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ON CLASSIFICATION OF SOME SURFACES
OF REVOLUTION OF FINITE TYPE

By

Bang-yen CHEN and Susumu ISHIKAWA

Abstract. In this article, we study the following problem of [5]:

Classify all finite type surfaces in a Euclidean 3-space $E^{3}$ . A sur-
face $M$ in a Euclidean 3-space is said to be of finite type if each

of its coordinate functions is a finite sum of eigenfunctions of the
Laplacian operator on $M$ with respect to the induced metric (cf.

$[1, 2])$ . Minimal surfaces are the simplest examples of surfaces of
finite type, in fact, minimal surfaces are of l-type. The spheres,

minimal surfaces and circular cylinders are the only known exam-
ples of surfaces of finite type in $E^{3}$ and it seems to be the only

finite type surfaces in $E^{3}$ (cf. [5]). The first author conjectured in
[2] that spheres are the only compact finite type surfaces in $E^{3}$ .
Since then, it was proved step by step and separately that finite
type tubes, finite type ruled surfaces, finite type quadrics and finite
type cones are surfaces of the only known examples (cf. [2, 6, 7,

10].) Our next natural target for this classification problem is the
class of surfaces of revolution. However, this case seems to be

much difficult than the other cases mentioned above. We therefore
investigate this classification problem for this class and obtain classi-
fication theorems for surfaces of revolution which are either of
rational or of polynomial kinds (cf. \S 1 for the definitions). As
consequence, further supports for the conjecture cited above are
obtained.

1. Introduction.

Let $M$ be a (connected) smooth surface in a Euclidean 3-space $E^{3}$ . Denote
by $\Delta$ the Laplacian of $M$ associated with the induced metric. Let $x$ and $H$

denote the position vector field and the mean curvature vector field of $M$ in $E^{3}$ ,
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respectively. Then we have

(1.1) $\Delta x=-2H$ .
Formula (1.1) yields the following two well-known facts: (a) surface $M$ is
minimal if and only if all coordinate functions of $E^{3}$ , restricted to $M$, are har-
monic functions, $i.e.$ , they are eigenfunctions of $\Delta$ with eigenvalue $0$ ; and (b)
$M$ is an open portion of an ordinary sphere $S^{2}$ if and only if all coordinate
functions of $E^{3}$ , restricted to $M$ are eigenfunctions of $\Delta$ with a fixed nonzero
eigenvalue.

For a given surface $M$ in $E^{3}$ , a smooth function on $M$ is said to be of
finite type if it can be expressed as a finite sum of eigenfunctions of $\Delta$ . If all
coordinate functions of $E^{3}$ , restricted to $M$, are of finite type, then $M$ is said
to be of flnite type. 0therwise, $M$ is said to be of infinite type. (See $[1, 2]$ for
details). In terms of finite type surfaces, a well-known result of Takahashi
[11] says that a surface in $E^{3}$ is of l-type if and only if either it is a minimal
surface of $E^{3}$ or it is an open portion of an ordinary sphere.

In [2], the first author proposed the following

PROBLEM. Classify finite type surfaces in $E^{3}$ .

This is indeed an interesting but a very difficult problem. Because the
problem involves a system of very complicated partical differential equations.
It seems to the first author that the only surfaces of finite type in $E^{3}$ are open
portions of planes, spheres, circular cylinders or minimal surfaces. For com-
pact case, the first author made the following

CONJECTURE. [5] The only compact surfaces of finite in $E^{3}$ are the ordinary
spheres.

The first result concerning the classification of surfaces of finite type in $E^{3}$

was obtained in [2]. In fact, it was proved in [2] that circular cylinders are
the only tubes of finite type in $E^{3}$ . In [10] it was shown that planes are the only
finite type cones in $E^{3}$ . It was proved in [7] that a ruled surface in $E^{3}$ is of
finite type if and only if it is an open portion of a plane, of a circular cylinder
or of a helicoid. Furthermore, the first author and F. Dillen proved in [6]

that spheres and circular cylinders are the only quadrics of finite type in $E^{3}$

(even locally). Further results in this direction can be found in [5, 8, 9].

In this article, we consider this classification problem for surfaces of re-
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volution. However, this case seems to be much complicated than the previous

cases. We therefore investigate in this article the classification of surfaces of
revolution which are either of rational kind or of polynomial kinds.

A surface in $E^{3}$ is called a surface of revolution if it is generated by a
curve $C$ on a plane $\pi$ when $\pi$ is rotated around a straight line $L$ in $\pi$ . By

choosing $\pi$ to be the xz-plane and line $L$ to be the z-axis, a surface of revolu-
tion is parametrized by

(1.2) $x(u, v)=(f(u)\cos v, f(u)\sin v,$ $g(u))$ .

A surface of revolution given by (1.2) is said to be of the polynomial kind

if $f(u)$ and $g(u)$ are polynomial functions in $u$ ; and it is said to be of the

rational kind if $g$ is a rational function in $f$, $i.e.,$ $g$ is the quotient of two
polynomial functions in $f$ .

In this article we prove the following classification theorems:

THEOREM 1. Let $M$ be a surface of revolution of the polynomial kind.
Then $M$ is a surface of finite type if and only if $M$ is either an open portion

of a plane or an open portion of a circular cylinder.

THEOREM 2. Let $M$ be a surface of revolution of the rational kind. Then
$M$ is a surface of finite type if and only if $M$ is an open portion of a plane.

In fact, Theorem 2 follows from the following more general result:

THEOREM 3. Let $M$ be a finite type surface of revolution parametrized by

$x(t, v)=(t\cos v, t\sin v, g(t))$ .

If $g^{\prime}(t)^{2}=Q(t)/R(t)$ for some polynomial functions $Q(t)$ and $R(t)$ in $t$ , then $M$ is
an open portion of a plane, or $M$ is an open portion of a catenoid, or $\deg Q=$

$\deg R=2+\deg(Q+R)$ .

REMARK. Up to similarity transformations on $E^{3}$ , a catenoid can be para-

metrized by
$x(t, v)=(t\cos v, t\sin v, g(t))$ ,

with $g(t)=\cosh^{-1}t$ . Thus $g^{\prime}(t)^{2}=1/(t^{2}-1)$ is the quotient of two polynomials
$Q=1$ and $R=t^{2}-1$ with $\deg R=\deg(Q+R)$ . On the other hand, it is easy to
verify that spheres centered at the origin in $E^{3}$ are l-type surfaces which do
satisfy the condition on $g^{\prime}(t)$ in Theorem 3 with $\deg Q=\deg R=2+\deg(Q+R)$ .
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And planes are null l-type surfaces with the function $g(t)$ of Theorem 3 satis-
fying $g^{\prime}(t)=0$ .

2. Preliminaries.

Let $x:M\rightarrow E^{3}$ be an immersion from a 2-dimensional connected manifold
$M$ into a Euclidean 3-space $E^{3}$ . Denote the Laplacian operator of $M$ with the
induced metric by $\Delta$ . Then the immersion $x$ (or the surface $M$ ) is of finite
type if each component of the position vector field $x$ of $M$ in $E^{m}$ can be
written as a finite sum of eigenfunctions of the Laplacian operator. Hence $x$

is of finite type if and only if $x$ has the following decomposition:

(2.1) $x=c+x_{1}+x_{2}+\cdots+x_{k}$

where $c$ is a constant vector and $x_{1},$ $x_{2},$ $\cdots,$ $x_{k}$ are non-constant maps satisfy-
ing $\Delta x_{i}=\lambda_{i}x_{i},$ $i=1,2,$ $\cdots,$

$k$ . Moreover, if all eigenvalues $\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\}$ are
mutually different, then the immersion $x$ (or the surface $M$ ) is said to be of
k-type and the decomposition (2.1) is called the spectral decomposition of the
immersion $x$ (or of the surface $M.$ ) In particular, if one of $\{\lambda_{1}, \lambda_{2}, \cdots , \lambda_{k}\}$ is
zero, then $M$ is said to be of null k-type.

We need the following results for later use:

PROPOSITION 1. $[1, 2]$ Let $M$ be a k-type surface whose spectral decomposi-
tion is given by (2.1). If we put

(2.2) $P(T)=\prod_{i=1}^{k}(T-\lambda_{i})$ ,

then $P(\Delta)(x-c)=0$ .

PROPOSITION 2. $[3, 5]$ Let $M$ be a surface in $E^{3}$ . If there exists a constant
$b$ such that $\Delta H=bH$, then $M$ is either of l-type or of null 2-type.

PROPOSITION 3. [4] The only null 2-type surfaces in $E^{3}$ are open portions

of circular cylinders.

The monic polynomial $P$ in Proposition 1 is called the minimal polynomial
of the finite type surface $M$. To find out whether or nor a surface is of finite
type, the minimal polynomial plays a very important role (cf. [5]).

Let $M$ be a surface of revolution parametrized by

(2.3) $x(u, v)=(f(u)\cos v, f(u)\sin v,$ $g(u))$ .
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It is easy to verify by straight-forward computation that the Laplacian operator
$\Delta$ of $M$ is given by

(2.4) $\Delta=\frac{-1}{(f^{\prime})^{2}+(g^{\prime})^{2}}\frac{\partial^{2}}{\partial u^{2}}-\{\frac{f^{\prime}}{f((f^{\prime})^{2}+(g^{\prime})^{8})}-\frac{f^{\prime}f^{\prime\prime}+g^{\prime}g^{\prime}}{((f^{\prime})^{2}+(g^{\prime})^{2})^{2}}\}\frac{\partial}{\partial u}-\frac{1}{f^{2}}\frac{\partial^{2}}{\partial v^{2}}$ .

3. Proof of Theorem 1.

Assume $M$ is a surface of revolution of the polynomial kind in $E^{s}$ . Then,

without loss of generality, we may assume $M$ is parametrized by

(3.1) $x(u, v)=(Q(u)\cos v, Q(u)\sin v,$ $R(u))$

for some polynomials $Q(u)$ and $R(u)$ of degree $q$ and $r$ , respectively. In parti-
cular, we have $\max\{q, r\}\geqq 1$ .

We need the following

LEMMA 1. Let $F(u)$ and $G(u)$ be polynomial functions in $u$ and $M$ a surface
of revolution of the polynomial kind which is parametrized by (3.1). Then
$\Delta(F(u)/G(u))=F_{1}(u)/G_{1}(u)$ for some polynomial functions $F_{1},$ $G_{1}$ with

$\deg F_{1}-\deg G_{1}\leqq\deg F-\deg G-2\max\{\deg F, \deg G\}$ .

PROOF. By applying (2.4) and straight-fordward computation, we may obtain

$\Delta(\frac{F(u)}{G(u)})=\frac{F_{1}(u)}{G_{1}(u)}$

where

(3.2) $F_{1}=Q(Q^{\prime 2}+R^{;g})(G(F^{\prime}G-FG^{\prime})^{\prime}-2G^{\prime}(F^{\prime}G-FG^{\prime}))$

$+G(F^{\prime}G-FG^{\prime})\{Q^{\prime}(Q^{\prime 2}+R^{\prime 2})-Q(Q^{\prime}Q^{\prime\prime}+R^{\prime}R^{\prime\prime})\}$

and

(3.3) $G_{1}=-G^{\mathfrak{g}}Q(Q^{\prime 2}+R^{\prime g})^{2}$ .
Let $\deg Q=q$ and $\deg R=r$ . Then from (3.2) and (3.3) we may find

$\deg F_{1}\leqq 2\deg G+q+2\max\{q, r\}+\deg F-4$ ,

$\deg G_{1}=3\deg G+q+4\max\{q, r\}-4$ ,

which implies the lemma. $\square $

Let
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(3.4) $\Delta^{i}R=\frac{F_{i}}{G_{i}}$ , $i=1,2,3,$ $\cdots$ .

Then by Lemma 1 we have

(3.5) $\deg F_{i+1}-\deg G_{i+1}<\deg F_{i}-\deg G_{i}<\cdots<\deg F_{1}-\deg G_{1}<\deg R$ .
Assume $M$ is of finite type, say of k-type. Let

$P(T)=T^{k}+c_{1}T^{k-1}+\cdots+c_{k-1}T+c_{k}$

be the minimal yolynomial of $M$ given in Proposition 1. Then $P$ has $k$ distinct
real roots. From (3.4) and Proposition 1, we have

$\frac{F_{k}}{G_{k}}+c_{1}\frac{F_{k-1}}{G_{k- 1}}+\cdots+c_{k-1}\frac{F_{1}}{G_{1}}+c_{k}(R-a)=0$ .

for some constant $a$ . Let $K=G_{1}\cdots G_{k}$ . Then we have

(3.6) $K\frac{F_{k}}{G_{k}}+c_{1}K\frac{F_{k-1}}{G_{k-1}}+\cdots+c_{k-1}K\frac{F_{1}}{G_{1}}+c_{k}K(R-a)=0$ .

If $\deg R=0,$ $M$ is an open portion of a plane. If $\deg R>0$ , then by (3.5)

we have

$\deg K(R-a)>\deg K\frac{F_{1}}{G_{1}}>\cdots>\deg K\frac{F_{k-1}}{G_{k-1}}>\deg K\frac{F_{k}}{G_{k}}$

which is impossible unless $P(T)=T^{2}+c_{1}T$ with $c_{1}\neq 0$ and $\Delta R=0$ , since the
minimal polynomial $P$ has $k$ distinct real roots. In this case, (1.1) and Proposi-
tion 1 imply

(3.7) $\Delta H=-c_{1}H$ .
Hence, by Proposition 2, we know that $M$ is either of l-type or of null 2-type.
If $M$ is of l-type, then either $M$ isa $n$ open portion of a sphere or $M$ is minimal.
It is easy to check that spheres are not of the polynomial kind and the only
minimal surfaces of revolution are open portions of planes and open portions
of catenoids. Since as remarked in \S 1, catenoids are also not of the polynomial
kind, we conclude that $M$ is of null 2-type. Consequently, by applying Pro-
position 3, we conclude that $M$ should be an open portion of a circular cylinder.
The converse of this is easy to verify. $\square $

4. Proof of Theorem 2.

Let $M$ be a surface of revolution of the rational kind. Then, without less
of generality, we may assume $M$ is parametrized by

$x(t, v)=(t\cos v, t\sin v, g(t))$



On Classification of Some Surfaces of Revolution of Finite Type 293

where $g(t)=G(t)/H(t)$ for some polynomial functions $G(t)$ and $H(t)$ . We may
assume $G(t)$ and $H(t)$ are relatively prime. We have

(4.1) $g^{\prime}(t)^{2}=Q(t)/R(t)$ , $Q=(G^{\prime}H-GH^{\prime})^{2}$ , $R=H^{4}$ .

It is easy to verify that $\deg Q=\deg R$ if and only if $\deg G=1+\deg H$. More-
over, in this case, we have $\deg Q=\deg R=\deg(Q+R)$ . Assume $M$ is of finite
type. Then, by Theorem 3 proved in \S 5, $M$ is either an open portion of a
plane or an open portion of a catenoid. Since, up to similarity transformations
on $E^{3}$ , a catenoid can be parametrized by

(4.2) $x(t, v)=(t\cos v, t\sin v, \cosh^{-1}t)$ ,

it is not of the rational kind. Hence, $M$ must be an open portion of a plane.
The converse is trivial. $\square $

5. Proof of Theorem 3.

Let $M$ be a surface of revolution parametrized by

(5.1) $x(t, v)=(t\cos v, t\sin v, g(t))$

with $g^{\prime}(t)^{2}=Q(t)/R(t)$ for some polynomial functions $Q(t),$ $R(t)$ . Without loss
of generality, we may assume that $Q(t)$ and $R(t)$ are relatively prime and $R(t)$

is a monic polynomial.

From (2.4) and (5.1) we find

(5.2) $\Delta=-\frac{R}{Q+R}\frac{\partial^{2}}{\partial t^{2}}-\frac{R}{t(Q+R)^{2}}\{Q+R-\frac{t(Q^{\prime}R-R^{\prime}Q)}{2R}\}\frac{\partial}{\partial t}-\frac{1}{t^{2}}\frac{\partial^{2}}{\partial v^{2}}$ .

From (5.2) we get

(5.3) $\Delta(t\cos v)=\frac{Q_{1}}{R_{1}}\cos v$ ,

with

(5.4) $Q_{1}=-2R(Q+R)+t(Q^{\prime}R-QR^{\prime})+2(Q+R)^{2}$ , $R_{1}=2t(Q+R)^{2}$ .

Moreover, by (5.2), (5.3) and (5.4), we may conclude inductively that

(5.5) $\Delta^{i}(t\cos v)=\frac{Q_{i}}{R_{i}}\cos v$ , $i=1,2,3,$ $\cdots$

for some polynomial functions $Q_{i}$ and $R_{i}$ . Moreover, if we put

(5.6) $\overline{Q}_{i}=Q_{i}^{\prime}R_{i}-Q_{i}R_{i}^{\prime}$ , $Q_{i}=(Q_{i}^{\prime}R_{i}-Q_{i}R_{i}^{\prime})^{\prime}R_{i}^{2}-2(Q_{i}^{\prime}R_{i}-Q_{i}R_{i}^{\prime})R_{i}R_{i}^{\prime}=$ ,

then we have

(5.7) $Q_{i+1}=-2t^{2}R(Q+R)Q_{i}-2tRR_{i}^{2}(Q+R)\overline{Q}_{i}=$
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$+l^{2}(Q^{\prime}R-QR^{\prime})R_{i}^{2}\overline{Q}_{i}+2(Q+R)^{2}Q_{t}R_{i}^{3}$ ,

(5.8) $R_{i+1}=2t^{2}(Q+R)^{2}R_{i}^{4}$ , $i\geqq 1$ .
Assume $M$ is of finite type, say of k-type. Let

$P(T)=T^{k}+c_{1}T^{k-1}+\cdots+c_{k-1}T+c_{k}$

be the minimal polynomial of $M$ given in Proposition 1. Then $P$ has $k$ distinct
real roots. From (5.5) and Proposition 1, we have

(5.9) $\frac{Q_{k}}{R_{k}}+c_{1}\frac{Q_{k-1}}{R_{k-1}}+\cdots+c_{k-1}\frac{Q_{1}}{R_{1}}+c_{k}t=0$ .

Let $K=R_{1}\cdots R_{k}$ . Then we have

(5.10) $K\frac{Q_{k}}{R_{k}}+c_{1}K\frac{Q_{k-1}}{R_{k-1}}+\cdots+c_{k- 1}K\frac{Q_{1}}{R_{1}}+c_{k}tK=0$ .

For simplicity, we put $q=\deg Q,$ $r=\deg R,$ $q_{i}=\deg Q_{i}$ , and $r_{i}=\deg R_{i}$ . We
divide the proof of the theorem into three separate cases.

CASE (i): $q>r$ .
In this case we have the following lemma.

LEMMA 2. If $q>r$ , then, for any $i\geqq 1$ , we have

(5.11) $r_{i}-q_{i}=2i-1$ .

PROOF OF LEMMA 2. From (5.4) we obtain $r_{1}=1+2q$ and $q_{1}=2q$ . Thus
(5.11) holds for $i=1$ .

Assume (5.11) holds for some $i\geqq 1$ . From (5.6) we have $\deg Q_{t}=q_{i}+r_{i}$ 1
and $\deg\overline{Q}_{i}=q_{i}+3r_{i}-2$ . Therefore, by (5.7) and (5.8), we may find

$q_{i+1}=2q+q_{i}+3r_{i}$ , $r_{t+1}=2q+4r_{t}+2$ .

This implies $r_{i+1}-q_{i+1}=r_{i}-q_{i}+2=2i+1$ . This proves the lemma. $\square $

By using Lemma 2 and (5.10) we can conclude that case (i) is impossible.

CASE (ii): $q<r$ .
In this case we have the following lemma.

LEMMA 3. If $q<r$ , then, for any $i\geqq 1$ , we have

(5.12) $r_{i}-q_{i}=2i-1+s$ ,
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where $s$ is a positive integer.

PROOF OF LEMMA 3. From (5.4) we obtain $r_{1}=1+2r$ and $q_{1}\leqq q+r$ . Let
$s=r_{1}-q_{1}-1\geqq r-q>0$ . Then $r_{1}-q_{1}=1+s$ . This proves (5.12) for $i=1$ .

Assume (5.12) holds for some $i\geqq 1$ . Then, by (5.6), we have

$\deg\overline{Q}_{i}=q_{i}+r_{i}-1$ , $\deg^{=}Q_{i}=q_{i}+3r_{i}-2$ .

Therefore, by (5.7) and (5.8), we get

$q_{i+1}=2r+q_{i}+3r_{i}$ , $r_{i+1}=2+2r+4r_{i}$ .
Consequently, we find $r_{i+1}-q_{i+1}=2+r_{i}-q_{i}=2(i+1)-1+s$ . This proves the

lemma. $\square $

By using Lemma 3 and (5.10) we can conclude that Case (ii) is also im-
possible.

CASE (iii): $q=r$ .
Let $m=\deg(Q+R)$ . We divide this case into three subcases:

CASE (iii-a): $q=r=m$ .
Without loss of generallty, we may assume the leading coefficients of $Q$

and $R$ are given by $a$ and 1, respectively.

We need the following lemma.

LEMMA 4. Assume $q=r=m$ . Then we have
(1) if $a\neq 4n(n+1)$ for every natural number $n$ , then

(5.13) $r_{i}-q_{i}=2i-1$ , $i=1,2,$ $\cdots$ .
(2) if $a=4n(n-1)$ for some natural number $n\geqq 2$ , then

(5.14) $r_{i}-q_{i}=2i-1$ , for $i\leqq n$

(5.15) $r_{i}-q_{i}=2i-1+s$ , for $i>n$ ,

where $s$ is a positive integer.

PROOF OF LEMMA 4. Since $q=r=m$ , we have

(5.16) $\deg R(Q+R)=2r$ , $\deg(Q^{\prime}R-QR^{\prime})\leqq 2r-2$ , $\deg(Q+R)^{2}=2r$ .
It is easy to see that the leading coefficient of $Q_{1}$ is $2a(a+1)$ which is not

zero. Therefore, by (5.4), we have $q_{1}=2r$ . Since $r_{I}=1+2r$ , formulas (5.13) and
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(5.14) hold for $i=1$ .
Assume $a\neq 4n(n+1)$ for any natural number $n$ and assume (5.13) holds for

$i\geqq 2$ . From (5.6) and (5.7), we see that $q_{i+1}\leqq 2r+q_{i}+3r_{i}$ . It is not difficult to
verify that the leading coefficient of $Q_{i+1}$ is 2 $\{1+a-(r_{i}-q_{i})^{2}\}a_{i}(1+a)$ , where
$a_{i}$ is the leading coefficient of $Q_{i}$ . Since $r_{i}-q_{i}=2i-1$ and $a\neq 4i(i-1)$ by as-
sumption, we obtain $q_{i+1}=2r+q_{i}+3r_{i}$ . Because $r_{i+1}=2+2r+4r_{i}$ , we find $r_{i+1}$

$-q_{t+1}=2+r_{i}-q_{i}=2(i+1)-1$ . This proves Statement (1).

For Statement (2), let us assume that $a=4n(n-1)$ for some natural number
$n\geqq 2$ . By the same argument as the proof of Statement (1), we obtain (5.14).

Since $a=4n(n-1)$ and $r_{n}-q_{n}=2n-1$ , we find $1+a-(r_{n}-q_{n})^{2}=0$ . Thus
$\deg Q_{n+1}<2r+q_{n}+3r_{n}$ . Let $s=2r+q_{n}+3r_{n}-\deg Q_{n+1}$ . Then we obtain
$r_{n+1}-q_{n+1}=(2+2r+4r_{n})-(2r+q_{n}+3r_{n}-s)=2+s+r_{n}-q_{n}=2n+1+s$ . This proves
(5.15) for $i=n+1$ . Formula (5.15) for $i>n+1$ can be proceeded in the same
way as Statement (1), now. $\square $

From Lemma 4, we see that (5.10) is impossible unless $c_{k}=0$ and $Q_{1}=0$ .
Since the minimal polynomial $P$ has exactly $k$ distinct real roots, this implies

$P(T)=T$ . Thus, $M$ is a minimal surface in $E^{3}$ .

CASE (iii-b): $q=r=m+1$ .
In this case, we may put

(5.17) $Q(t)=-t^{r}+A(l)$ , $R(t)=t^{r}+B(t)$ ,

where $A(t)$ and $B(t)$ are polynomials of degree $\leqq r-1=m$ and

(5.18) $\deg(Q+R)=\deg(A+B)=r-1$ , $\deg$ (Q’R-QR’)$=2r-2$ .

We need the following lemma.

LEMMA 5. If $q=r=m+1$ , then we have $r_{1}=q_{1}$ and there is a non-negative
integer $s$ such that $r_{i}-q_{i}=i+s$ for any $i\geqq 2$ .

PROOF OF LEMMA 5. From (5.4) and (5.18) we have $q_{1}=r_{1}=2r-1$ . Thus,

by using (5.6) we may obtain

(5.19) $\deg\overline{Q}_{1}\leqq q_{1}+r_{1}-2=4r-4$ , $\deg Q_{1}\leqq 8r-7=$ .

From (5.8) we find $r_{2}=10r-4$ . By applying (5.7) and (5.19), we get $q_{2}\leqq 10r-6$ .
Let $s=10r-6-q_{g}\geqq 0$ . Then we have $r_{2}-q_{2}=2+s$ .

Now, assume $r_{i}-q_{i}=i+s$ for some $i\geqq 2$ . The, by direct computation, we
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obtain from (5.7) that the degree of each term in the right-hand-side of $(5,7)$

is $\leqq 2r+q_{i}+3r_{i}-1$ . Moreover, by using $r_{i}-q_{i}>0$ , and by direct computation
of the coefficient of $Q_{i+1}$ in (5.7), we may conclude that $\deg Q_{i+1}=2r+q_{i}+3r_{i}-1$ .
Since $r_{i+1}=2r+4r_{i}$ , we obtain $r_{i+1}-q_{i+1}=r_{i}-q_{i}+1=\iota+1+s$ by (5.8). This
prove the lemma. $\square $

From Lemma 5 we see that (5.10) is impossible unless $c_{k}=0$ and $Q_{1}=0$ .
Because the minimal polynomial $P$ of $M$ has exactly $k$ distinct real roots, this
implies $P(T)=T$ . Thus, $M$ is a minimal surface in $E^{3}$ .

CASE $(iii-c)$ : $q=r>m+1$ .
In this case we may put

(5.20) $Q(t)=-t^{m+1}D(t)+A(t)$ , $R(t)=t^{m+1}D(t)+B(t)$ ,

where $D(t)$ is a polynomial of degree $r-m-1$ and $A(t),$ $B(t)$ are polynomials
of degree $\leqq m$ such that $\deg(A+B)=m$ . It is easy to see from (5.20) that

(5.21) $\deg(Q\prime R-QR’)=r+m-1$ .

We need the following lemma.

LEMMA 6. If $q=r>m+1$ , then

(5.22) $r_{i}-q_{i}=i(2+m-r)-1$ .

PROOF OF LEMMA 6. From (5.4) and the assumption, we have $q_{1}=r+m$

and $r_{1}=2m+1$ . Thus, $r_{1}-q_{1}=m+1-r$ , which shows that (5.22) is true for
$i=1$ .

Assume (5.22) holds for some $i\geqq 1$ . Then, from (5.6) and (5.21), we find

(5.23) $\deg\overline{Q}_{i}=q_{i}+r_{i}-1$ , $\deg Q_{i}\leqq q_{i}+3r_{i}-2=$ .

From (5.7), (5.8), (5.21) and (5.23), we may obtain $r_{i+1}=4r_{i}+2m+2$ and $ q_{i+1}\leqq$

$q_{i}+3r_{i}+r+m$ . Furthermore, by direct computation, we may see that the co-
efficient of $t^{qi^{+3r_{i}+r+m}}$ in $Q_{i+1}$ is a nonzero multiple of $(2r_{i}-2q_{i}+m-r)(q_{i}-r_{i})$ .
Since $q_{i}-r_{i}\neq 0$ and $2r_{i}-2q_{i}+m-r=i(2+m-r)-1+m-r<0$ , we get $q_{i+1}=$

$q_{i}+3r_{i}+r+m$ . Hence, $r_{i+1}-q_{i+1}=r_{i}-q_{i}+2+m-r=(i+1)(2+m-r)-1$ . This
proves the lemma. $\square $

As we did before, let $K=R_{1}\cdots R_{k}$ . Then we have

(5.24) $K\frac{Q_{k}}{R_{k}}+c_{1}K\frac{Q_{k-1}}{R_{k-1}}+\cdots+c_{k-1}K\frac{Q_{1}}{R_{1}}+c_{k}tK=0$ .
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From Lemma 6, we have

(5.25) $\deg K=\sum_{i=1}^{k}q_{i}+\frac{1}{2}k(k+1)(2+m-r)-k$ .

By applying Lemma 6 and (5.25) we obtain

(5.26) $\deg K\frac{Q_{i}}{R_{i}}=\delta-i(2+m-r)$ , $i=1,$ $\cdots,$
$k$ ,

(5.27) $\deg tK=\delta$ , $\delta=\sum_{i=1}^{k}q_{i}+\frac{1}{2}k(k+1)(2+m-r)-k+1$ .
(5.26) and (5.27) imply that if $r>m+2$ , (5.24) is impossible unless $k=1$ and
$c_{k}=0$ . Hence, in this case either $r=q=m+2$ or $M$ is minimal.

Consequently, by combining cases (i), (ii) and (iii), we conclude that either
$\deg Q=\deg R=2+\deg(Q+R)$ or $M$ is a minimal surface of revolution in $E^{3}$ .
The latter case occurs only when the surface is either an open portion of a
plane or an open portion of a catenoid. This completes the proof of the theo-
rem. $\square $
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