TSUKUBA J. MATH.
Vol. 17 No. 2 (1993), 299—310

ON THE SUM OF A PRIME AND A SQUARE

By

Hiroshi MIKAWA

1. Introduction.

In 1923 G.H. Hardy and ]J. E. Littlewood conjectured that every large
integer, not being a square, may be expressed as the sum of a prime and a
square. Let y(n) be the number of representations of an integer n in this
manner. They further stated the hypothetical asymptotic formula; As n(#k?)

~—>OO’

vno
v(n)~S(n) logn
with
il (/B

where (—) is the Legendre symbol.
Define &(k*)=0. In 1968 R.]J. Miech proved that

(1) 2 s L (1+0(PEB ) " ¢ axoga)

for any A>0, from which it follows that
(2) E(x)<x(logx)~4

where E(x) denotes the number of integers n<x with y(n)=0. It seems dif-
ficult to sharpen the right hand side of (1). However (2) may be improved,
see [1, 9, 12].

A.l. Vinogradov [12; p. 35] remarked that, for any ¢>0,

E(x)<<x2/3+*"

under the extended Riemann hypothesis. First of all we shall show

PROPOSITION. Assume the extended Riemann hypothesis. Then

(3) E(x)<x'*(logx)®.
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It is the main aim of this paper to prove the following unconditionai
results.

THEOREM 1. Let 1/2<O@ <1 and A>0 be given. We have

1-19<2nsx v(n)— @<n)\/n ( +0 (lol%):)ngn >)‘2<<x8+1(10gx)—A

where the O-constant is absolute and the & —constant depends on © and A only.

THEOREM 2. Let 7/24<0<1 and A>0 be given. We have
E(x+x%)—E(x)<x%logx) 4

where the implied constant depends on 6 and A only.

Our assertion may be regarded as a refinement of Miech’s work (1)(2), and
must be compared with a conditional bound (3). Within the frame of Circle
method, we appeal to the large sieve [7, 8] and R.C. Vaughan’s method [11;
Chap. 4] on Weyl sums.

I would like to thank Professor Uchiyama and Dr. Kawada for suggestion
and encouragement.

2. Singular series.

In this section we collect the facts of &(n). For the proof, see [1, 5, 9, 12].

For integers ¢ and n, let p(q, n) be the number of solutions of the con-
gruence x*=n (modg), and p, be the convolution inverse of p with respect to
g. Define, for Q=3,

©(q)
(2.1) n, Q)= 2 Q—(—)pl(q, n.

Then, uniformly for =2,

(2.2) S(n, Q)KlogQ.
Let 9 be the set of fundamental discriminants. An integer n may be
uniquely written as n=n,n,®? with a square-free n,. Put
n, if n,=1 (mod4)
o(n)
4n, otherwise.

Thus, if n#k? then o6(n)e9d. For de=9, the Kronecker symbol (d/-) is a
primitive character to modulus d. Let .£=_.(T), T=3, denote the set of d=9
for which L(s, (d/-)) the Dirichlet L-function has no zero in the region:
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Re(s)=29/30 and |Im(s)|<T. Suppose x=<T. If d(n)e.L then there exists a
constant >0 such that
(2.3) 8(n, Q)=&(n)+0(Q " exp(~/log x))
uniformly for n<x. Moreover,
(2.4) #{d: ded\L, d<dx} <xV*(log x)*.

Finally, for n= k2,

(2.5) £ cemL(1, (27))« it

3. A conditional estimate.

In this section we illustrate our device with the proof of Proposition. We
employ the Circle method [11].

Let x be a large parameter. We divide the unit interval by the Farey
dissections of order

Q=x*(log x)*.

]

For (a, ¢)=1, write

Put
M=\ U I, P=x/1000,

gsP 0<asq
(a,g)=1

m=[Q, 1+Q']\M.
We define the exponential sum
W(la)= mi]x e(am?)
where e(t)=e?"*. By Weyl’s inequality, we see that
3.1 Wia) < (- +x+)log gz,

for |a—(a/q)| =q~? with (a, ¢)=1. When acl, ,, W(a) is approximated by

Vie)=q7"g(a, q)v(a—g—)

where

g(a, Q)“——m%)e(—Z—mz) and w(f)= 3 eéf/m%

Actually it follows from [11; Theorem 4.1] and [12; p. 38] that
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(3.2) IW(a)—V(a)|*<q(logq)*
for la—(a/q)| £(4g~v/x ). In addition, we note that
(3.3) 1&(a, 9)1*<q,

(3.4) lv(B)1*<min(x, |8~
where Ht!lzr;égnll—nl.

Put
S(a)= 7gm/l(n)e(an)

where / is the von Mangoldt function. It is expected that, for asl, ., S(a)
is nearly equal to

T(a):-ﬂ—(q)—t a__‘i)

¢(g) q
where
(3.5) (B)= 3 e(fn)<min(x, | I,
In order to show this, define
(3.6) Jo=5|, 1S@-T@l'da

where * in X¥ stands for (a, ¢)=1. If ac/, ,,
S(a)—T(@)=p(q)"! ns 2 :
(@—T(@=0(g)" 3 Hay® JUmAme((a—-)r) +0og x)").

Here # in 33% means that if X is principal then X(n)A(n) should be replaced
by A(n)—1. When ¢<P, by [2; Lemma 1], we have

3 Um)A(n)e(Bn)| dB+Q - (log x)*

J@<p@)y 3 |2

Q) 181s1/gQ Inszx
+00 # 2
<p@ 2a@("| B AmAm| dy+Q logx).
r@ T y<n33iqQr2

On noting ¢Q <PQ=x/100, it is easy to show that the above integral is
LqQx(logx)*,

under the extended Riemann hypothesis. Therefore, uniformly for ¢<P,

(3.7 J(@<Q 'x(log x)*.
Now, for n<x,
_ 1+Q-1 W da=
(3.8) 3 Am={" SaW(@e—nayda= |+ .
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By Bessel’s inequality and 3.1},

(3.9) = \ SmS(a)W(a)e(—na)da l : ggm |S(@W(a)|*da

<sup W(@)*| 1SD)1ds

L Qx(logx)?.
On ac M we first exchange S(a) for T(a). Thus, by [3.I) and [3.7),

a*

(3.10) pj | SM(S(a)—T(a))W(a)e(— na)da ] ’
< S |S(a)—T(@)|*|W(a)|*da
gsP d=1J1Iq ¢

< 3 Zlogx)J ()
9sP ¢

< x2Q (log x)°.
Next we replace W(a) by V(a). On using [3.2) and [3.5),

(3.11) ngx}SMT(axW(a)—V(a))e(—na)da\2

<sup |W<a>—v<a>|2§M\T<r>|2dr

<P(log P 3) z*g

sPa=1

1B1s1/9Q goz(q) ‘t(ﬁ)IZd'B

L Px(logx)®.

Finally we extend the Farey arc I, ., to I, ,=[(a/q)—(1/2), (a/q)+(1/2)]. The
resulting remainder is then equal to

3.12) =3 5 Sl . T@V(@e(—na)da
g,a‘*q, a

gsPa=1
_—(I?PGLISI/QQ<I,@!SI/2 i:g]]i HB)y~'g(a, q)v(ﬁ)e( (_“HS))d‘B

(Bv(Be(— ,Bn)Z % #((q) g(a, q)e(———n)dﬁ

On using Cauchy’s inequality and [3.4), we have

SI/Q<I/9|§1/2

=gl erdl E)1ID,1%p
o)
<ogm| g T ?’5 ey 8@ ve(—on)|)ap.
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The large sieve inequality [7, 8] yields that

HB)I? (zpag(HqP) ”(f)) g(a, 9)| )dp

qu>1

S iral*<(ogx)|

1/Q<1B1s1/2

py ) (@)

| )
<L( ng)qg,(x+ qo(q) Jree<isisiz

[t(B)1*dpB
<(log )(x +PHQ 3 - @)
P ¢(q)
(3.13) LQx(logx)?.

Here we used the bounds [3.3) and [3.5).
It remains to calculate

(3.14) 5 %S T(@)V(a)e(—na)da
dsPd=1)1g 4
_ * ﬂ(Q) _£ +1/2 e(‘e([ﬂ“—@)_
T J5PdT1 qe(q) o) 5% q)e( q n)S—I/ZIZmSZI 2vVm aB.

The above sum is &(n, P) with the definition [2.I). The integral is equal to

B gvimy= VR HOW.
Hence, by [2.2), becomes
(3.15) &(n, P)v/'n +0(logx).

On summing up the above argument (3.9)-(3.15), we obtain

S 3 log p—S(n, P)vVn |2<Qx(log x)*+x2QY(log x)*+ Px(log x)?

nsr p+me=n

(3.16) L x%%(log x)*.

Now, the extended Riemann hypothesis implies that £=9 the sets in-
troduced in section 2, and that &(n)>(log logn)~? for n+#k* and n>1. By
we then have that, for n=£k% (>1),

S(n, P)>(log logn)~®.
Consequently leads that
*%(logx)'» 2| X log p—S(n, P)v'n |?

nsr DP+ml=n

= 2 18(n, P)I*n
z/2<nsx
v(n)=0
nak2

> x(log logx)™* Zs 1
( )=0
nxk
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or

X 1/2
E(x)< 1+21<<;(w27) (log x log log x)*+x/*
0

nsx 2
v(n)= kesz
nxk2

<<x”2(10g x>5 ,
as required.

4. Proof of Theorems.

In this section we derive Theorems from the known results mentioned in

section 2 and our main lemma below. will be verified in the next
section.

LEMMA. Let x be a large parameter. For given 1/2<O=3/4 and 7/12<
<1, put A=9° and y=x%. Write

v(n, y)=#{(p, m): x—y<psx, m*’<y, p+m*=n},
and

n—(xr-y)-3 di

1 24/ tlog(n—t)"

K(n, y)=g
Then, for any A>0, we have

a2, v =8, VK (n, y)|*<Ay(log )™

where the implied constant depends on ©, 5 and A only.

Proof of Theorem 1. Let £=_(x) in section 2. Choose =1 in Lemmal
Then, because of v(n, x)=y(n),

S uwn)—8(n, V) )K(n, x)|2<x%*(logx)™4

z-20Zn sz

for any A>0. We note that

Kin, =2 (1+0( 18181 ))

with an absolute O-constant. Combining the above with [2.3) and [2.5) we have

S= 62 lu(n)—S(n)K(n, x)|*

z-x9nsx

- snmyel o(n)e&L n=~k2
nxk2
_— _ n
- 2 . = _ 2

<<I_$6<En§x|v(n) S(n, vVx )K(n, x)| +x‘x6<z7,l§zl(5(n) S(n, vx )| Tog

s(nyer c(nye.l

S(n) \?

e (= "7 2\2

+x—§gb<)zj'nés,z<v(n) +< logn ) n)+z—x6<k2gzv(k )
nak?
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< S lu(n)—S(n, vVx )K(n, x)|*+x*! sup |S(n)—&(n, vVx)|?

1-16<nsr

6(n)e£
&(n) \2
+x{14+ sup 1( )4)) 2 o 1
PR E I RO R AT &
nxk2 or d=1
6+ -4 -2 6-1/2
£ x*Y(log x) +x(l—|—dssu4§ L(l( )) )(1—%(15931 1>x .

By and Siegel’s theorem [10; Kap. IV, §8], S becomes
Lx9*(log x) A+ x0(x o)1+ x4 (log x)*)
L x%*(log x) 4.
Hence we obtain in case 1/2<@<3/4. If 3/4<OL1,

follows from the case of ©®=2/3, by splitting up the interval (x—x®, x] into
the sum of smaller intervals of type (u—u??3, u].

Proof of Theorem 2. Put §=65 in Lemma. Then, 7/24<60<3/4. It is
sufficient to prove for @ in the above range only. Since y(n)=0
implies v(n, y)=0, yields that

2180, VyOK(n, p)I*<yx(log x)m0.
y(n)=0

Here, K(n, y)*<y(logx) % Thus,
1« x%logx) 4 %logx log x)*

xV<ns
v(n)=0
o(n)ed

by and with .£=.,(x). Hence, by [2.4), we obtain
E(x)—E(x—x0)< l+ Z 1

=X -z <n§r
0 a(n
L

<<x0(logx)"1+ = (x0-1241)

ds4x
deED\L or d=1

Lx%logx)=4+x*(log x)™
Lx%(logx)™4,

as required.

5. Proof of [Lemmal
Put
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And we define the exponential sums W(a) and V(a) by the similar way in
section 3, except for changing the parameter x in section 3 by y. The Farey
arcs are determined as follows:

Q=y"*(logx),
M=\) U I,., L= U I, P=(logx)*

gsP 0<asxq gsP 0<a=gq
(a,q)=1 (a,q)=1

m= \U U Iq,a; R:y/Q
P<lgsR 0<a<g
(a,q)=1

n=[Q7" 1+Q' \(MUm).

Here I, , and [, , are similar to that in section 3. We then have

v(n, y)zgi:i—l S(a)W (a)e(—na)da

:gLSV—SL\MSV+SmSV+SMumS(W——V)+SnSW

=Ji—J.+ ]+ ]+ S5 say.

First we evaluate J,. An elementary calculation leads that

fl(n)ZSLS(a)V(a)e(— na)da

-1/2

:/3 ggn/z (%_{_ﬂ)q“g(a, q)v(ﬁ)e(—n(i +‘3>>d‘3

5 & g1 a e((a/q)p) [+
=3 Boee (= ¢n) B2 U e@orm—nds
= ? qé 7 'g(a, q)e<—£n>x_y§p<n ez«j/il)pjz
o - cq(p—i—m ——n)
—q§Pq T-y<p<n C2Vn—p b
(52) ZQ§ 17"«(‘1) (a, ﬂll,i?—qn) 1”( )d px ny<n{}<n 2\7—~— +O(ZT(g)g)

On using partial summation, the innermost sum is equal to

K(n, y)
o(d)

5.3) +0(1+ sup sup 12

(b.d)=11stsy

{
é?( )nlog p—?(djl)
We now appeal to the well known result on primes in arithmetical progressions
[10; Kap. IX. §3]. It follows from [10; Kap. VIl. Satz 6.2, Kap. IV. Satz 8.1]
zero free region and [4, 6; Theorem 12.1] zero density estimates for the Diri-
chret L-functions that, for given positive constants ¢, £ and F,
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r

ol _»__2___ - -FE
L( Ylog p= ) +0(Y (log X)°%)

X<

IH'U

uniformly for ([, k)=1, k<(log X)¥ and X"?*¢*<Y <X. Hence the O-term in
is at most

yl/Z(logx)—BA—l’
and contributes to

LyV¥log x)747 X t(q)q
gsP
LyY¥(log x)*47'P*(log P)
<<y1/2P-1 .
On combining this with and we have

(5.4) Jin)=K(n, y) 3¢ 3 P p(q) o) +0(y'2P-Y).
,m2-n)=1

P m(q)
¢ d

Notice that the above sum is

5.5 H9)_ —n)=&(n, P)= #9)
-2 quo(wm%c“(m m=8n F=2 =q(>

g(a, q)e(— —n)

We widen the range of ¢ up to vy . Let J,(n) be the resulting cost. On
employing the large sieve inequality [7, 8] and [3.3),

gk

> p(q)) g(a, n)e(———n)

2

2 1Jum*<K(n, 3! 2

r-d<nsz z-d<ngx | P<gsvy a=1 q¢ (q
<ogn)”, = 8 (htqvy)|L “9)
PLgsyya=1
A 1 (q)
~-2f &
< y(log x) <P+\/y)§2 )
(5.6) <YAP V).
In conjunction with [(5.4), (5.5) and we obtain
6.7 S 1 Ji(m)—6(n, Vy)K(n, »I*KAyP +y%2,

r-d<nsx

We proceed to J,. On using Cauchy’s inequality and [3.3),

Jim=\ S@V(ae(—na)da

:qaaglq-lgm, ge(- —f]- ")Suqk,ﬁ,suf(% +8)u(Be(—np)dp

L P Eq

a=

(5 +B8)vBe—npap|’)"”

SI/QQ<L3|§1/2
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By Bessel’s inequality and [3.4), we have

> 1 ](m <<I”Z}q'1 3

r-d<ns a= 1S1mQ<|ﬂ|su2

s(%ﬂa)\zdﬁ

s(2+8)vip 45

g%
<P Z glﬁlél/Z

gsPa=1

(5.8) < P*Qy(logx)™".

Next we consider J;. Changing the order of summation and integration,
we use Cauchy’s inequality and [3.4). Thus,

fa(n)ZSmS(a)V(a)e(—na)da

qx S
— S
P<gsRa=1J18151/2Q

S(5+8)aata, gu@e(—n(-+8))dp

:SHSIPQ<1 ﬁ)e(_nﬂ)| <Q§“§1q"1g(a, q)S(%_HS)e(—%n)d‘B
or -
2 am
<<(10gx>§|ﬁ|PQ§1x—A<n§x |I,§|<¢§’5§1::1q—1g(a’ C])S<—Z—+ﬁ)e(—-%n>‘zdﬁ.

The large sieve [7, 8] yields that

x_dgﬂlfs(n)l%(logmg sipost gzg (}él(AJqu)‘q‘lg(a, q)S(-Z—Jrﬁ)‘zdﬁ
<togn), 3, B, oG +RSG+8)[ e
<logx)(B+R)| |S(e)|*da
(5.9) <(AP-4R)y.

We turn to J,.

2 mi=_ 2 || S@W@-V@e—nada|’

r-d<nsz

=(, IS@rw@—-v(@*da

< R(logx)ngum\ S(a)|2da

(5.10) Ly,
by Bessel’s inequality and [3.2). Similarly, by [3.1),
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(5.11)

Hiroshi MIKAwA

S 1mi=__ 5

r-4<ns d<nsz

S S(aW(@e(—na)dal’
<| 1S@W(a)*da

<<(% -I—Q)(logx)gn 1S(a)|*da

< y*"*(log x).

In conjunction with (5.7)-(5.11) and (5.1), we have that

> I, »)—S(n, Vy)K(n, )|2<AyP '+ P*Qy(log x)"'+ Ry+y**(log x)

r-4<n

<<AyP—l+P4y3/2

LAy(logx)™,

as required.

This completes our proof.
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