operatorname{Re}(\rho) \notin I} + \sum_{\operatorname{Re}(\rho) \in I} = z_1(y) + z(y), \quad \text{say}$$

We first consider z_1 . By a familiar way,

$$\begin{split} J = & \int_{X}^{2X} |z_{1}(y)|^{2} dy \ll L^{2} \sum_{\substack{|I_{\mathbf{m}}(\rho)| \leq T \\ \text{Re}(\rho) \notin I}} X^{2 \operatorname{Re}(\rho) - 1} \\ \ll L^{2} \sum_{\substack{|I_{\mathbf{m}}(\rho)| \leq T \\ \text{Re}(\rho) \leq 1/2}} 1 + L^{3} \sup_{1/2 \leq \sigma \notin I} X^{2\sigma - 1} N(\sigma, T). \end{split}$$

Here, because of the zero-free region [12; Kap. VIII. Satz 6.2], the above supremum may be taken over $\sigma \le 1 - \eta(T)$ only, where $\eta(T) = (\log T)^{-4/5}$. Lemmas 2 and 3 yield that

$$(5.4) \qquad J \ll L^{3}T + L^{16}X \Big\{ \sup_{\substack{1/2 \leq \sigma \leqslant 9/10 \\ \sigma \not\in I}} \Big(\frac{T^{\lambda(\sigma)}}{X^{2}} \Big)^{1-\sigma} + \sup_{\substack{9/10 \leq \sigma \leq 1-\eta(T) \\ \sigma \notin I}} \Big(\frac{T^{2}}{X^{2}} \Big)^{1-\sigma} T^{-c(1-\sigma)} \Big\} \\ \ll L^{11}X\Delta^{-1} + L^{16}X \{ (X^{-280})^{1/10} + T^{-c\eta(T)} \} \\ \ll XL^{-12} ,$$

by (5.1).

We turn to the double integral in (4.15). Since

$$Z(u)Z(v)=z(u)z(v)+z_1(u)Z(v)+Z(u)z_1(v)-z_1(u)z_1(v)$$

$$\begin{split} \iint_{B} & (Z(u)Z(v) - z(u)z(v)) du dv \\ & \ll \iint_{\substack{X - \Delta \leq u, v \leq 2X \\ x - \Delta \leq u + v \leq x}} |z_{1}(u)| (|Z(v)| + |z_{1}(v)|) du dv \\ & \ll L^{2} \Delta \int_{X}^{2X} |z_{1}(y)| dy + \Delta \int_{X}^{2X} |z_{1}(y)|^{2} dy \\ & \ll L^{2} \Delta (X^{2}L^{-12})^{1/2} + \Delta X L^{-12} \\ & \ll \Delta X L^{-4} \,, \end{split}$$

by Lemma 1 and (5.4). Combining this with (4.15) we reach (3.3);

$$G = \Delta(X - |x - 3X|) + O(\Delta X L^{-4}) + R(x, \Delta)$$

where

(5.5)
$$R(x, \Delta) = \iint_{\mathbf{D}} z(u)z(v)dudv.$$

It remains to prove (3.2). First we define z(y)=0 if $y \notin [X, 2X]$. Next we split up z(y). Let $z_{\sigma}(y)$ be the partial sum of z(y) restricted by $\sigma \leq \text{Re}(\rho) < \sigma(1+1/L)$. Then,

$$z(y) = \sum_{\substack{\alpha = r (1+1/L) \\ n \ge 0}} z_{\alpha}(y).$$

Furthermore let $\chi(x)$ denote the characteristic function of $[0, \Delta]$. Thus we may rewrite (5.5) as

$$R(x, \Delta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \chi(x - u - v) z(u) z(v) du dv$$
$$= \chi * z * z(x).$$

Now, by Plancherel's relation, we have

(5.6)
$$I = \int_{(5/2)X}^{(7/2)X} |R(x, \Delta)|^2 dx \le \int_{-\infty}^{+\infty} |\mathcal{X} * z * z(x)|^2 dx$$
$$= \int_{-\infty}^{+\infty} |\widehat{\mathcal{X}} * z * z(x)|^2 dx$$
$$= \int_{-\infty}^{+\infty} |\widehat{\mathcal{X}} (x)|^2 |\widehat{z}(x)|^4 dx.$$

Here we see

$$|\hat{\chi}(x)|^2 = \left(\frac{\sin \pi \Delta x}{\pi x}\right)^2$$
,

and, on using Hölder's inequality,

$$|\hat{z}(x)|^4 \ll L^3 \sum_{\alpha} |\hat{z}_{\alpha}(x)|^4.$$

Therefore (5.6) becomes

(5.7)
$$I \ll L^4 \Delta^2 \sup_{\sigma \in I} \left(\sup_{x} |\hat{z}_{\sigma}(x)|^2 \right) \int_{-\infty}^{+\infty} |z_{\sigma}(x)|^2 dx,$$

by Plancherel's relation again.

We proceed to estimate the square integral of z_{σ} .

(5.8)
$$\int_{-\infty}^{+\infty} |z_{\sigma}(y)|^{2} dy = \int_{X}^{2X} \left| \sum_{\substack{i \text{lim}(\rho) \mid \leq T \\ \sigma \leq \text{Re}(\rho) < \sigma(1+1/L)}} y^{\rho-1} \right|^{2} dy$$

$$\ll L^{2} X^{2\sigma-1} N(\sigma, T).$$

We turn to \hat{z}_{σ} . The simplest saddle point method [12; Kap IX, Lemma 4.2] leads that

$$\begin{split} \hat{z}_{\sigma}(x) &= \sum_{\substack{i \mid \operatorname{Im}(\rho) \mid \leq T \\ \sigma \leq \operatorname{Re}(\rho) < \sigma(1+1/L)}} \int_{X}^{2X} y^{\operatorname{Re}(\rho)-1} \exp(i(\operatorname{Im}(\rho) \log y - 2\pi x y)) dy \\ &\ll L X^{\sigma} + \sum_{\substack{3 < \lim(\rho) \mid \leq T \\ \sigma \leq \operatorname{Re}(\rho) < \sigma(1+1/L)}} X^{\operatorname{Re}(\rho)} |\operatorname{Im}(\rho)|^{-1/2} \\ &\ll L X^{\sigma} \left(1 + \sup_{3 \leq t \leq T} t^{-1/2} N(\sigma, t) \right). \end{split}$$

We now appeal to Lemma 2. Since $\lambda(\sigma)(1-\sigma) \ge 1/2$ if $1/2 \le \sigma \le 4/5$ and $\le 1/2$ if $4/5 \le \sigma \le 1$, we have that

$$(5.9) \hat{z}_{\sigma}(x) \ll \begin{cases} LX^{\sigma}T^{-1/2}N^{+}(\sigma, T) & \text{if } 1/2 \leq \sigma \leq 4/5 \\ L^{14}X^{\sigma} & \text{if } 4/5 \leq \sigma \leq 1, \end{cases}$$

uniformly for x.

In conjunction with (5.7), (5.8) and (5.9) we obtain

$$I \ll L^{4} \Delta^{2} \bigg(\sup_{\substack{\sigma \in I \\ \sigma \leq 4/5}} L^{4} X^{4\sigma-1} T^{-1} N^{+} (\sigma, T)^{3} + \sup_{\substack{\sigma \in I \\ \sigma \geq 4/5}} L^{30} X^{4\sigma-1} N^{+} (\sigma, T) \bigg).$$

Notice that

$$\lambda(\sigma)(1-\sigma) = \begin{cases} 1 - \frac{1}{3}\lambda(\sigma)(2\sigma - 1) & \text{if } 1/2 \leq \sigma \leq 4/5 \\ 2 - \lambda(\sigma)(2\sigma - 1) & \text{if } 4/5 \leq \sigma \leq 1. \end{cases}$$

Hence, by (5.2), we conclude

$$\begin{split} I &\ll L^{47} \Delta^2 \sup_{\sigma \in I} X^{4\sigma-1} T^{2-\lambda(\sigma)(2\sigma-1)} \\ &\ll L^{63} X^3 \sup_{\sigma \in I} \left(\frac{X^2}{T^{\lambda(\sigma)}}\right)^{2\sigma-1} \\ &\ll X^3 L^{287} \,, \end{split}$$

as required.

This completes our proof.

References

- [1] Goldston, D. A., Linnik's theorem on Goldbach numbers in short intervals., Glasgow Math. J. 32 (1990), 285-297.
- [2] Heath-Brown, D.R., The differences between consecutive primes. IV., in A tribute to Paul Erdös., Cambridge 1990, 277-287.
- [3] Hooley, C., On the intervals between consecutive terms of sequences., Proc. Symposia Pure Math. 24 (1973), 129-140.
- [4] Ingham, A.E., On the estimation of $N(\sigma, T)$., Quart. J. Math. Oxford 11 (1940), 291-292.
- [5] Landau, E., Über die Nullstellen der Zetafunktion., Math. Ann. 71 (1911), 548-564.
- [6] Linnik, Ju. V., On the possibility of a unique method in certain problems of "additive" and "distributive" prime number theory., Dokl. Akad. Nauk SSSR 48 (1945), 3-7.
- [7] Linnik, Ju. V., Some conditional theorems concerning binary Goldbach problem., Izv. Akad. Nauk SSSR 16 (1952), 503-520.
- [8] Montgomery, H.L., Zeros of L-functions., Invent. Math. 8 (1969), 346-354.
- [9] Montgomery, H. L. and Vaughan, R. C., The exceptional set in Goldbach's problem., Acta Arith. 27 (1975), 353-370.
- [10] Montgomery, H. L. and Vaughan, R. C., On the distribution of reduced residues., Ann. Math. 123 (1986), 311-333.
- [11] Plaksin, V. A., The distribution of numbers representable as a sum of two squares., lzv. Akad. Nauk SSSR 51 (1987), 860-877.
- [12] Prachar, K., Primzahlverteilung., Springer 1957.
- [13] Wolke, D., Groβe Differenzen zwischen aufeinanderfolgenden Primzahlen., Math. Ann. 218 (1975), 269-271.

Institute of Mathematics University of Tsukuba