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Abstract. This paper is devoted to the functional analytic approach
to the problem of construction of Feller semigroups with Dirichlet
boundary condition in the characteristic case. Intuitively, our result
may be stated as follows: One can construct a Feller semigroup
corresponding to such a diffusion phenomenon that a Markovian
particle moves continuously in the state space until it “dies” at
which time it reaches the set where the absorption phenomenon
occurs.
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Introduction and Results

This paper is devoted to the functional analytic approach to the problem
of construction of Feller semigroups with Dirichlet boundary condition. The
problem of construction of such Feller semigroups has never before, to the
author’s knowledge, been studied in the characteristic case. In this paper, we
consider the characteristic case and solve from the viewpoint of functional
analysis the problem of construction of Markov processes with Dirichlet condi-
tion, which we formulate precisely. For detailed study of the elliptic or non-
characteristic case, the reader might refer to Bony-Courrége-Priouret
and Cancelier [C].

Let D be a bounded domain of Euclidean space R¥, with C* boundary 6D ;
its closure D=D\UaD is an N-dimensional, compact C* manifold with boundary.
Let A be a second-order, degenerate elliptic differential operator with real co-
efficients such that

o’u N 0u
2 o (x)+ 23 6%(x)

N
J— ij
Au(x)= %a (x) %, %,

(x)+c(x)u(x),
where :
1) a¥eC=(R"), a¥=a’* and

i 1

N
; av(x):£;20, x€RY, (ERY.

2) b*eC=(RM).

3) ceC=(R¥) and ¢<0 on D.

Following Fichera [F], we introduce a function b(x’) on the boundary oD
by the formula:

N N dat’

b= 2 (50— & G )

t=1

where n=(n,, n,, ---, ny) is the unit interior normal to the boundary dD. We
divide the boundary oD into the following four disjoint subsets:

2:;={x'€0D; év_‘:, at(x"yn;n; >0},

1 1
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S,={xr'edD; 3 a¥(x")nin;=0, b(x")<0},

t, j=1

S={xr'edD; 3 a¥(x)nins=0, b(x")>0},

. j=1

Z,=1{x'€8D; 31 a“(x)miny=0, bx")=0}.
j=1

’

Our fundamental hypothesis for the operator A is the following (cf.
Figure 1):
(H) Each set X, consists of a finite number of connected hypersurfaces.
It is worth pointing out (cf. [OR], [SV]) that one may impose a boundary con-
dition only on the set
M=3,02%,.

Figure 1.

Let C(D) be the space of real-valued, continuous functions f on D. We
equip the space C(D) with the topology of uniform convergence on the whole
D; hence it is a Banach space with the maximum norm

I =r§gl>_,<lf(x)l.

Now we introduce a subspace of C(D):
CoDNM)={usCD); u=0 on I, U,}.

The space Co(D\M) is a closed subspace of C(D); hence it is a Banach space.
A strongly continuous semigroup {T.}.so on the space Co(D M) is called a
Feller semigroup on DM if it is non-negative and contractive on C,(D\M):

feCyD M), 0<f<1 on D\M == 0<T,f<1 on D\M.

It is known (cf. [Ta, Chapter 9]) that if T, is a Feller semigroup on D\ M,
then there exists a unique Markov transition function p, on D\M such that
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Tfo={ , pix dnf,  feCDM).

Furthermore, the function p, is the transition function of some strong Markov
process; hence the value p.(x, E) expresses the transition probability that a
Markovian particle starting at position x will be found in the set E at time /.

The next theorem asserts that there exists a Feller semigroup on D corre-
sponding to such a diffusion phenomenon that a Markovian particle moves con-
tinuously in the state space D until it “dies” at which time it reaches the set
2,2

THEOREM 1. Assume that the operator A satisfies hypothesis (H):

(H) Each set X; consists of a finite number of connected hypersurfaces.
We define a linear operator A from the space Co(D~M) into itself as follows.

(1) The domain D(A) of A is the space

D(A)={ucsC¥D); u=Au=0 on Z,\UZ,}.

(2) Au—Au, ueD(A).

Then the operator A is closable in the space Co(D~M), and its minimal closed
extension A is the infinitesimal generator of some Feller semigroup {T:}:o on
D\M.

is proved by Bony-Courrége-Priouret in the elliptic case
(cf. [BCP, Théoréme XVI]) and then by Cancelier in the non-characteristic
case: 0D=2, (cf. [C, Théoréme 7.2]).

By a version of the Hille-Yosida theorem in semigroup theory, the proof of
is reduced to the study of the Dirichlet problem in the theory of
partial differential equations. The essential step in the proof is the following
existence and uniqueness theorem for the Dirichlet problem in the framework
of Holder spaces:

THEOREM 2. Assume that hypothesis (H) is satisfied and that

¢c<0 on D,
and
N g%atl N gbt

L210x,0x; izt ax,.+c<° on D.

c*=

Then, for each integer m=2, one can find a constant A=A(m)>0 such that,
for any function [ in the space crm+2+20(D) 0<0<1, there exists a unique solu-
tion usC™*%(D) of the Dirichlet problem :
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(A—Du=f in D,
(%) {

u=0 on Y,\U2s.

Moreover, the solution u satisfies the inequality
%]l om+8dy < Cmsa(D fllczm+2+20m

where Cn,,e(A)>0 is a constant independent of f.

is an improvement of Theorem 1.8.2 of Oleinik-Radkevi¢ [OR].
We remark that is proved by Cancelier in the non-characteristic
case: 0D=23, (cf. [C, Théoréme 4.5]).

The rest of this paper is organized as follows.

Section 1 provides a brief description of the basic definitions and results

about Feller semigroups, which forms a functional analytic background for the
proof of [Theorem 1. Our proof of is based on a Feller semigroup

version of the Hille-Yosida theorem (Theorem 1.4) in terms of the maximum
principle.

In Section 2, we study the Dirichlet problem

Au=f in D,
(D) {

Uu=g on 22U23,

in the framework of spaces of bounded measurable functions, and prove ex-
istence and uniqueness theorems for problem (D) and
2.6), by using a method of elliptic regularization as in Oleinik-Radkevi€¢ [OR]
and also as in Cancelier [CJ]. It is hypothesis (H) that makes it possible to
develop the basic machinery of Oleinik-Radkevi¢ [OR] with a minimum of
bother and the principal ideas can be presented more concretely and explicitly.

In Section 3, we prove regularity theorems (Theorem 3.1 and
for the weak solutions of problem (D) constructed in Section 2 in the frame-
work of Holder spaces. In the proof, uniform estimates for approximate solu-
tions of problem (D) play an essential role (Lemma 3.4 and Lemma 3.7). Theo-
rem 2 follows from these theorems by a well-known interpolation argument.

The final Section 4 is devoted to the proof of [Theorem 1. We verify all
the conditions of the generation theorem of Feller semigroups
in Section 1.

The author would like to express his hearty thanks to the referee whose
helpful criticisms of the manuscript resulted in a number of improvements.
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1. Theory of Feller Semigroups

This section provides a brief description of the basic definitions and results
about Feller semigroups, which forms a functional analytic background for the

proof of [Theorem 1.

1.1. Markov Transition Functions and Feller Semigroups

Let (K, p) be a locally compact, separable metric space and 4 the o-algebra
of all Borel sets in K.

A function p,(x, E), defined for all =0, x K and E< 8, is called a (tem-
porally homogeneous) Markov transition function on K if it satisfies the follow-
ing four conditions :

(@) pu(x, -) is a non-negative measure on B and p,(x, K)<1 for each t=0
and each xeK.

(b) p-, E) is a Borel measurable function for each 1=0 and each E< 3.

() po(x, {x})=1 for each x=K.

(d) (The Chapmen-Kolmogorov equation) For any ¢, s=>0, xeK and any
Ee ®, we have

(LD postx, EY=\_putx, d9)puy, E).

The value p.(x, E) expresses the transition probability that a physical particle
starting at position x will be found in the set E at time ¢. Equation ex-
presses the idea that a particle “start afresh”; this property is called the
Markov property.

We add a point 0 to K as the point at infinity if K is not compact, and as
an isolated point if K is compact; so the space K;=K\U{d} is compact.

Let C(K) be the space of real-valued, bounded continuous functions on K.
The space C(K) is a Banach space with the supremum norm

| fll=sup | f(x)].
reK

We say that a function f= C(K) converges to zero as x—o if, for each
>0, there exists a compact subset £ of K such that

| f(x)l<e, xeK\E,

and write lim..; f(x)=0. We let

CuK)={feCK); lim f(x)=0}.
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The space Co(K) may be identified with the subspace of C(K; which con-
sists of all functions f satisfying f(d)=0:
CoK)={feCKys); f(0)=0}.

A Markov transition function p, is called a C,-function if we have
fECHK) == Tef=| b, d)I()ECHK).

A Markov transition function p, on K is said to be uniformly stochastically
continuous on K if the following condition is satisfied: For each ¢>0 and each
compact ECK, we have

lim sup [1— pu(x, U(x))]1=0,

tio zcE

where U (x)={yeK; p(x, y)<e} is an e-neighborhood of x.
Then we have the following (cf. [Ta, Theorem 9.2.3]):

THEOREM 1.1. Let p, be a Cy-transition function on K. Then the assoctated
operators {T .} .z, defined by the formula

(1.2) T = puix, iy,  FECLK),

is strongly continuous in t on Co(K) if and only if p. is uniformly stochastically
continuous on K and satisfies the following condition (L):
(L) For each s>0 and each compact ECK, we have

lim sup p.(x, E)=0.

-0 0stss$

A family {T.}.s, of bounded linear operators acting on C,(K) is called a
Feller semigroup on K if it satisfies the following three conditions:
(1) Tiss=T: Ty, t, s=0; To=I=the identity.
(ii) The family {T.} is strongly continuous in ¢ for {=0:

lsifro’ ITews/—T.fII=0, felCy(K).
(iii) The family {T,} is non-negative and contractive on Cy(K):

feCyK), 0=f<l on K =0=T.f<1 on K.
The next theorem gives a characterization of Feller semigroups in terms

of Markov transition functions (cf. [Ta, Theorem 9.2.6]):

THEOREM 1.2. If p. is a uniformly stochastically continuous C,-transition
function on K and satisfies condition (L), then its associated operators {T+} t20
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form a Feller semigroup on K.
Conversely, if {T}.zo is a Feller semigroup on K, then there exists a wuni-

formly stochastically continuous C,-transition p, on K, satisfving condition (L),
such that formula (1.2) holds.

1.2. Generation Theorems of Feller Semigroups
If {T:}..0 is a Feller semigroup on K, then we define its in/finitesimal gen-
erator A by the formula

(1.3) W= lim L#T¥

tio

provided that the limit exists in the space C,(K).
The next theorem is a version of the Hille-Yosida theorem adapted to the
present context (cf. [Ta, Theorem 9.3.1 and Corollary 9.3.2]):

’

THEOREM 1.3. (i) Let {T}..o be a Feller semigroup on K and W its in-
finitesimal generator. Then we have the following :

(@) The domain D(N) is everywhere dense in the space C,(K).

(b) For each a>0, the equation (al—Wu=f has a unique solution u in D(A)
for any feCy(K). Hence, for each a>0, the Green operator (al—WA)"': C(K)
—Co(K) can be defined by the formula

u=(al—A)"1f, feCyK).

(¢) For each a>0, the operator (al—W)"' is non-negative on the space
Co(K):
feCyK), f=0 on K=—=(al—A)"'f=0 on K.

(d) For each a>0, the operator (al—N)' is bounded on the space C.(K)
with norm

lad—w) =+ .
(44

(ii) Conversely, if W is a linear operator from the space C,(K) into itself
satisfying condition (a) and if there is a constant a,=0 such that, for all a>a,,
conditions (b) through (d) are satisfied, then W is the infinitesimal generator of
some Feller semigroup {T.}.., on K.

We conclude this section by giving useful criteria in terms of the maximum
principle (cf. [BCP, Théoréme de Hille-Yosida-Ray]; [Ta, Theorem 9.3.3 and
Corollary 9.3.4]): '
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THEOREM 1.4. Let K be a locally compact metric space and let B be a linear
operator from the space C,(K) into itself. We assume that:

(@) The domain D(B) of B is everywhere dense in the space C(K).

(8) If ucD(B) and supg u>0, then there exists a point x of K such that

{ u(x)=supg u ,
Bu(x)Z0.

(r) For some a,=0, the range R(ayI—B) of a,]—B is everywhere dense in
the space C,(K).

Then the operator B is closable in the space Cy(K), and its minimal closed
extension B is the infinitesimal generator of some Feller semigroup {T:}.., on K.

2. The Dirichlet Problem—(1)—

In this section, we shall study the Dirichlet problem in the framework of
spaces of bounded measurable functions, and prove existence and uniqueness
theorems for problem (D), by using a method of elliptic regularization as in
Oleinik-Radkevi¢ [OR] and also as in Cancelier [C].

2.1. Function Spaces

First we recall the basic definitions and facts about the function spaces
which will be used in subsequent sections.

If 2 is an open subset of Euclidean space R", we let

L=(2)=the space of equivalence classes of essentially bounded,
Lebesgue measurable functions u on £.

The space L=(2) is a Banach space with the norm
|t e=ess supzeo|u(x)|.
If k£ is a positive integer, we let

W*=(Q)=the space of equivalence classes of functions v L=(£2)
all of whose derivatives 0%u, |a| <k, in the sense of
distributions are in L*(2).

The space W# =(Q) is a Banach space with the norm
Julle, o= 2 10%U]w -
lalsk

Let 0<f<1. A function u defined on £ is said to be Holder continuous
with exponent @ if the quantity
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lu(x)—u(y)]
uls. o= sup ——l— 201
[wlo:0 xiz%!) Ix—yl?

is finite. We say that u is locally Hilder continuous with exponent @ if it is
Hoélder continuous with exponent # on compact subsets of £.
We let

C?(2)=the space of functions in C(2) which are locally Hélder
continuous with exponent 6 on 2.

If £ is a positive integer, we let

C¥+9(2)=the space of functions in C*(2) all of whose k-th
order derivatives are locally Hélder continuous
with exponents 6 on £.

Now assume that £ is bounded. We let

C(2)=the space of functions in C(£2) having continuous
extensions to the closure £ of Q.

If k£ is a positive integer, we let

C*(Q)=the space of functions in C*() all of whose derivatives

of order <k have continuous extensions to £2.
The space C*(2) is a Banach space with the norm

lullcrz=max sup [0%u(x)|.
lalsk ze8

Further we let

C%(2)=the space of functions in C(£) which are Hélder
continuous with exponent # on £.

If k£ is a positive integer, we let

C**%(Q)=the space of functions in C*(2) all of whose
k-th order derivatives are Holder continuous
with exponent 6 on Q.

The space C**%(Q2) is a Banach space with the norm
lullcero@=lullced+ .’T.’f‘,’,f [0%uls;a.

"If M is an n-dimensional compact C* manifold without boundary and m is
a non-negative integer, then the spaces W™ *=(M) and C™*%(M) are defined re-
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spectively to be locally the spaces W™ =(R") and C™*’(R"), upon using local
coordinate systems flattening out M, together with a partition of unity. The
norms of the spaces W™=(M) and C™*?(M) will be denoted by |-{ln - and
| “llcm+ox, respectively.

We recall the following results (cf. [Tr]):

I) If % is a positive integer, then we have

W"""’(M):{gpeck“‘(M); max sup |0°p(x)—0"¢(y)| <oo},

lalsk=1 2, yEM [x—y]|
where |x—7y| is the geodesic distance between x and y with respect to the
Riemannian metric of M.
I) The space C**%(M) is a real interpolation space between the spaces
Wk (M) and W *t=(M); more precisely we have

Ck+0(M)—'—"(Wk'°°(M), Wk“"”(M))o,oo
_ oMY s sup B %) o
={uewra); sup =55 < 3

where
K{, u)= inf (l1ttoll &, ot %1l & 41, 00) +
u=u0+u1

2.2. Formulation of the Dirichlet Problem

Let D be a bounded domain of Euclidean space RY with C* boundary aD.
Its closure D=D\UoD is an N-dimensional, compact C* manifold with boundary.

We let

N o’u N 0u
Au(= 3 a¥(0) s (0)+ Z oz

T

(x)+c(x)u(x)

be a second-order, degenerate elliptic differential operator with real coefficients
such that:
1) a¥eC=(R"), a”=a’* and
N

3 a(x)E£,20, xERY, (ERY.

i, j=1
2) bieC=(RY).
3) ceC=(RY) and ¢<0 on D.
Following Fichera [F], we introduce a function b(x’) on the boundary 6D
by the formula:

iy
b= 35 (b 3 % (),
i=1 i=1 J

where n=(n,, n,, -, ny) is the unit interior normal to the boundary dD. The
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function b will be called the Fichera function for the operator A. It is easy
to verify that the Fichera function b is invariantly defined on the characteristic
set:

N .
E“:{x’eaD; > a”(x’)n,-n,-:O}.
i, j=1

Let A* be the formal adjoint operator for A:

N ga¥

28 5 (- bf(x))— (x)

N
A*u(x)= >3 a¥(x)
7 8

T, jml

=1
¥y g*a¥
+(i,§laﬂxiax}")i- e <x>+c<x>)v<x>
It is easy to see that the Fichera function b* for the operator A* is given by

N gat

P =—b(x)=— 2 (b~ 2 5,00

In order to formulate precisely the Dirichlet problem for the operator A,
we divide the boundary oD into the following four disjoint subsets :

N
Sy=0D~3'={x'€dD; P

D

at(x")min; >0},

1

Egz{x’eaD; % a(x")n;n;=0, b(x’)<0},
1, Jj=1
N »
le{x’eaD; _‘jj_la”(x’)nin,:o, b(x’)>0},

N .
Eoz{x’eaD; >3 a¥(x)n;n;=0, b(x’):O}.
i, j=1
We remark that the sets Y, %, X, and %, are all invariantly defined.
Our fundamental hypothesis for the operator A is the following :

(H) Each set X, consists of a finite number of connected hypersurfaces.
This hypothesis makes it possible to develop the basic machinery of Oleinik-
Radkevi¢ [OR] with a minimum of bother and the principal ideas can be pre-
sented more concretely and explicitly.

We shall consider the following Dirichlet problem: For given bounded
measurable functions f and g defined in D and on Y,UJ;, respectively, find a

bounded measurable function » in D such that
Au=f in D,
(D)
u=g on 22U23 .

Now we give the precise definition of a weak solution of problem (D):
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DEFINITION 2.1. A bounded measurable function » in D is called a weak
solution of problem (D) if, for any function ve C¥D) satisfying v=0 on X,\UY,,
we have

ov
. Ak — _ i
(2.1) SSDu A*vdx SSvadx Sz'ggayda—i—gzzbgvda,
where /0y is the conormal derivative associated with the operator A:
ﬁ__ 2, atin _a,
oy =1 ‘ox;

and b is the Fichera function and de¢ is the surface element of aD.

Our definition of a weak solution may be justified by using the following
Green formula for the operators A and A* (cf. [OR, formula (1.1.14)]):

THEOREM 2.2. For all functions u and v in C¥D), we have

(2.2) SSD(Au v—u-A*)dx= ——Szg %%v— u g—z)da—— Samzobuvda .

2.3. Existence Theorem for Problem (D)
First we prove the following existence theorem for problem (D) (cf. [OR,
Theorem 1.5.1]):

THEOREM 2.3. Assume that hypothesis (H) is satisfied and that

(2.3) c<0 onD.

Then, for any f&L>(D) and any g L=(X,\JZs), there exists a weak solution
ue L2(D) of the Dirichlet problem :

Au=f in D,
(D)
u=g on X, U2,
Furthermore, the solution u satisfies the inequality
< 1
2.4) ess supp| u# | :max(a-ess supp| f|, ess sups,us,| g I) s
where

co=min(—¢)>0.
D

Proor. 1) First we construct approximate solutions of problems (D) by
making good use of a method of elliptic regularization, just as in Oleinik-
Radkevi¢ [OR].
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Let f be an arbitrary function in the space L>=(D), and choose a sequence
{fn}5=1 in the space C?D) (0<@<1) such that

(2.5a) max| f,| <esssuppl| fI,
D

(2.5b) fo—>f in L¥D) as n—oo,

and also a sequence {g.}%-, in the space C2*%(D) (0<@<1) such that
(2.6a) max |gn| <esssups,us,|gl,

(2.6b) gn—>g in L2, U2, as n—oo .

This can be done by using regularizations (mollifiers) of f and g.
Now let u. , be a solution of the Dirichlet problem for the elliptic operators
A=ed+A (¢>0):

Aeus,nzfn in D ’
(De. ) {

U n=gn on oD ,
where 4=3X, 0°/dx} is the usual Laplacian. We know (cf. [GT]) that such a
solution u, , of problem (D. ,) exists and is unique in the space C2*?(D). Thus,

applying the maximum principle (cf. Theorem A.2) to the elliptic operators A,,

we obtain from inequalities and that

1
< —
2.7) sup| u.,»| Smax(Z-max| f.|, maxig,|)

1
gmax(c—ess supp| f1, ess Sup22u23|g|>.
0

II) Next we show that the limit function u, of u., when ¢ |0 is a weak
solution of the Dirichlet problem for the operator A:

Au,=f, in D,
(Dx) {

Un=gn on 3,U2 .
If we let

Ze,n=Ue,n—Ln,
then it follows that z. ,=C?*%D) and satisfies :
Acze n=Fn—Acgn in D,
{ ze,,=0 on oD.

II-1) In order to estimate the 2. ,, we need the following lemma (cf. [OR,
Lemmas 1.5.1 and 1.8.3]):
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LEMMA 2.4. Let feC?D) (0<0<1) and let u.=C**%(D) be a unique solu-
tion of the Dirichlet problem for the elliptic operators A.=ed+A (¢>0):

{ Au=f in D,
u.=0 on oD .

(De)

If hypothesis (H) and condition (2.3) are satisfied, then the solution u. satisfies
the estimates

(2.8a) n}aXIgrad u =Ml fllew ,
3
(2.8b) n}axlgrad uS<Miifllcw ,
2
(2.8¢) rnaxlgrad U S —— \/— I fllew

where M >0 and C>0 are constants independent of &>0.

PROOF. Let x, be an arbitrary point of the set Y, X, U%,. We choose

a local coordinate system (yi, ys, -+, y~) in a tubular neighborhood U of =xg
such that:

x9=0,

D: {yN>0} ’

aD: {yNZO} ’

and assume that, in terms of this coordinate system, the operator A.=ed+A
is of the form

N 0? N 0 02
— ij i NN
@9 As_e(wzﬂ # vy, T &Y 8yi)+a 0y%
—}—2N§_]1aNf az + NZ_II at —— o +BY — 9 + 2 ;9‘—+c
=i 0ywn0y; 71 0Y:0y; oyy = i=

We remark that:

(@) a¥M(0)>0 if x=2.
(b) a™¥(0)=0 and B¥(0)<0 if xi&,.
(¢) a™M(0)=0 and BY(0)=0 if x;=2,.

In order to prove estimate (2.8), it suffices to prove that

‘ ou.

(2.8a%) <o>$ <M|fllew

ou.

(2.8b") \ <o>| <M flcw
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aue

(2.8¢") (O)l :-* i fllcw ,

since u.=0 on 0D and hence 6ue/6y,:0 on oD, for 1<;<N-—1.
(a) First we prove estimate (2.8a”): We let
bi(y’, yv)=exp[—kyy]—1, 3=, yNEU,
where £2>0 is a large constant to be chosen later on. Then it follows from
formula (2.9) that
Ab)=e(p"¥ k2= )+ a® Y k2 — BV k+cb, in U.

Thus, since a”¥(0)>0, we have for k sufficiently large

Adb)zagk®  in U,

with some constant a,>0.
We let
@ (¥)=mb,(y) T uly),

where m=m(k)>0 is a constant given by

:l”f”mﬁ) luellew
k*  aq minpy(—bs)

Then it is easy to verify that

b
¢:lpus (1+"‘—‘k—' ))Hu e =0,

min p\u(—be
and

SDiIZs:O
But we have

Adp)=mA(bp)x f

=magki+ f

=1 f e+ (e b

__>( “_ue”C(D) ~)aok2

minp\w(—by)

>0 in U.

Thus, applying the maximum principle (cf. [Theorem All) to the functions ¢.,
we obtain that

IA

P 0 in U.

Hence it follows that
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N 8u5 (0)— mk— ogo+
6 YN

This proves that for a/l sufficiently large k&

(0)<0

(2.10)

‘aa;‘a (O)I-mk ( )llf”C(D)‘f‘( )” llew).

mlnD\‘U( by)

On the other hand, applying the maximum principle to the functions .,
we obtain (cf. estimate [2.7)) that

(2.11) luellcwm < ~“”f”oum

Therefore, the desired estimate (2.8a’) follows by combining estimates

and [(2.11).

(b) Next we prove estimate (2.8b"): Since B¥(0)<0, it follows that if k
is sufficiently large, we have for some constant 3,>0
Abp)y=e(u¥"R*—vV )+ a" Y k*— BV k+cb,

=Bok in U.
We let

D(3)=1b,(y) L u.ly),

where [=[(k)>0 is a constant given by

l:i”f”‘”ﬁ) | #sll ¢
ko Bo minp(—by)

Then, just as in case (a), it follows that
¢t lﬁ\q.] go ’

Sbt IX,:O ’

and

AP)=1A(br) £ f
”ue” D
g( i c(D) )),Bok

min p\q(—bs

>0 in U.

Thus, applying again the maximum principle to the functions ¢., we obtain
that

fiA

¢.=0 in U.

Hence we have (just as in case (a))
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ou k
5 o,

(0)‘ <lk= ‘B—Hfllcm)'*‘(m

k
_(,Bo minp\w(—bs) ¢
This proves estimate (2.8b’).
(c) Finally we prove estimate (2.8¢’): We take a function ¢, C*R"™)
such that

)”f”cm)

Ve if 1y'1=0,

s(_y,): e (|y,|2-52)s : ’
¢ Ve i asiy <2,

where >0 is a small constant to be chosen later on. It is easy to verify the
following :

) |¢,|g~/e— on R¥-1.
a¢s N-1
(2) 3, < — 3 \/s on R ;
’¢e | _ 32 N-1
3 39,0 352 \/s on R .

Let Qs . be a subdomain of D defined by

Qs.e={y=(¥, y»)ERY; | y1<28, 0<yn<¢e(y")}.

Here we choose a constant >0 so small that the domain @Q; . is contained in
a tubular neighborhood ¥ of x{=(0, 0). In the domain Q; . we consider a
function

w(y)=Kye*¥—1),
where

23)= T (ut VT =),

Here K,>0 and K,>0 are large constants to be chosen later on.
Then we have the following:

CLAIM 1. A (w)=c.K, in the domain Q; . if K,>0 is sufficiently large (in-
dependently of K,) and if ¢>0 is sufficiently small. Here recall that

co=min (—¢)>0.
D

PROOF. Since the matrix (p*/) is positive definite and the matrix (a%) is
non-negative definite, it is easy to see that
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- a¢e = 0ps 3¢
_ 2 2 NN N ¢
(2.12) Adw)=K,K3e ””( 22” ’ uz-u”]ayzayj)

2 - 2¢e -2 - N a¢3
FK KW /5 jély 5y, TEKie e (—v +2”ayi)

} 1 N-1 a¢'s N-1 a(,b. a¢s
207 (VNN 2 VI L2 > a
+K.Kie s(a 2j=1a ayj+i =1 ayiayj)

-z 1 agy b a L -z 0 €
+ KK e™*¥) T E jay:/a) + KK e v —— ( BY 4 E‘Btai)

+cKoe *V —cK,

- ave o L

N-1 1 32¢
ij_ €
+K1€i§=1# Ve 0y,0y;

Kliijl ij 1 0% K B

_ = 1 a¢.
+K,+/¢ (—yN+\/e Z}u Ve 3yi)

2 Y Ve ay0y; Ve

+K12,3i ! g¢s ]e”‘”’—{—coKo.

But we find that
BY¥=0(¢) in Qs,.,
since 8¥=0 on J,.

Therefore, we obtain from inequality (2.12) that
Adlw)zcK, in Qs

if K,>0 is sufficiently large (independently of Ko). and if >0 is sufficiently
small.

CLAamM 2. A(w=xu)>0 in the domain Q; . if Ky>0 is sufficiently large.

Proor. By Claim 1, if follows that

Adwtu)=A.(w)+ f =Ko+ >0 in 0Q;,.

if K,>0 is so large that
Mlew

Co

(2.13)

CLAM 3. w+u.<0 on the boundary 0Qs.. if K,>0 is sufficiently large.

Proor. First, since we have for |y’| <20
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{ uy’, 0)=0,

w(y’, 0)=K(e~Fuvoe-gev'n _1)<0,
it follows that on the set 0Q; .\ {y~»=0}

w(y’, 0)xuly’, 0)=0.
Next we recall that

fuelloan < -1 flew -
Hence it follows that on the set 0Q; . {y»=¢(y")}
w(y’, Yy Nxuly’, gy )=Koe ¥1—1xuly’, ¢y)
<Kye F1—=D)+liudicw
<Ke =D+ = e

<0,
if K,>0 is so large that

1
(2.14) K,> m”f“cu‘))-

By virtue of Claims 2 and 3, we can apply the maximum principle (Theo-
rem A.l) to the functions w+u,, we obtain that

w+u.<0 in Q...
Hence it follows that

ou, KK, 0
iayN (O>— \/E— _ayN (wiu,)(O)go,
so that
aus KoKl
oy 0=

In view of inequalities and [(2.14), this proves estimate (2.8¢’).

The proof of is now complete.

[I-2) Now, applying to the functions z. , (n being fixed), we
obtain that

maxlgl‘ad Ze, n| éMn(”fn”C(ﬁ)+||gn”02(l_))),
ZZUEQ

C,
mgx|8'l'ad Zen| = Ve N fallemr+1gallczs),

and hence that
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(2.15a) max|grad ue,» | SM7(l frllcn Hlgnllozan),
FoulZs
Ch
(2.15b) max|grad u.,»| = = (I fallcwd +gnlor ),
0 g

since U, n=2¢,—gn and g,=C?**D). Here M,>0, M7,>0, C,>0 and C7;>0
are constants independent of .

Then, applying Green’s formula [2.2) to the operators A,=ed+A and A¥=
ed+A*, we find that for all ve C¥D) satisfying v=0 on X,

(2.16) SSDf,,vdngsbAeus,n-udx

L s
s e oo ], (Pt vs 5)d0)

= ESSDue_ o dvdx +SSDue, a  A*vd x +stgng—§d0

us,n

———vdo .
IouI, OR

-—Szzbgnv do‘—i—sSaDgn—g—Z- da—sg

But we recall (cf. [Y, Chapter V, Section 2, [Theorem I]J) that the unit ball in
the Hilbert space L%D) is sequentially weakly compact. Hence, by estimate
[(2.7), one can find a subsequence {u.,,.}%- Wwhich converges weakly to some
function u, in L%D) as &, | 0. Thus, we can let ¢, | 0 in formula (2.16) to
obtain that for all veC¥D) satisfying v=0-on X,UJ%,

(2.17) SSDfnvdx:SSDu nA¥vdx +Sx3gng—zd0—gzzbgnvda .

Indeed, by estimate (2.15), it follows that the last term of the right-hand side
of formula (2.16) tends to zero as &, | 0.
On the other hand, it is easy to verify that the set

K:{we L3 D); esssupp|w]| §max(—c—1~ess supp| f1, ess supgzugsigl)}
0

is convex and strongly closed in the space L*D). Thus it follows from an
application of Mazur’s theorem (cf. [Y, Chapter V, Section 1, Theorem 11D
that the set K is weakly closed in L¥D). This proves that u,€K:

1
(2.18) ess supp| x| §max(;— ess supp| f|, ess supz,usz,| g| ) ,
. 0

since u. ,=K for ¢>0.
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Therefore, we have proved that the function u, is a weak solution of
problem (D) and satisfies estimate [2.18).

III) Finally we show that the limit function u of u, when n—o is a
weak solution of problem (D):

D) { Au=f in D,

u=g on ,UJ,.

By estimate [2.18), it follows that the sequence {u,}%., is weakly compact
in the space L%D). Hence one can find a subsequence {u, ¢} =1 which converges
weakly to some function u in L% D) as n,—oo.

Therefore, letting n,—co in formula we obtain from assertions (2.5b)
and (2.6b) that for all ve C¥D) satisfying v=0 on X,UJ,

Furthermore, since u,, =K, it follows from an application of Mazur’s theorem
that ueK, that is, the function u satisfies inequality [2.4).
The proof of is now complete.

REMARK 2.5. It can be shown (cf. [OR, Theorem 1.5.2]) that if g is a
function in the space C(JX,\UJt,), then the weak solution u constructed in Theo-
rem 2.3 assumes the given boundary values g on the set X,\J,.

2.4, Uniqueness Theorem for Problem (D)
Next we prove the following uniqueness theorem for problem (D) (cf. [OR,
Theorem 1.6.1]):

THEOREM 2.6. Assume that hypothesis (H) is satisfied, and that

(2.19) C*:.é ota’’ N obt

i, j=1 axtax_i—i=l axi+c<0 on E

Then any homogeneous solution ues L>(D) of problem (D) is equal to zero
almost everywhere in D, that is, if we have for any function ve C¥D) satisfving
v=0 on X,\UZ,

(2.20) [] u-araz=o,
then the solution u is equal to zero almost everywhere in D.

PrRoOOF. 1) We modify the domain D and the operator A* so that the set
2,23, is of type X, or of type .
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By hypothesis (H), one can choose a bounded domain £ with C* boundary
02 such that (cf. Figure 2)
{ DUz, 2,2,

2\ u,cof,
and one may assume that

(2.19") c*<0 on 2.

Figure 2.

Now we take a function a=C=(£2) such that
a=0 in D,
{ a>0 in O\D,
and consider the Dirichlet problem for the elliptic operators ed+A*+ad (¢>0):

o (ed+A*+adyw.=¢ in 2,
029)
ve=0 on 0f y
where 4=, 0%/0x% is the usual Laplacian. We remark that:

(i) The Fichera function b* for the operator A*+ad is equal to —b on
21, and so

b*(x")<0 on ;.

(ii) 3o a¥(xDninj4+a(x’)2L, n§>0 on 90Q\2,.
In other words, the boundary 0R is of type X, or of type X for the operator
A*+ad.

Let ¢ be an arbitrary function in the space C%(D). Then we know (cf.
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[GT])) that problem (D¥) has a unique solution v, in the space C=(£) and that
1
(2.21) mﬁax[uslgc—%‘mgxlm,

where

ck= mli)n (—c*)>0.

Since v.=C>(2) and v,=0 on 3,3, and since a=0 in D, it follows from an
application of Green’s formula and condition that

(2.22) SSDu¢dx:SSDu cedv.dx +SSDu A*v.dx —%—Ssbu cadv.dx

:SS u-edv.dx .
D
We choose a sequence {u,}%-, in the space C%(D) such that

Uy —> U in L¥D).

Then we have by Schwarz’s inequality

(2.23) l Sgbu -edv.dx ‘ = } SSD(u —uy)edv,dx +SSDu wedv.dx l

A

} SSD(u—un)sAv;dx l +e ‘ SSDAun ‘ved x l
<(|) exdvorax) “lu—ual s

+smax|velsg \du,ldx .
Lo} D

II) In order to estimate the first term on the last inequality, we need the
following lemma due to Oleinik-Radkevi¢ ([OR, Lemma 1.6.1]):

LEMMA 2.7. Let feC%D) (0<8<1) and let v.=C?* % D) be a unique solu-
tion of the Dirichlet problem for the elliptic operators ed+A (¢>0):

(ed+Aws=1f in D,
(D) {
ve=0 on oD.

Assume that condition (2.3) is satisfied and that for some constant C >0 inde-
pendent of ¢

C
<.
rr%zll)xlgradu.l_\/e

Then we have the estimate
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] edvax=cr,
with some constant C’ >0 independent of e.

[II) Since the boundary 02 is of type X, or of type X; for the operator
A*+ad, it follows from an application of that

rr}’%xlgrad Vel EMH@llew

where M*>0 is a constant independent of ¢. Hence, applying to
the operator A*-ad, we obtain that

@2.24) ] edvorax=ce,

where C*>0 is a constant independent of e.
Therefore, combining estimates [2.23), [2.24)] and [2.21), we find that

ISSDu-sdvsdxl _ﬁ_x/@Hu—unHsz)+6maxﬁ|—go—lggplAunldx ,

cs
so that

lim SSDu cedvdx=0,

edo0

since u,—u in L%D). Hence, combining this fact with formula [(2.22), we have

SSDugodx:O .
This proves that u=0 a.e. in D, since ¢=C%(D) is arbitrary.
The proof of is complete.

3. The Dirichlet Problem—(2)—

In this section, we prove regularity theorems for the weak solutions of
problem (D) constructed in in the framework of the spaces W™ =(D)
and C™*?(D) where m=1.

3.1. Lipschitz Continuity for Weak Solutions

First we prove a regularity theorem for problem (D) in j:he space Wb >=(D)
(cf. [OR, Theorem 1.8.1]; [C, Théoréme 4.4]), which gives a sufficient condi-
tion for the Lipschitz continuity for weak solutions of the Dirichlet problem.

THEOREM 3.1. Assume that hypothesis (H) is satisfied and that condition
(2.3) is satisfied. Then one can find a constant 2>0 such that, for any function
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f in the space W' =(D), there exists a weak solution ucW"'=(D) of the Dirichlet
problem :

(A—Du=f in D,
|

u=0 on 3,UJZ,.
Moreover, the solution u satisfies the inequality
3.1) Il = CilDIfll o,
where C(A)>0 is a constant independent of f.

Proor. I) We modify the domain D and the operator A so that the set
2o\ 2, is of type X, or of type X,.
By hypothesis (H), one can choose a bounded domain £ with C* boundary
082 such that (cf. Figure 3)
{ DUy, u,cQ2,

Y,U¥cof,
and one may assume that

(2.3) c<0 on Q.

Figure 3.

Now we take a function a= C=(2) such that
{ a=0 in D,
a>0 in O\D,
and consider the Dirichlet problem for the elliptic operators ed+A+ad—2 (¢>0):
- (ed+A+ad—Du,=f in 2,
(D)
u,=0 on 042,

where 4=3)_, 0*/dx% is the usual Laplacian and 4>0. We remark that:
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(i) The Fichera function b for the operator A+ad—2 is equal to b on %,
and so

b(x)<0 on Y,.

(i) ¥, a¥(x)nn;+a(x’) 2, n>0 on d2\2..

In other words, the boundary 02 is of type 2, or of type X; for the operators
A+ad—2, 2>0.

II) First let f be an arbitrary function in the space C(D), 0<6<1. We
show that there exists a weak solution u=W?" (D) of problem (x) which satisfies
inequality [3.1)

One may assume that

feC(2),
and that

(3.2) | fllerar =N fllero -
Then we know (cf. [GT]) that problem (D,) has a unique solution u, in the
space C**?(9) and that

ﬁmaxm,

since (ed+A+ad—A)l=c—A<—4 on Q.

[I-1) We show that there exists a subsequence {u.,} which converges uni-
formly in 2 to a function ucW*"=(2), as ¢; | 0.

[I-1a) To do so, if p& CYD), we define a continuous function B (¢, ¢) on
D by the formula

max|u.| =
Q

B, p0)=2 3 la”(X)g%(X)%i(x)—C(X)'so(x)2, xeD,

where

N
A:i,12=1 tz(x)a 6x1+ gb (x)

We remark that the function B(p, ¢) is non-negative on D for all p=CY(D).
The next result may be proved just as in the proof of Théoréme 4.1 of

Cancelier [C].

+C(x)

LEMMA 3.2. If o= C=(D), we let

. N 3‘/’ 2
po=3 }a—x—jm], xeD,

and
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_ Y g (9% ¢ 5
Rix)=Apx)— B BA57, 70 )0, xeD.

Then, for each 7>0, there exist constants B,>0 and Bi>0 such that we have
for all (pEC“’(D)

N 9
(R 120 2 B3 af)( )+ BollpllE o

1 —
TRilelérm + 5 lApléiw, x€D.

REMARK 3.3. The constants 8, and B, are uniform for the operators A-
ed—il, 0=e<1, 2=0.

II-1b) The proof that usW?"=(D) is based on the following lemma (cf.
[OR, Lemma 1.8.1]):

LEMMA 3.4. Assume that hypothesis (H) is satisfied with 6D=3,U%; and
that condition (2.3) is satisfied. Then one can find a constant 2>0 such that if f
is a function in the space CY™o(D), then the unique solution u.=C3**°(D) of the
Dirichlet problem

(A+ed—Nu,=f in D,
{ u.=0 on 6D
satisfies the estimate

3.3) luellcrory = Ci(DI fllcrewy »
where C(A)>0 is a constant independent of ¢>0.
PrOOF. We remark (cf. estimate [2.11)) that the solution u, satisfies the

estimate

1
(3.4) luelear =1 flew,

since (A+ed—D1=c—A<—21 on D. Thus, to prove estimate [3.3), it suffices
to show that

(3.5) mf_é)legrad U =M fllerw

where M(4)>0 is a constant independent of &£>0.
We let

eD,

pio= 3 |32

and assume that the function pi(x) attains its positive maximum at a point x,
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of D. Then, since the matrix (a%) is non-negative definite, we obtain that

(3.6) (Ated) pi(xo) S c(x0) PiX0) -

But it follows from an application of with »=1/2 that
Ated= D)= 3 Baa11(G, 2+ R,

with

3.7) RIS 5 3 Bavea A(SZ‘ gz )x)

+ Bolluell&my + Bill ue HCI(D)+ ”f”CI(D)

Here we remark (cf. Remark 3.3) that the constants 8, and j, are independent
of ¢>0 and 2>0.
Hence we obtain from inequalities [3.6), [3.7) and [3.4) that

AP5(x0) S(A—c(x0)) Pi(x0)
<(A—A—ed)pi(x,)

:-—-((A—FEA—Z)pi(xo)—‘jéBAHA—ZI aus ou. )( 0)>

a“i g; )z

1 X ou, 0u. )( D

N
— X Batea-as
=1
<—=228B

A
2 i=1 red-21 ax ax

T Bulucl g Bl + Pz + 5 | FlEco

<(BEBY f1300+ B x| Fltscor

This proves that

| 1
a—p0 01 < (BB f13 0+ 5 1 100
Therefore, if A>0 is so large that

. 2>‘Bl ’
then it follows that

pi(x)SCDI fllé1m 5

where C(A)>0 is a constant independent of ¢>0.
Thus we have proved that
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(3.8) max Pféc(z)llfllgl<ﬁ)+fr$%x pi,
or equivalently

(3.8") max |grad u,| < My(A)l fllc1p +max|grad u,|.

On the other hand, it follows from an application of that
(3.9) max|grad u.| = My(Dll fllcw ,

since 0D=2,J%,.

Therefore, the desired estimate (and hence estimate follows by
combining estimates (3.8”) and [3.9).

The proof of is complete.

II-lc) Now it follows from an application of with A=A+ad
and inequality (3.2) that

(3.10) luellery SCi(D flleranr S C1(DN fllerns -

This proves that the sequence {u.} is uniformly bounded and equicontinuous on
2. Hence, by virtue of the Ascoli-Arzela theorem, one can choose a subsequence
{u.,} which converges uniformly to a function ueC(2), as &, | 0. Further-
more, since the unit ball in the Hilbert space L% ) is sequentially weakly com-
pact (cf. [Y, Chapter V, Section 2, [Theorem 1]), one may assume that the
sequence {0;u.,} converges weakly to a function ¢; in L%), for each 1<7<N.
Then we have
ou=¢,eL¥2), 1<j<N.

On the other hand, it is easy to verify that the set
K={ve LXQ); v« Ci(Dll fllc1m}

is convex and strongly closed in L%2). Thus it follows from an application
of Mazur’s theorem (cf. [Y, Chapter V, Section 1, Theorem 11]) that the set
K is weakly closed in L*). But we have

{ ajuskeK,
oju., —> ¢; weakly in L*) for each 1<j<AN.
Hence we find that

a,-u=¢j€K, l§]§N,
that is,
[0ull<Ci(DIl fllcrdy, 1S7<N.

Summing up, we have proved that
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ueWwr=(8),
(3.11) {

Nl Ci(DN fllerm »

where C,(2)>0 is a constant independent of f.
[I-2) Finally we show that the function u is a weak solution of the Dirichlet
problem :

(A—NDu=f in D,
|

u=0 on 22U23.

That is, we show that for all v,eC%D) satisfying v,=0 on X,\U2%,
(3.12) SSD fvldnggpu (A*— D dx.

[I-2a) First, since u. is a solution of problem (D), we obtain from Green’s
formula that for all veC¥ Q) satisfying v=0 on 92\2%,

(3.13) SSQ fvdx———gggedus-va’x—}—SSQadua-vdx
—}—SSQ(A—Z)uE-vdx

:egggu, -dvdx +Sggus -d(av)dx

+SSQue-(A*——2)vdx——sgz v gz:: do,

2
since a=0 on Y, and hence av=0 on 0.
But we recall that the subsequence {u.,}i, converges uniformly to the
function usWt=(), as ¢; | 0. Thus, letting ¢, | 0 in formula [3.13), we obtain
that

(3.14) SSQ fvdszSQu -A(av)dx+SSQu (A*—vdx .

Indeed, by estimate [(3.10), the last term of the right-hand side of formula

tends to zero as &; | 0.
[I-2b) By hypothesis (H), we can introduce in a tubular neighborhood of

0R a local coordinate system (y,, ys, -+, ¥yx) such that:
Q= {yxy>0},
{ 002={yx=0}.
Assume that, in terms of this coordinate system, the operator A* is of the form
A*= % aij_ai_ szlﬁi 0 +c*.
1521 9y 0y; i=T 0y,
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If >0 is sufficiently small, we choose a function ¢;= C=(2) such that 0<¢;<1
on £ and that:

J 0 in the d-neighborhood G; of X, S, and in Q\D,

0
¢ l 1 in D outside the 2d-neighborhood G,; of X, J,.

One may assume that the function ¢; depends only on the variable yy and that
we have as 0 | 0

9% _ o5,
oyn

62955 _ -2
v =0(07%).

Let v, be an arbitrary function in C*D) satisfying »,=0on X, Y,. Then
it follows that the function v,¢@; belongs to C* D) and satisfies n1¢s=0 on 02\7Y,.
Thus, applying formula to the function v,¢;, we obtain that

(3.15) SSD f-vlgb,;dx:SSDu (A*—(ida)dx,

since av,¢s=0 in Q.
II-2c) We shall show that formula tends to formula as 6 | 0.
i) First, by the Lebesgue convergence theorem, it follows that the left-

hand side of formula tends to the left-hand side of formula aso|0:
(3.16) l,;'f?SSvaquadx:SSvaldx .

ii) We rewrite the right-hand side of formula [3.1I5) in the following form :

(3.17) SSD” -(A*—l)(vlgb,;)dx:SSDu((A*—Z)vl)qS,;dx
+SSD” vi(A*ds— c*ha)d x

+25§D(w§=l a’’ v 04 )dx

axi ax]-
=[+15+18
We calculate the limit of the terms 72, I$ and [ as 6 |0.
ii-a) For the term /¢, we have by the Lebesgue convergence theorem

(3.18) lim I‘E:SSDu (A*— D dx |

alo

ii-b) For the terms I¢ and I3, we remark that the integrals I3 and I¢ are
taken over the 2d-neighborhood G,; of the set X, UJX, where the functions
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0¢;s/0x; and 0%p;/0x,0x; may be different from zero. Thus, passing to the local
coordinate system (v, v,, -, Yn), wWe obtain that

IQ:SSG%((XNN a “55 /sN a¢5 )vlulcdy,

Ig:zSSGZB“NN aa;;r aa¢; ulcdy-}—ziaSSGzaa

v 0V _0¢;
0y; 0yn

since the function ¢@; depends only on the variable yy. Here k£ is some C=
function.

ukdy,

First we consider the limit of the term I§ as 6 | 0: Since we have aVV=
0(0%), 0°¢s/0y%=0(0"% near the set X,UY, and since the measure |G,s| of
G, is of order 4, it follows that

2
(3.19) limgSGZBaNN-qu;j vukdy=0.

640

On the other hand, we remark that »,=0 on %, and that the function A% coin-
cides with the Fichera function b* for the operator A* on X,. This implies that

v,=0(0) near J,,

BY=0()  near X,.
Hence we have

. 095
N —
(3.20) %‘fi‘sg(;mﬁ 3y n nukdy=0,

since 0¢s/0yy=0(3"") and |G| =0(d).
Therefore, we obtain from formulas and that

(3.21) ) lim 7§=0.

a0

Next we consider the limit of the term 4 as 6 | 0: Since we have a¥¥=
0O(0%) and 0¢s/0yy=0(0"*) near the set X,\UX,, it follows that

. av1 a¢5
NN —_
(3.22) lalroISSazaa T Gvn urdy=0.

Furthermore, since the matrix (a'/) is non-negative definite, we find that

aiNZO on EOUZI, léiél\[—l,
and so
a'¥N=0(0) near X,U2Y,, 1<i<N-—1.

Thus we have

(3.23) lim SS ath ———urdy=0,
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since 0¢s/0yn=0(3"") and |G| =0(9).
Hence, we obtain from formulas and that
(3.24) lim I$=0.
Ji0

ii-c) Summing up, we obtain from formulas [3.17), [3.18), [3.21) and
that the right-hand side of formula [3.15) tends to the right-hand side of for-

mula [3.12) as 6 | 0:

(3.25) 1}315&[)14 -(A*—l)(vlgba)dx:SSDu (A*—vydx .

iii) Therefore, formula follows from formula by combining
formulas [3.16) and [3.25).

III) Now let f be an arbitrary function in the space W'=(D). Then one
can find a sequence {f.}%., in C'*?(D) such that

(3.26a) I fallerm <1 flli e,
(3.26b) fo—>f in C(D) as n— oo,

By step II), it follows that there exists a weak solution u,cW"=(D) of the
Dirichlet problem :

{ (A—Nu,=f, inD,
unzo on 22U23,

and the solution u, satisfies the estimate

3.27) 1l = CiDI Fallerdy S CL(DI fll1. o -

But, by a Sobolev imbedding theorem (cf. [A, Lemma 5.17]), this implies that
the sequence {u,}%-, is uniformly bounded and Lipschitz continuous on D (and
hence it is equicontinuous on D). Thus, by virtue of the Ascoli-Arzela theorem,
one can choose a subsequence {u,} which converges uniformly to a function
u in C(D) as n’—oo. Therefore, it follows from assertion that for all
ve C¥D) satisfying v=0 on Y,\2; we have

SSDu H(Ar—Apdx= }Li,rf’msgpu"’ (A*—2Avdx

= 71Lim SSDfnfvdx

700

=SS frdx.
D
On the other hand, just as in the proof of step Il-lc) (cf. the proof of
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assertion [(3.11)), we obtain from estimate that
{ usWhr=(D),
2l 0= Co(AD Fll1eo-

Summing up, we have proved that, for any feW?'=(D), there exists a
weak solution u in the space W *(D) of problem (*) which satisfies inequality
B.11

The proof of Theorem 3.1 is now complete.

3.2. Hélder Continuity for Weak Solutions

In this subsection, we study problem (D) in the framework of Hélder Spaces.
First we prove an existence theorem for problem (D) in the spaces W™ (D)
where m>=2, generalizing Theorem 3.1 (cf. [OR, Theorem 1.8.2]; [C, Théoréme
4.47):

THEOREM 3.5. Assume that hypothesis (H) is satisfied and that conditions
(2.3) and (2.19) are satisfied. Then, for each integer m=2, one can find a con-
stant A=A(m)>0 such that, for any function [ in the space W*™**>=(D), there
exists a weak solution ucW™ =(D) of the Dirichlet problem :

{(A—Z)u::f in D,
u=0 on Z'zuzs.

(*)

Moreover, the solution u satisfies the inequality

(3.28) [l m, o= Cn(Alfllzms2.00,
where C,(2)>0 is a constant independent of f.

ProOOF. I) We modify the domain D and the operator A so that the set
232, UY, is of type X, as in the proof of Theorem 3.1.

By hypothesis (H), one can choose a bounded domain £ with C* boundary
0%2 such that (cf. Figure 4)

{ DUX, w2, w2,

2,Cof.
One may assume that

(2.3 ¢c<0 on £,
(2.19") c*<0 on 2.
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Figure 4.

Now we take a function ae C*(2) such that

a=0 in D,
(3.29) {

a>0 in Q\D,

and consider the Dirichlet problem for the elliptic operators ed+A+ad—Ai(e>0):

(ed+A+ad—Du.=f in Q,
(Do) {

u,=0 on 942 .
We remark that by condition

jﬁ_ at(x)nin;+a(x’) éln%>0 on 0f2.

t 1

In other words, the boundary 62 is of type X; for the operators A+ad—A3,
2>0.

II) First let f be an arbitrary function in the space crm+2+0(f) 0< <.
We show that there exists a weak solution ueW™ =(D) of problem (x) which

satisfies inequality [(3.28).

One may assume that

fecmmo(@),
and that

i|f”czm+2(§)_S_”f“ozmﬂ(f))-

II-1) We construct a function we C™+2+¢( Q) such that the function (A —2A)w
— f vanishes on JY,, together with its derivatives of order<m, and that
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(3.30) lwliem+2@ = CD| fliczm+2@ = CDI fllczm+2p) -

Let x; be an arbitrary point of the set Y,. We construct the function w
locally in a neighborhood of x;. To do so, we introduce a local coordinate

system (y;, y,, .-, Yn) in a neighborhood of x; such that
xo=0,
2= {y~n=0},
and assume that the equation (A—2)v=f takes the form:
N .. 0% y ov
g7 7 i _ =f.
(3.31) “_Eﬂa 337, +E{‘B ., +(c—Av=f

Since the matrix (a*) is non-negative definite and a”¥=0 on 2%, it follows
that

NN
Gac; =0 on 2%,,
N
and that
a=0 on X, 1<j<N-1,
Nj : '
%"; =0 onJ3, l<j, k<N—I.
k
Thus we have
vogy_ oY g by
(3.32) BY=p"— 2% ~=b<0 on .,
and also
ov N-1 o Q% N-1 . gy
’ . — N ij i —
(B3)  (A=2w=p"5= —{—(ij;‘;la syay, T BB Gy e )
=f on J,.
Now assume that
v=0 on J,.
Then we obtain from formulas (3.31’) and that
ov f(y’, 0)

' 7 0=
ays O O= 0
Furthermore, differentiating equation (3.31’) with respect to the variable yy,
we obtain that
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L kA
+ 3 a0y, 0 y?;yj ( Bfﬁ(yy/i,o{i))
+ B 80 05( ;53;;,03)
om0 L)

Similarly, continuing this process, we may find all the derivatives (8'v/dyk)(y’, 0)
for 1</<m.
We define, in a neighborhood of xg,

m 1 o
wly’, ym= 27 5500 0)yh .
Then it is easy to verify that the function w satisfies inequality and
that the function
(A—=Dw—f

vanishes in a neighborhood of x{=J2,, together with its derivatives of order
<m, and is of class C™*¢.

In order to construct the function w in the entire domain £, we cover the
set X, by a finite number of coordinates patches {w;}¢-, such that, in each w,,
one may pass to a local coordinate system y=(y,, y;, -*, yn) and construct a
function w; as above. Let {¢;}%-, be a partition of unity subordinate to the
covering {U;}%-,. Then it is easy to verify that the function

d
= W
w jglsbl J
satisfies the desired conditions. Furthemore, by hypothesis (H), one can (re)-
construct the function w so that

w=0 on J;.
[[-2) We let

f=f—(A-dw.

Then it follows that the function f vanishes on X, together with its derivatives

of order <m, and belongs to the space C™*%(2). Thus, letting

0 in the tubular neighborhood ¥ of 3, in 2\D,

3.33) fi=y .
f in Q\v,

we obtain that f,eC™*%(2). Furthermore, it follows from inequality
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that

(3.34) 1 f1llem@=CAll fllczm+zp -
Now we know (cf. [GT]) that the Dirichlet problem

o (ed+A+ad—Du.=f, in 2,
D) {

u,=0 on o4

has a unique solution u, in the space C™***9(Q), since f,eC™*9(Q).

II-3) We show that there exists a subsequence {u.,}i., which, together
with all its derivatives of order <m, converges weakly to some function #<
W™ (), as &, | o.

We only show that #W?>»=(2). The proof that # € W™=(2) for each
positive integer m=3 can be carried out in a similar way.

[I-3a) The next result, analogous to may be proved just as in
the proof of Théoréme 4.1 of Cancelier [C].

LEMMA 3.6. If o= C=(D), we let

pio= 3 | T2 <D,
and
Ry(x)=A 5 B (0 D.
2()6)-— pZ(x)— 'i..j2=1 axlaxj ’ axia )(X), xe

Then, for each 7>0, there exist constants §,>0 and B.>0 such that we have
for all = C=(D)

R0l 7,38 Ba(508 axj T2 N o+Bilglitio
J
+182”§D”CZ(D)+ ”A@”cz(p), XED

We remark that the constants 8, and 8. are uniform for the operators A+
ed—Al, 05e<1, 2=20.

[I-3b) The proof that icW?>>=(2) is based on the following lemma (cf.
[OR, Lemma 1.8.1]):

LEMMA 3.7. Assume that hypothesis (H) is satisfied with 0D=2';s and that
condition (2.3) is satisfied. Then one can find a constant A>0 such that if f is a
function in the space C*+9(D), then the unique solution u.c C*%(D) of the Dirichlet
problem
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{ (A+ed—Du.=f in D,

u.=0 on aD
satisfies the estimate

(3.35) Nuell ez S Co(DN fllcem
where Cy(A)>0 is a constant independent of &>0.
PROOF. We recall that

3.3) luelicim <C (DI flicim -

Thus, to prove estimate (3.35), it suffices to show that

N 0%u, |2\1/2 .
(3.36) (max 3 | 5] ) S M@ +iS oo,

where M,(A)>0 is a constant independent of &>0.

We let
0%u. 2
o, 0|, xeD

i) First we assume that the function p§(x) attains its positive maximum

1, 1

N
pi(x)= 23
j=

at a point x, of D. Then, since the matrix (a¥) is non-negative definite, we
obtain that

(3.37) (A+e) pi(x0) S e(x0) Pi(xo).
But it follows from an application of with »=1/2 that
N 0%u, 9"u,
(Ated=Dpi0= 2 Basesis(Grae + grpe )0 R,
with
1 ¥ o’u, 0’u,
(3.38) PISTERSS WP G S anae)®

+Billuclldrmr+Ball el 20 + EllfH?:z(b) .

Here the constants 8, and B, are independent of ¢>0 and A>0.
Hence we obtain from inequalities [3.37), and that

Aps(x0) = (A—c(x0)) p5(x0)
S(A—A—ed)pi(x,)

o%u, .
Bavea- “(axigx, ’ 62 ;x, )(x"))

EVJ Baies- u( G'us G'u, )(Xo)

=1 0x.0x;  0x;0%;

= _<(A +ed—2)pi(x0)— i‘%l
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<Billusllérm +B(llue l|cl(D)+Pz(xo))+ ]|f”02<1))

Z(Bi+B)C(A flg1m + B Pz(xo)+ ||f|I02<D>
Therefore, if A>0 is so large that

l>‘82’
then it follows that

(3.39) , pi(x) SCA| fllézw

where C(2)>0 is a constant independent of ¢>0.
ii) Next we assume that the function ps(x) attains its positive maximum
————(x")

0x,0%; >1/2'

ii-a) Since 0u./6x;=0 on 9D for 1<j<N—1, applying estimate
to the functions ou./6x; we obtain that:

at a point x; of 0D, and let

0%u,

(12——\/p2(x0) -—-(maX é

r'€dD i, j=1

For every 7>0, there exists a constant M, >0 independent of £>0 such that
0%u. ,
Tt (x)

0x,0x y
But it follows that

N-1

(3.40) max >

z'€dD j=1

a5
0x;

) 2g|Aatea— z)(———

c (D) ch

m“""”(%f)“g—(@‘“rsd Du+| Ated—2 aa .

of 0

7’*[‘”5" 4 ax ]

_of N ga'™  0%u. N obt ou. ac
6x] (l.%ﬁa}] 0X10%m z=106767'3E+ 0x; uE)

B ( N op'™  0%u. y sziaue>'

1, m=1 axJ axlaxﬂ_; l=lvaxj axl

Hence we have with a constant C >0 independent of >0

(At ed=2(Z2 ) Z 1 s+ ClaiHleloncn).
Therefore, combining this inequality with estimate (3.40), we obtain that
Al N-1 0%u, NE 1/z<1 el i
G4D)  (max 3 | 5,55 00]) gt Cludao tifioo).

Here C’>0 is a constant independent of ¢>0.
ii-b) In order to estimate the term
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ﬁzus( 0
we choose a local coordinate system (y,, ¥, -, Y») in a neighborhood of x;
such that
x0=0,
D={y~>0},
0D={yy=0},

and assume that, in terms of this coordinate system, the equation

(A+ed—Du,=f
is of the form
T
ay;

zue N-1 i ”
) +l§‘_‘1(a +ep )a

(A+ed—Du.=(a" ¥ 4ep V)=~ o

N N aus NS e i
+(B"Y +ev ) + tg B —H—:u)a +(c—Au.
=f.
Since u,=0 on 0D and x;€0D=2, (so a”¥(0)>0), it follows that
8 us _ 1 v N c’iue
- O= vt ey VOB O+ 05 =),
Hence we have
62us
(3.42) <o>| <C(ludlcrmr+1 fllc),
with a constant C”>0 independent of ¢>0.
ii-c) Finally we remark that
0%u, ..
e — = < —1.
dxo, 0 onadD, 1<i, jSN-—1
Therefore, combining estimates (3.41) and [3.42), we find that
1 .
gi= '2—q§+c”'(”ua“cub)'*‘”fncum),
so that
(3.43) @ =2C"(liucllcrm+1i fllcrem).

Here C”>0 is a constant independent of &>0.

iili) The desired estimate (and hence estimate follows by
combining estimates [3.39) and [3.43).

The proof of is complete.




Existence of Feller semigroups with Dirichlet condition 419

[I-3c) Now, since f,eC™*?(Q), it follows from an application of Lemm 3.7
with A=A+ a4 that the unique solution u.=C™***%(2) of the Dirichlet problem

(ed+A+ad—Du.= 1, in Q,
(D.) {

u,=0 on of2

satisfies the estimate

[ellczc < ColDI f1llc2e -
Hence, combining this estimate with inequality [3.34), we obtain that

el cedr S Cn(D fllcem+esy,

where C,(1)>0 is a constant independent of &>0.

Therefore, arguing as in step Il-1¢) of the proof of Theorem 3.1, we can
choose a subsequence {u.,}3, which, together with all its derivatives of order
<2, converges weakly to some function # in the Hilbert space L¥Q) as ¢, | oo.
Thus, passing to the limit in problem (D.), we obtain that # belongs to the
space W*=() and satisfies

. (A+ad—Di=f, in 2,
5 {
=0 on 0%,
and
Hﬁ||2,°°§ Cm(x)“fHCZmH(ﬁ) .

Hence it follows from formulas (3.33) and that
(A=Di=f=f—A—-Dw in D,
and that
#=0 on 2,

since the boundary 02 contains the set Y.
1I-4) Finally we show that #=0 on Y, and hence #=0 on 2,UZ2}.
By formulas (3.33) and [(3.29), we find that

(A+ad—A)i=0 in U,

where 4 is the tubular neighborhood of %, in Q\D. But we remark that the
set Y, is of type X, for the operator A+ad—2A in the domain U and that
condition (2.19") is satisfied. Hence it follows from an application of the uni-
queness theorem for the Dirichlet problem (Theorem 2.6) that

=0 in VU,
so that
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=0 on J%,.
Therefore, since w=0 on 3, Y, we obtain that the function
u=t+weW?=(D)

is a weak solution of problem (*) which satisfies the inequality

U2, 0= Col D fllczmredy S Co(DN fllczm+2(py -

IlI) Now let f be an arbitrary function in the space W2m*2<(D). Then
one can find a sequence {f,}%.; in the space C?™*2*%(D) such that

I fallceam+zcmy S fllemaz. oo,
{fn—)f in C(D) as n—oo.
By step II), it follows that there exists a weak solution u,cW™ <(D) of the
Dirichlet problem :
(A=Nu,=f, in D,
{ U, =0 on J,UJ,,

and the solution u, satisfies the estimate

H un“ m.wéCm(z)“fn[|02m+2(ﬁ)§cm.(2)nf”2m+2,w .

Therefore, just as in the proof of step III) of Theorem 3.1, we obtain that
the limit function u of u, when n—oo is a weak solution in the space W™ =(D)
of problem (x) which satisfies inequality [3.28).

The proof of is now complete.

3.3. Proof of

follows from by a well-known interpolation argu-
ment (cf. [Tr]), since the space C**?(D) is a real interpolation space between
the spaces W# =(D) and W#+-=(D):

C*U(D)y=W* (D), W*** (D)), ..

Furthermore, we can prove the following existence and uniqueness theorem
for problem (D) in the framework of Hélder spaces:

THEOREM 3.8. Assume that hypothesis (H) is satisfied and that conditions
(2.3) and (2.19) are satisfied. Then, for each integer m=2, one can find a con-
stant Az=A(m)>0 such that, for any f&C?™****%(D) and any g Ct™+++20(3,UY,),
there exists a unique solution us C™*%(D) of the Dirichlet problem :
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(A—Du=f in D,
(D) {

u=g on 2,\U2,.

4, Proof of Theorem 1|

The proof of is based on which is a Feller semi-
group version of the Hille-Yosida theorem in terms of the maximum principle.
We shall verify conditions (), (8) and (7) of the same theorem.

4.1. The Space C,(D\M)

First we consider a one-point compactification K,=K'\U{d} of the space
K =D\M, where

M=23,U%,.

We say that two points x and y of D are equivalent modulo M if either
x=y or x, yeM. We denote by D/M the totality of equivalence classes
modulo M. On the set D/M, we define the quotient topology induced by the
projection ¢: D—D/M. Then it is easy to see that the topological space D/M
is a one-point compactification of the space D\M and that the point at infinity @
corresponds to the set M:

K;=D/M,

0o=M.

Furthermore we have the following isomorphism:
(4.1) | C(K;)={usC(D); u is constant on X,\UJY}.

Now we introduce a closed subspace of C(K;) as in Subsection 1.1:

CoK)={ucsC(K,); u(@)=0}.

Then we have by assertion
(4.2) Co(K)=Co(D\M)={ucsC(D); u=0 on X;\UZ}.

4.2. Proof of MTheorem 1

The next theorem summarizes the basic results of Sections 2 and 3 about
the Dirichlet problem in the framework of Holder spaces:

THEOREM 4.1. Assume that hypothesis (H) is satisfied. Then, for each integer
m=2, one can find a constant a=a(m)>0 such that, for any f& crm+2+20( DY gnd
any @ Cim+4+28(3,UYy), 0< <1, there exists a unique solution usC™+%D) of
the Dirichlet problem :
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(a—Au=f in D,
(D) {
u=¢ on 2,\U2,.

Moreover, the solution u satisfies the inequality
(4.3) maxlulSmax(lmaxlf] max |(p|>.
b = a b  FeuZy

with m=2 tells us that problem (D) has a unique solution u
in the space C**%(D) for any f=C****(D) and any @eC***/(5,U%,), if a>0
is sufficiently large. Therefore, we can introduce linear operators

Gg: Cs+20(D“) -_ cz+0(D)
and
H,: C***%(3,U%,) —> C2+‘9(D)
as follows.

a) For any feC***%(D), the function GJfeC**?(D) is the unique solution
of the problem :

{ (a—AGLf=f in D,
Ggf=0 on 22U23.

b) For any oe(C***%(X,U%;), the function H,peC**®(D) is the unique
solution of the problem:

{ (@a—A)Ha,p=0 in D,
Ha(p—_—-(p on 22\]23.

The operator C is called the Green operator and the operator H, is called
the harmonic operator, respectively.
Then we have the following result:

LEMMA 4.2. The operator GYa>0), considered from C(D) into itself, is
non-negative and continuous with norm

(4.4) IGall=1Gall=maxGal(x)< i.
reD a

PROOF. First, in order to prove the non-negativity of G2, we assume that
fec*?*D) and f=0on D.

Then one can find a unique solution u.=C®**2%(D) of the Dirichlet problem for
the elliptic operators A—a-+¢4(e>0):

{ (a—A—edu.,=f in D,
u.=0 on aD.
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Since we have
{ (A4+ed—a)u.=—f=<0 in D,

u.=0 on oD,
it follows from an application of the maximum principle (Theorem All) that

u.=0 on D.

But we know (cf. the proof of [Theorem 3.5) that a subsequence {u.,} converges
uniformaly to the function GfeC**?(D), as &, | 0. Hence we have

G.f=0 on D.

This proves the non-negativity of Gg.

Therefore, inequality follows from inequality by taking f=1
and ¢=0.

The proof of is complete.

Similarly, we have the following:

LEMMA 4.3. The operator Ha(a>0), considered from C(Z,\UZ,) into C(D),
is non-negative and continuous with norm

”Ha”:” H.1| :maXHal(x)-——'l .
xeD

PROOF OF THEOREM 1. We recall that A is a linear operator from the
space Co(D\M) into itself defined by the following:
(1) The domain D(A) of A is the space

D(A)={usC¥D); u=Au=0 on T, UX:}.

) JAu=Au, ucD(A).
1) First we verify condition (a), that is, the density of the domain D(A)
in the space C (D\M).
Now we assume that:
feCc=(D) and f=0 on X,UJ%,.
Then we obtain that

AGgf_——aGgf—‘f:O on Zguz’g,
so that
GdfeD(A).

But it follows from an application of the uniqueness theorem for the Dirichlet
problem (Theorem 2.6) that
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[—aGLf=GY(B—A)f)—BGLSf, B>0.

Indeed, the both sides have the same boundary value 0 on the set Y,\UJY, and
satisfy the same equation: (a—A)u=—Af in D. In view of inequality [4.4),
we have

1 f~aGafI< =1 B=Mf1+ 211,

and hence
lim || f —aG2 f1|=0.

This verifies condition (a), since the space
C(D)YNCo(D\M)={feC=(D); f=0 on I, U

is everywhere dense in the space C,(D\M).
II) Next, in order to verify condition (8), we assume that:

ueD(A) and max u>0.
MN(Zyuly

Then we have the following two cases:

(i) There exists a point x, of D such that

u(x,)= max u>0.
D\ (Zquly)

(ii) There exists a point x§ of 2,\US, such that

u(xg)= max u>0.
D\(XyulXy)

Case (i): In this case, we have

Au(xo)=Au(xs)= % a(x0) 5 (R0 eleu(x) S0,

i, 1
since the matrix (a%) is non-negative definite and ¢<0 in D.

Case (ii): We choose a local coordinate system (y,, y,, ---, y») in a neigh-
borhood of xj=3,\2, such that

x0=0,

D={yx>0},

0D={yy=0},
and assume that, in terms of this coordinate system, the operator A is of the
form
@5 A=avv T g O G e O e 8

0y% Oyy t9=1 0y0y; i=1' 0y,
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We remark that:
(ii-a) a¥¥(0)=0 and BY(0)>0 if x;=,.
(ii-b) a™¥(0)=0 and BY(0)=0 if x¢=3,.
But we have
¢ u(0)>0,

ou .
J 9, 0)=0, 1=</<N-1,

ou
<

and also
N-1 . azu
¥
20555,

Hence it follows from formula that

0)=<0.

(= Au(xp= | B O, —@+cOuO=0 if e,

c(Ou(0)<0 if x{esld,.

Therefore, we have proved the following:

CLAIM. If ueD(A) and maxXpy u>0, then there exists a point x € D\M
such that
{ u(x)=maxpui,
Au(x)=0.

This claim verifies condition (j).

III) It remains to verify condition (;). By [Theorem 4.1, we find that if
a>0 is sufficiently large, then the range R(al—.i) contains the space C*(D)N
Co(D\M). This implies that the range R(al—) is everywhere dense in the
space Co(D\M), for a>0 sufficiently large.

Summing up, we have proved that the operator A satisfies conditions (a)
through (7) in [Theorem 1.4. Hence, in view of assertion it follows from
an application of the same theorem that the operator 4 is closable in the space
C,(D\M), and its minimal closed extension 4 is the infinitesimal generator of
some Feller semigroup {7T:}:», on D\M.

The proof of is now complete.

Appendix The Maximum Principle

Let D be a bounded domain of Euclidean space RY, with boundary aD,
and let A be a second-order, degenerate elliptic differential operator with real
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coefficients such that

ou
0x;

y 0*u
Au(x)= 3 a¥(x) — (x)+c(x)u(x),

i, j=1 ax,ax,

N
(*)+ Zb40)

where :
1) a¥=C(RY), a¥’=a’* and

t%lau(x)éisf—z—o’ xERN’ =&, -, 5N)ERN.

2) b*'eC(R¥), 1<i<N.
3) ceC(R¥) and ¢<0 in D.
First we have the following result:

THEOREM A.l (The weak maximum principle). Assume that a function ue
C(D)N\C¥D) satisfies either

Au=20 and c¢<0in D
or
Au>0 and ¢<0in D.

Then the function u may take its positive maximum only on the boundary oD.

As an application of the weak maximum principle, we can obtain a point-
wise estimate for solutions of the inhomogeneous equation Au=7f:

THEOREM A.2. Assume that
¢c<0 on D=DwaD.
Then we have for all ue C(D)NC¥*D)

1
max|u|§max{~——sup|Au], max|u|},
b Cy D ap

where
cozmgx(——c)>0.

For a proof of Theorems A.l1 and A.2, the reader might refer to Bony-
Courrége-Priouret [BCP], Oleinik-Radkevi¢ [OR] and Taira [Ta].
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