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UNIVERSAL SPACES FOR SONE FAMILIES
OF RIM-SCATTERED SPACES

By

S.D. ILIADIS

1. Introduction.

1.1. Definitions and notations. All spaces considered in this paper are
separable and metrizable and the ordinals are countable.

Let F be a subset of a space X. By Bd(F), CI(F), Int(F) and |F| we de-
note the boundary, the closure, the interior and the cardinality of F, respec-
tively. An open (respectively, closed) subset U of X’ is called regular iff U=
Int(CI(U)) (respectively, U=CI(Int(U))). If X is a metric space, then the dia-
meter of F is denoted by diam(F). A map f of a space X into a space Y is
called closed iff the subset f(F) of Y is closed for every closed subset F of X.

A compactum is a compact metrizable space; a continuum is a connected
compactum. A space is said to be scattered iff every non-empty subset has an
isolated point.

A space Y is said to be an extension of X iff X is a dense subset of Y.
A space Y is said to be a compactification of X iff ¥ is a compact extension
of X. Let Y and Z be extensions of X. A map = of ¥ into Z is called a
natural projection iff n(x)==x for every x=X. Obviously, if there exist a
natural projection of Y into Z, then it is uniquely determined.

A space T is said to be universal for a family A of spaces iff both the
following conditions are satisfied: (a) T€ A, (B) for every X< A, there exists
an embedding of X in 7. If ony condition (B) is satisfied, then T is called a
containing space for a family A.

A partition of a space X is a set D of closed subsets of X such that (a) if
F,, F,&D and F,#F,, then F;N\F,=0, and () the union of all elements of D
is X. The natural projection of X onto D is the map = defined as follows, if
xe X, then n(x)=F, where F is the uniquely determined element of D contain-
ing x. The quotient space of the partition D is the set D with a topology
which is the maximal on D for which the map = is continuous. (We observe
that we use the same notation for a partition of aspace and for the correspond-
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ing quotient space). The partition D is called upper semi—continuous iff for
every FeD and for every open subset U of X containing F there exists an
open subset V of X which is union of elements of D such that FSV CU.

Obviously, in order to define a oartition D of a space X it is sufficient to
define the non-degenerate elements of D. Let D’ be a subset of D (generally,
let D’ be a set of subsets of a space X). We denote by (D’)* the union of all
elements of D’.

An ordinal a is called isolated iff it has the form B+1, where 8 is an
ordinal. A non-isolated ordinal is called a limit ordinal (hence, the ordinal zero
is a limit ordinal).

Every ordinal a is uniquely represented as the union of a limit ordinal B
and of a non-negative integer m. In what follows, the ordinal 8 is denoted by
B(a) and the integer m is denoted by m(a). Also, by 7(a) we denote the
ordinal B+2m+min{B, 1} and by m*(a) we denote the integer m-+min{g, 1}.
The set {0, 1, ---} is denoted by N.

Let M be a subset of a space X. For every ordinal &« we define, by induc-
tion, a subset M¢* of M as follows: M®=M, M is the set of all limit points

of Min M. M®W=(M©@-)® if o>1 is an isolated ordinal and M“":p@ M

if @a>1 is a limit ordinal. The set M¢® is called a—derivative of M (See [K,],
v.l, §24. 1V).

We say that M has type <ea, and we write type(M)sa iff M“=@. If a
is the least such ordinal, we say that M has type a, and we write type(M)=a.
Obviously, type(M)=0 iff M=0.

We say that a scattered subset M has type a (respectively, <a) at the point
a=M and we write type(a, M)=a (respectively, type(a, M)<a) iff agg M®
and a= M for every B<a (respectively, ag¢&M®). (See [I;]).

We denote by com-type(a, M) (compact type of M at the point a) the mini-
mal ordinal 7 for which there exists a compactification K of M such that
type(a, K)=r. (See [I-Z]). By max(M) we denote the set of all points a of M
for which com—type(x, M)<com—type(a, M) for every x& M.

We say that M has locally compact type y (respectively, compact type 1)
which is denoted by loc-com-type(M) (respectively, by com-type(M)) iff 7 is the
minimal ordinal for which there exists a locally compact extension of M (re-
spectively, a compactification of M) having type 7. (See [I-Z]).

We observe that:

(1) A subset M of a space X is scattered iff there exists an ordinal a such
that type(M)<a.
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(2) Every scattered space is countable.

(3) A compactum is scattered iff it is countable.

(4) The type of a non-empty countable compactum is an isolated ordinal.

(5) There exist compacta having type a for every isolated ordinal a. (See
[M-S].

(6) The number of compacta having type a, where a is an ordinal, is
countable. (See [M-S]).

We denote by L,, n=1, 2, ---, the set of all ordered n-tuples ¢, --- #,, Where
7:=0 or 1,t=1, -, n. Also, we set L,={0} and L=\U%5-0L,. For n=0, by
i1 i, we denote the element § of L. We say that the element 7, -7, of L is
a part of the element j, - j, and we write ¢, -1, <j, - jm if either n=0, or
n<m and ¢,=j, for every t<n. The elements of L are also denoted by 1, 7,0,
etc. If i=4,---7, then by 10 (respectively, 11) we denote the element 7, --- 7,0
(respectively, 7, ---7,1) of L.

We denote by A,, n=1, 2, ---, the set of all ordered n-tuples 7, --- #,, Where
i1, t=1, -+, n, is a positive integer. We set A=\U%-,4,. The elements of /A
are denoted by &, 3, etc. Let a=i, -7, and f=j, - jn. We say that @ is a
part of B and we write a<p iff I<n<m and i,=J, for every t<n. Obviously,
if @, B, and a<j then a=j3. Also, for every @< A, the set of all elements
B A, such that @< j, is a countable non-finite set.

We denote by C the Cantor ternary set. By C;, where 1=i, - i,€ L, n=1,
we denote the set of all points of C for which the #'* digit in the ternary ex-
pansion, t=1, ---, n, coincides with 0 if 7,=0 and with 2 if 7;,=1. Also, we
set Cy=C. For every subset s of L,, n=0,1, ---, we set Cy=\U;jesC;. For
every point a of C and for every integer n=0, by i(a, n) we denote the uni-
quely determined element i=L, for which a=C;. For every subset F of C
and for every integer n=0, we denote by st(F, n) the union of all sets Cj,
ieL,, such that C;N\F#0. If F={a} we set si(F, n)=st(a, n). Obviously,
st(a, n)=Cjic.n>. If S is a subset of C, then the set SNC; is denoted by S;.

Let D be a partition of a subset S of C, i an element of L,, n=0,1, ---.
We set D(1)={d<D: d is not singletion}, D;={d=D: dN\C;#0, dC;;#0 and
dSCiUCun}, Do=VUier,Di. It is easy to see that: (a) D(1)=Uj-eDn, (B)
DiN\D;=0 if i, jeL and i#; and () DnN\D,=0 if m#=n.

A space X is called rim-finite (respectively, rational) iff X has a basis B of
open sets such that the set Bd(U) is finite (respectively, countable) for every
UeB.

We say that a space X has rim-type <a, where « is an ordinal and we
write rim-type(X)<ea iff X has a basis B of open sets such that type(Ba(U))
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<a, for every U=B. If a is the least such ordinal, then we say that X has
rim-type a, and we write rim-type(X)=a.

In (respectively, in [1,] and [/;]) the following definition is given: a
space K has the property of a-intersections (respectively, the property of finite
intersections) with respect to a family Sp of spaces iff the every X&Sp there
exists a homeomorphism 7y of X in K such that if Y and Z are distinct ele-
ments of Sp, then the set 7p(Y)Niz(Z) has type <a (respectively, the set
iy(Y)Niz(Z) is finite) (For the corresponding definitions of the present paper
see Section 5.1).

1.2, Some known results. Let a>0 be an ordinal. We denote by R(a)
the family of all spaces having rim-type <a. Natural subfamilies of R(a) are
the family R°°™(a) of all compact elements of R(a) and the family R°°"‘(a) of
all elements of R(a) which are continua.

Another subfamily of R(a) is the family R™‘™-°°™(a) defined as follows an
element X of R(a) belongs to RT™™-°°™(a) iff X has a basis B of open sets
such that for every U= B, the set Bd(U) is a compactum having type Za.

We denote by RF the family of all rim-finite spaces and by R the family
of all rational spaces.

In [[-Z] some new subfamilies of R(a) are given. These families are de-
noted by Ra) and Rf(a), a>0, £=0,1, ---. A space X belongs to Ri.(a)
(respectively, to R¥a)) iff X has a basis B={U,, U,, ---} of open sets such that
type(Bd(U,))<a and loc-com-type(Bd(U,))< a (respectively, com-type (Bd(U,))<a),
for every =0, 1, ---.

It is easy to see that R°°"(a)S R°™(a)S R™‘™°™(a)S R¥a)< - S R¥a)S

f(a)S R (@) -+ S R(a).

We observe that if type(M)=a, then by Lemma 1 of it follows that
M admits a compactification K having type <7(a). By the proof of this lemma
it follows that if «>0 and type(K)=7(a), theu K is the one-point compactifica-
tion of some locally compact axtension of M having type <7(a)—1.

From the above it follows that R:*¢*-!(a)=R(a) and hence, R%(a)=R*'(a)
=R(a) if k=2m*(a)—1.

We recall some known results concerning the above mentioned families of
spaces.

(1) Every element of RF has a compactification belonging to RF. (See
(K], [R.D.

(2) In the family RF there is no universal element. (See [N]).

(3) In the family R(a) there exists a universal element having the property
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of finite intersections with respect to any subfamily of R(a) whose power is
less than or equal to the continuum. (See [/;]).

(4) Every element of R™'™-°°™(g) has a compactification belonging to
R¢°™a), (See [1,]). Moreover, every element of R"!™-°°"(a) is topologically
contained in an element of R°°™!(a). (See [I,]).

(5) In the family R7‘™-°°™(q) there does not exist a universal element (See
[/:]). Hence, by (4), in the families R°°*(«) and R°°™(a) there do not exist
universal spaces.

(6) For the family R°°™(a) there exists a containing space belong to the
family R°"'(a+1). (This is a result of J.C. Mayer and E.D. Tymchatyn).

(7) For the family of all planar compacta having rim-type<a there exists
a containing planar locally connected continuum having rim-type<a-+1. (See
[IM-TT.

(8) In the family R%a), where a is an isolated ordinal and %2=0, .-, m*(a)
—1, there is no universal element. (See [[-Z]).

(9) For a family Sp of rim-finite spaces there exists a containing rim-finite
space (heving the property of finite intersections with respect to any subfamily
of Sp whose the power is less than or equel to the continuum) if and only if
Sp is a uniform family. (A family Sp of rim-finite spaces is called uniform iff
for every X&Sp there exists an ordered basis B(X)={U«X), U,(X), ---} having
the properties: (@) Bd(U(X)NBd(U«X))=0 if i+; and (B) for every integer
k=0 there exists an integer n(k£)=0 (which is independent from the elements
of Sp) such that for every x, ye\U*(Bd(U(X))), x+y, there exists an integer
J(x, ), 0=j(x, y)=<n(k), for which either xEU ., ,»(X) and y& X\CIlU;;. X)),
or yEU ez, (X)) and x& X\CI(U;», (X)) (See [1,]).

(10) In [G-], for a given subfamily Sp of R*“™(a), necessary and sufficient
conditions are given for the existence of a containing space (having the pro-
perty of a-intersections with respect to any subfamily of Sp whose power is
less than or equal to the continuum) belonging to the family R7!™-co™(q).

(11) In the family R of all rational spaces there exists a universal ele-
men3 having the property of finite intersections with respect to the subfamily
of all rational continua. (See [/;]).

1.3. Results. In the present paper we study the family R%(a), where
a>0 and k=0, ---, m*(a)—1. We construct a universal element K of this
family as a subset of another space T. For the construction of these spaces
we need in two “kinds” of countability.

In Section 2 starting with some properties of scattered spaces we prove
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the following theorem: every element of R%(a) admits a compactification hav-
ing rim-type <a-+k-+1. For the proof of this theorem, we construct for every
Xe R%(a) (See Lemma 2.4) an extension X with a basis B()? ) whose elements
have boundaries with some special properties. These properties also provide us
with the above mentioned two “kinds” of countability.

In Section 3 we consider a family A of pairs (S, D), where S is a subset
of C and D is an upper semi-continuous partition of S such that D, 1L, is
homeomorphic to an element of a given family M of scattered compacta. The
elements of A are called M-representations. Using the M-representations we
construct a space 7 which will be used in Section 5. An important fact is the
countability of the family M (this is the first “kind” of countability).

In [1;] we have considered a set of some specific subsets of a given scat-
tered compactum M: a subset X of M is such a subset iff M \MPePc X, We
have proved that if in the above set we consider the equivalence relation:
X,~X, iff there exists a homeomorphism f of X, onto X,, then the number of
equivalence classes is countable. In Section 4 of the present paper we improve
this result by proving that if in the set of all pairs (X, M), where M is a com-
pactum, type(M)=a and M MO X we consider the equivalence relation
(X, M)~(X,, M,) iff there exists a homeomorphism f of M,; onto M, such that
f(X))=X,, then the number of equivalence classes is countable (this is the
second “kind” of countability).

In Section 5 using the properties of the extension nentioned in Lemma 2.4
we give the notion of a c-extension of elements of the family Ri.(a). For
every element of this family we consider a fixed c-extension. By a standdard
manner, we correspond to every such extension an M-representation, where M
is a countable set of scattered compacta. The space 7 constructed in Section
3 (for the above M-representations) has rim-type<a-+k+1 and it contains topo-
logically the fixed c-extensions. Using the result of Section 4, the construction
of the space 7 can be done in such a manner that a subset K of T has fype
<a and contains topologically every element of R}.(a). Thus, the space T is
a containing space for the family of fixed c-extensions and simultaneously the
subset K is an universal element of R%(a). The main result of this papers is
Theorem 5.3.

We note the following corollaries of the main results: In the family R}.(a)
there exists a universal element having the property of a}.-intersections (See
Definitions 5.1.) with respect to any subfamily of R}.(a) the power of which is
less than or equal to the continuum.

Also, for the family R*a), there exists a containing space belonging to the
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family R%.(a) and, hence, there exists a containing continuum having rim-type
<a—k+1. In particular, for £=0 (since R*“™(a)S R¥a)) we have: There
exists a continuum having rim-type<a-+1 which is containing space for all
compacta having rim-type<a. (This is a result of J.C. Mayer and E.E. Tym-
charyn).

2. Extensions of elements of R%.(a).

2.1. LEMMA. Let M be a scattered space having type a=p(a)+m(a)>0. Let
X be a zero-dimensional metric compactification of M. Then, there is a com-
pactification K of M for which the natural projection m of X onto K exists and
such that:

(1) type(K)=com-type(M) (and, hence, by Lemma 1 of [I-T], type(K)<y(a)).

(2) type(M\U(K\K$ M) =q,

(3) loc-com-type(M)=loc-com-type( M\J(K\KB»)) ana

4) if K={zy, z,, -}, then ilir&(dz_'am(ﬂ”‘(zi)))zo.

PROOF. We prove the [emma by induction on the ordinal com-type(M).
The proof can be done in such a manner that besides properties (1)-(4) of the
lemma the following properties will be also true:

(5) for a given >0, diam(n~'(z))<e for every z= K, and

(6) for every a=M, type(a, K)=com-type(a, M)

Let com-type(M)=1. We set K=M. Then, K is a compactification of M
having properties (1)-(6).

Suppose that for every space M for which 1<com-type(M)<7y there exists
a compactification K of M having properties (1)-(6). Since for every scattered
space M, com-type(M) is an isolated ordinal, we may suppose that 7 is also an
isolated ordinal.

Let M be a space such that com-type(M)=y and ¢>0 be a number. Suppose
that type(M)=a. By Lemma 1 of it follows that S(a)=B().

First we suppose that max(M) is infinite. By Lemma 2.4 of it follows
that com-type(a, M)=y—1, for every a=max(M).

Let F=Cl(max(M))\max(M). (The closure is considered in the space X).

Let F, -+, F, be open and closed non-empty subsets of F such that (a) F=
FiJ - UF,, (B) F;NF;=0 if i+J, and (7) diam(F;)<e for every i=1, -, n.
There exist open and closed subsets U;;, =1, -, n, j=1, 2, ---, of X such

that: (a) Un\VUn\U - VUn=X, B) Uig+nEUs, 1) UiNUigen)\max(M)
#0, (0) UunNU; =0, if i#j, and (e)"\5=iUy=Fs.
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Let My=U ;jNUij)M, i=1, -, n, j=2,2, . Obviously, max(M;;)=
M;;Nmax(M) and, hence, the set max(M;;) is finite and com-type(a, M;))=7r—1
for every ac=max(M;;). By Lemma 2.4 of [[-Z], com-type(M;;)=r—1.

Hence, by induction, there is a compactification K;; of M;;, i=1, ---, n, j=
1, 2, -+, for which the natural projection m;; of U;\U,;.1> onto K;; exists and
such that properties (1)-(6) are true, where in place of ¢ in property (5) we
take the number ¢/j.

Let K=(\U; ;Ki;)\U{F,, -, F,}. We topologize K as follows: a subset V
of K is an open subset iff V has the following properties: (a) the set VNKjyj,
i=1, .-, n, j=1,2, ---, is an open subset of K;;, and (8) if F;V, then V con-
tains all but finitely many of the sets K;;, j=1,2, ---.

Let = be the map of X onto K defined as follows: if xeU;;\U;¢+1, then
n(x)=ry(x) and if xF;, i=1, -+, n, then n(x)=F;.

It is easy to see that K is a compactification of M and = the natural pro-
jection of X onto K.

Since K;; is an open and closed subset of K and type(K;)=<r—1 we have
type(F;, K)=r and, hence, type(K)=com-type(M)=y, that is, property (1) is
satisfied.

By induction, type(M;\J(K;NK{#“")<a. Hence, since M\U(K\K @)=
H(M”U(Ki,-\Kif“’”)) we have type(M\U(K\NK®©@M)=q, that is, property (2)

is satisfied.

Since the subset K\{F,, ---, F,} is a locally compact extension of
MU(KNK$@Y  and  type(K\{F,, ---, F,})=r—1 we have loc-com-type
(MU(K~K®@)<r—1. Since the set max(M) is infinite and com-type(M)=y,
by Lemma 2.4 of it follows that loc-com-type(M)=y—1, that is, property
(3) is true.

Properties (4) and (5) follow by the construction of K.

For every x& M;; we have type(x, K;;)=type(x, K)=com-type(x, M). Hence,
property (6) is also true.

Now, we suppose that max(M) is finite. Then, by Lemma 2.4 of [I-Z],
com-type(a, M)=y, for every ac=max(M). Let max(M)={a,, -+, a,} and let
Uy, i=1, -, n, j=1,2,---, be open and closed subsets of X such that: (a)
Uil - UUn=X, (B) Ui2vSU4j, ) UiNUigan#0, (0) UaNU;5=0, if i+#7],
and (e) NUs={a.}.

Let M;j=UiNU;ii+y)N\M. Then, either com-type(M;;)<r—1, or com-
type(M,;)=7r and the set max(M,;) is infinite. Hence, by induction, there is a
compactification K,; of M;; (for which the natural projection my; of Ui \Ujigsn
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onto K;; exists) having properties (1)-(6).
Let K and n be the compactification of M and the natural projection of X
onto K, respectively, constructed from K,; in the same manner as in case,

where the set max(M) is infinite (replacing the set {F;, :--, F,} by the set
max(M)={a,, -+, a,} and the subset F;, in the definition of x, by the subset
{a;} of X).

By construction, type(K;;)<y. On the other hand, for a given 7, there exists
an integer j, such that type(K;;)<r—1 for every j=j.. (See Section 2.2.4 of
[I-Z]). Hence, type(a;, K)=y. Thus, type(K)=com-type(M)=y. Hence, pro-
perty (1) is satisfied.

Since the subset K;; of K is an open subset and since type(a;, K)=7, pro-
perty (6) is also satisfied.

For the proof of property (2) it is sufficient to prove that (M\U(K\ K (Fc@ny)Bcan
=M@ Obviously, ME@OS(MUKNK®w@)), Let x=(MU(KNK Bcan)ybcar
Then, it is clear that x¢& K\K%¥@>  Hence, x&M. If x&M\MP@> then
com-type(x, M)<B(a) and, therefore, type(x, K)<B(a), that is, xe K\K®#E@»
which is impossible. Hence, x< M and property (2) is satisfied.

Since the set max(M) is finite, by Lemma 2.4 of it follows that loc-
com-type(M)= com-type(M)=type(K). Hence, loc-com-type( MM J(K\K @)=
type(K) and property (3) is satisfied.

Since for a fixed 7, l}l_r.rg (diam(U ;;~U ;¢;+15))=0, properties (4) and (5) follow

by the construction of K.

2.2, LEMMA. Let M be a locally finite union of closea subset M,, M,, -
such that loc-com-type(M;)<a, i=1, 2, ---. Then, loc-com-type(M)<a.

PROOF. Let a=M. There exist an open neighbourhood U/ of a in M and
a set {n,, -, n.} of integers such that U=UNM,) --- JUNM,,). Since,
loc-com-type(M,,)<a we have loc-com-type(UNM,)<a, i=1, ---, L.

By Theorem 2.5 of it follows that loc-com-type(U)<a. Hence, by
Lemma 2.4 of [I-Z], com-type(a, U)=com-type(a, M)<a. By the same lemma
we have loc-com-type(M)Za.

2.2.1. COROLLARY. Let X< R%(a) (See the Introduction). Then, every pair
of disjoint closed subsets of X can be separated by a subset M such that type(M)
<a and loc-com-type(M)<a+k.

The proof follows by Lemma 2.2 and Lemma 4 of [I-T]. This corollary
is used in the proof of the following Lemma 2.3.
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2.3. LEMMA. Let X< R%(a) anda B={U,, U,, ---} be a basis of open sets of
X such that for every i, type(Bd(U;)<a and loc-com-type(Bd(U)<a+k. Let
F be the family of all pairs An=Uy,,, U;,) such that CiU,,)<U,, and U,,,
U;,=B. Let D denote the set of triadic rationals in the open interval (0, 1).
Then, there exists a sequence (f ) of continus functions f,: X—[0, 1] such that
for integers m, r, m#r and d< D

(1) fa(CUU,.,)»N=1{0},

2) fa(XNU;,)={1},

(3) type(fR(d)<a and loc-com-type(fr(d)<a+k,

(4)  Bd(f=([0, d))=Bd(fz((d, 1])=fz(d),

) f(fR(d)ND=0, and

(6) [ (fR(d) is a closed subset of [0, 1] of dimension <0.

This lemma, except condition 3, is the same as Lemma 7 of and it
is proven similarly.

2.4. LEMMA. Let X Ri(a). There exist an extension X of X and a basis
B()?)——-{Vo, Vi -} of open sets of X such that :

(1) the set Bd(V,), i=0,1, ---, is a compactum,

2) V,=Int(Cl(Vy), i=0,1, ---,

(3) Bd(VINBA(V ;)=0 if i+#],

4) type(Bd(V)<a+k+1,

(5) type((Bd(V )N X)U(BA(V INBA(V ) <a and

(6) loc-com-type((Bd(V YN XN N BAV IN(BA(V ) BeON<a+k.

The proof is similar to the proof of theorem 8 of [I-T]. The extension X
is constructed in the same manner as the space Z is constructed in the proof
of Theorem 8 of [I-T]. Instead of Theorem 3 of [I-T] which was used in the
proof of Theorem 8 of we have use Lemma 2.1.

2.5. THEOREM. Let X=Ri(a). Then, X admils a compacification having
rim-type<a+k+1.

This theorem is proved using properties (1)-(4) of extension X of X of
Lemma 2.4 and Theorem 2 of [/,].

3. Construction of specific spaces.

3.1. DEFINITIONS AND NOTATIONS. Let M be a scattered space. A finite
cover w of M is called a decomposition iff every element of w is an open and
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closed subset of M and the intersection of any two distinct elements of w is
empty.

A decomposition @ is a subdivision of a decomposition w’ of M iff every
element of @ is contained in an element of w'.

A sequence w", n= N, of decompositions of M is called a decreasing sequence
of decompositions iff (a) the decomposition w™*!, n< N, is a subdivision of the
decomposition w" and (8) the set of all elements of all ", n=N, is a basis of
open sets of M.

In what follows by M we denote a countable set of scattered compacta.
We suppose that two distinct elements of M are not homeomorphic.

Also, we suppose that for every MeM there exists a fixed decreasing
sequence of decompositions of M. The »n‘* decomposition of this sequence is
denoted by M™, nEN.

Let xeM=M and n=N. We denote by F(n, x) the element F of M™ for
which xeF.

A pair g=(S, D) is called an M-representation iff: (a) S is a subset of C,
(B) D is an upper semi-continuous partition of S, (7) every element of D(1)
consists of exactly two points, and (d) for every g= N, D, is homeomorphic to
an element of M.

In Section 3, we denote by A a family of M-representations the power of
which is less than or equal to the continuum. We suppose that for distinct
elements g=(S, D) and f=(S’, D’) of A it may happen that S=S’ and D=D".

For every element g=(S, D) of A and for every g N by M,(g) we denote
the element of M which is homeomorphic to D, and by ¢(g) a fixed homeo-
morphism of M,(g) onto D,.

Let A’ be a subfamilly of A such that for some g=N, My (g)=Myf) for
any elements g, f of A’. In this case the element M,(g) of M is also denoted
by M,(A’) and we shall say that the element MyA’) of M is then determined.

For any subfamilly A’ of A and for any subset C’ of C we denoted by
C’'x A’ the subset of C’'X A’ consisting of all elements (a, g) of C’XA’ such
that if g=(S, D), then a<S.

A decomposition 2 of A is a countable set of subfamilies of A such that:
() the intersection of any two distinct elements of £ is empty and (8) the
union of all elements of 2 is A.

A decomposition 2 is a subdivision of a decomposition 2’ of A iff every
element of 2 is contained in an element of £’.

A sequence 27, n< N, of decompositions of A is called a decreasing sequence
af decompositions iff : (a) Q"*! is a subdivision of £, n= N, and (B) if g and
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f are distinct elements of A, then there exists an integer n such that g and f
belong to distinct elements of 27,

Since the power of A is less than or equal to the continuum, the existence
of decreasing sequence of decompositions of A is easily proved.

In what follows, we suppose that there exists a fixed such sequence of A
denoted by £2", n=N. Moreover, without loss of generality, we may suppose
that for every E=®™ and for every ¢, 0<¢<n, the element M, FE) is deter-
mined.

3.2. LEMMA. For every integer mc N there exist :

(1) A decomposition Am={AT:r&l(m)} of A which is a subdivision of Q™
(hence, for every r<I(m) and for every integer q, 0=<q=<m, the element M (AT)
of M is determined). In what follows, we aenote by r an arbitrary element of
I(m) and by q an integer such that 0<g<m.

(2) An integer n(q, A™)=m (denoted also by n(q, m, r)).

(3) An integer n(AT)>m (denotea also by n(m, r)).

(4) A subset s(F) of Lnocm. »> for every FeE(M(AT))*@™ 7 (denoted also by
s(g, m, r, F)).

(5) A subset U(F) of CX A for every FE(My(AT)*@™ ™ (denoted also by
U(g, m, r, F)) such that:

(6) If m=1, then A™ is a subdivision of A™"' (hence, the sequence A°, A, ---
is a decreasing sequence of decompositions of A).

7 If m=1, telim—1) and ATS A, then n(m, r)>n(m—1, 1).

(8) If tel(q) and AT S A}, then n(g, m, r)=n(q, q, t)+m—q.

9) If m=1, telim—1), f, geATS APl and xe Fe(M(AT)*™ ™™ then
st(Pm()x), n(m—1, )=st((Pu(NF)*, n(m—1, 1)).

10) If m=1, q<m, tslim—1), g=(S, D)eATSAr', deD, Fe
(Mg)re@em™m  Qe(Mg)r @™, FSQ and dNst(@(g)F))*, n(m, r))+0,
then d S st((P(8X@)*, n(m—1,1)).

(11) If g€ AT and FEMAT)* @™ ™, then st((P(g)XF)*, n(m, r))=Csr>.

(12) U(F)=Csry X A™ for every FE(M(AT) @™ ™,

(13) If Fe(M,(AT)* ™™ and QE(M(AT)H* ™™ where 0Kk <gq, then
UFNU(Q)=9.

(14) If F, Qe(M (A7) ™" ana F+#Q, then UF)NU(Q)=0.

PROOF. We prove the lemma by induction on integer m.
Let m=0. Let E€Q°’. For every g=FE there exists an integer n(g)>0
such that if F, Qe(Md(g))°, then st((Po(8)F)*, n(gXNst(P(gNQ)*, n(£))=0.
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We observe that if f, g&Q, then M f)=Mg).

Now, we define the decomposition A° of A as follows: two elements g and
f of A belong to the same element of A° iff there exists an element E=Q°
such that: (a) g, f€E, (B) n(g)=n(f)and (1) st((¢p«(g)F))*, n(g))=st((Po(fIF))*,
n(f)) for every F=(My(8))'=(M(f)).

Obviously, A° is a countable set and by the construction, A° is a subdivi-
sion of 2°. Let A°’={A%: rsI(0)}.

For every r=1(0) we set n(0, A2)=0 and n(A?)=n(g), where g A2. Ob-
viously, the integer n(A?) is independent from g= A2.

For every F&(M)AL)® we denote by s(F) the set of all elements i of
Ly, > for which CiSst((Po(@)F))*, n(g)), where g A?. Obviously, the set
s(F) is independent from g= A¢J.

Finally, we set U(F)=Cszy X A? for every FE(M(AL))°. It is easy to see
that properties (8), (11), (12) and (14) of the lemma are satisfied.

Suppose that the lemma is proved for every m, 0<m<p. We prove the
lemma for m=2p.

Let EcQ?, tel(p—1) and g=(S, D) ENAP~'. Since the map ¢,(g) is
continuous, for every x=M,(g) there exists an open neighbourhood O(x) of x
in Mpy(g) such that for every y=O(x) we have st(¢,(g)(x), n(p—1, t)=
st(¢o(g)y), n(p—1,1). (For example, we can suppose that O(x)=
(Do) 1 (O(Pp(g)x)), where O(¢pp(g)x)) is the set of all elements of D, which
are contained in the open set st(¢,(g)(x) ‘n(p—1, t)) of C). The set of all such
neighbourhoods O(x) is an open cover of M,(g). Hence, since M,(g) is a com-
pactum there exists an integer no(g)=0 such that every element of (M,(g)"o®
is contained in the neighbourhood O(x) for some x.

There exists an integer n,(g)=0 such that st((¢(@)F)*, n,(gNNst((P(8NQ))*,
n.(g))=0 for every F<=(M,(g))** ?-+D*+1 and for every Q& (M g))*@?-1.H+1
where 0<k<p—1, 0<¢g<p—1 and either k+¢q ork=q and F+#Q.

Also, since D is an upper semi-continuous partition of S, there exists an
integer n,(g)=0 such that if 0<¢<p—1, deD, Fe(Mg)"@w?r-1b+ Q<
(M(g)rer-t0* FSQ and dNst((PQ)F)*, ny(g)+#0, then dSst((P(NQN*,
n(p—1, ).

There exists an integer n:(g)=0 such that if F and @ are distinct elements
of (Mp(g))"®, then st((¢p(&)F))*, ns(gNNst((Pp(gXQ))*, ns(g))=0.

Finally, there exists an integer n,(g)=0 such that if 0<¢<p—1, Fe
(M(g)r@?-10%1 Q = (My(g)*®, then st(P(QXF)*, nignMst(¢(gXQ))*,
n(£))=0.

Let n(g)=max{n.(g), ng), nig), ng), p+1, n(p—1, H +1}.
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We now define the decomposition A?. Let g, fA. The elements g and
f belong to the same element of AP iff there exist an element E of 27 and an
element t<=I(p—1) such that: (a) g, fEENAP' (hence, M (g)=M,f) for every
7, 0=g¢=p), (B) n(@=n(f), ) nd@=nf), (@ if 0=¢g<p—1 and Fe
(M@)P @ P04 = (M(f)rer-10% then st((P(g@)NF)¥*, n(g)) = st((Po( fIF*,
n(f)), and (e) if Fe(My(g)"® =(My(f)*, then st((¢(g)F))* n(g)=
st(o(FIFN*, n(f)).

It is easy to see that the set A” is countable. Let A?P={A2:rel(p)}.

Property (6) of the lemma follows by the definition of the decomposition AP”.

Let r<I(p). We define the integers n(p, ») and n(g, p, ) for 0=<¢g=p
setting n(p, r)=n(g), n(p, p, r)=n«g), where g A2 and n(q, p,r)=n(g, p—1,1)
+1 if 0<g<p—1, where tel(p—1) such that APS AP-'.

Property (7) of the lemma follows by the definition of the number n(g).
Also, if tel(p—1), g<p—1 and e=1(q) Such that AFS A" 'S A%, then we have
n(g, p, r)=nlg, p—1, t)+1=n(q, q, e)+p—1—q+1=n(q, q, e)+ p—¢q, that is, pro-
perty (8) of the lemma is satisfied.

Property (9) of the lemma follows by the definition of the integer n.(g)
(considering that n(p, p, r)=n«g)) and by property (¢) of the definition of the
set AP (from which it follows that st((¢,(g)F)*, n(p—1, t)=st((¢(f)F))*,
n(p—1, 1)).

Property (10) of the lemma follows by the definition of the integers n,(g)
and n(g) (considering that n(q, p, r)=n(q, p—1, t)+1).

The set s(F), where Fe(My(AR)*@? ™ s defined as follows: an element i
of L, - belongs to s(F) iff CiSst((Q(g)F))*, n(p, r)), where g=A2. By
properties (d) and (e) of the definition 2, the decomposition A” it follows that
s(F) is independent from g< A2,

Property (11) of the lemma follows immediately from the above definition
of the set s(F).

The set U(F), where FeE(M(A?)*@ P ™ is defined setting U(F)=C,p, X AP.
Then, property (12) of the lemma is clear.

Finally, properties (13) and (14) of the lemma follows by the definition of

the integers n.(g), ns(g), n«g) and n(g) and the definition of the sets s(F) and
U(F).

3.3. NoTATIONS. For every ¢g=N and g A we denote by r(g, g) the ele-
ments t=I(g) for which g AL

Let me N and r<I(m). We denote by s(m, r) the union of all sets s(q, m, r, F),
where 0=¢=m and FE(M(AT))* @™ >, Obviously, s(m, ¥)S L,cm.r>.
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Let meN, rel(m) and xe M, (AT). Obviously, if (a, g)eCx A¥, then
g= AT and M, (AT)=M,(g). We denote by d(x, m, r) the set of all elements
(a, g)€CX AT for which ¢n(g)x)=a. We denote by T(1) the set of all sub-
sets of CxXA of the form d(x, m,r). By T we denote the union of the set
T(1) and the set of all singletons {(a, g)}, where (a, g) belongs to C XA and
does not belong to any d(x, m, r)=T(1).

Let d(x, m,r) be a fixed element of T(1) and let k= N. We denote by
U(d(x, m, r), k) the union of all sets of the form U(m, m+=£k,t, F), where t<
I(m+k) such that AP**S A7 and x Fe(M(Aptr))rm mik b

Since M, (AP**)=M,(A?) and by property (8) of Lemma 3.2, n(m, m+£k,t) .
=n(m, m, r)+k we have (Mp(APT*)nmmtk. O (M_(AT))*¢m-m. 7+ This means
that F is independent from the elements ¢ of I(m+ k) for which APlr**S AR,

We observe that for every yeF we have U(d(x, m, r), k)=U(d(y, m,r), k).

We denote by U the set of all sets of the form U(d, k), where d=d(x,m,r)
eT(1) and k= N.

Let meN, r&lim) and 1€ L,cm >, such that i¢&s(m, r). Then, we set
Vi, m, r)=C;XAT". We denote by V the set of all sets of the form V(i, m,r).

REMARKS. It is not difficult to prove that:

(1) For every d(x, m, r)&T@1), d(x, m, r)SCxX AT,

(2) If ge AP and d(x,m,r)eT(1), then d(x,m,r)N(C X {ghH=¢n(g)Xx)X {g}
#0.

(3) For every d=T(1) and k=N, dcU(d, k).

(4) For every d(x, m, r)&T(1) and k&N, U(d(x, m, r), R )SCX AT,

(5) Foi every d=T(1) and k=N, Ud, k+1)EU(d, k).

6) If xeFe(Mu(A®)*™ ™™ then U(d(x, m, r), 0)=U(m, m, r, F).

(7) If telim+k), APT*CS AT and xcFe(Mu(Apth)romm+k.0  then
Uld(x, m, r), EINCXAPM®)=U(m, m+k, t, F).

8) If V(i, m, eV and d(x, q, HeT(1), where 0<¢g<m, then V(i, m, r)N
d(x, q, t)=0.

9) If di, d,=T(1) and d,+#d,, then d,Nd,=0.

(10) The union of all elements of T is the set C X A.

3.5. LEMMA. Let d=d(x, m, NeT(1) and U=U(d, n,)eU, where d,=
d(y, my, r)&T(). The following are true:

(1) If dSU, then there exists an integer n=0 such that U(d, n)EU.

(2) If dNU=0, then there exists an integer n=0 such that U(d, n)N\U=0.

(3) If dNU+#0 and dN{(C X ANU)#0, then there exists an open and closed
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neighbourhood O(x) of x in ML (A™) such that d(z, m, ¥)N\U #0 and d(z, m, r)N
(CXANU)#D for every z=0(x).

ProoF. (1) By properties (1)-(4) of Remarks 3.4 it follows that ATS ATL.

First we suppose that m<p, where p=m,+n,. Let t be an arbitrary ele-
ment of I(p) such that APSATNAT: and let F=F(n(m, p, 1), x) and F,=
F(n(m,, p, 1), y).

Suppose that either m#m, or m=m, and F+F,. By properties (13) and (14)
of Lemma 3.2 we have U(m, p, t, F)NU(m,, p, t, F,)=0.

Obviously, dN\(C x AP)+0 (See property (1) of Remarks 3.4) and since dSU
we have dN\(C X AP)SUN(C x AP).

On the other hand, UN(C X A?)=U(m,, p, t, F\) (See property (7) of Remarks
3.4) and dN\(C X AP)SU(m, p, t, F) (See properties (6) and (7) of Remarks 3.4).
From this follows that (dN\(C < AP))N\(UN(C X AP))=0 which is a contradiction.

Hence, m=m, and F=F,. Setting n=n, we have that U(d, n)=U(d,, n,),
that is, the integer n=n, is the required integer.

Now, let m,+n,=p<m. Let esl(m—1) and t=I(p) such that ATS A-1C
APS AT and let F=F(n(m, m, r), x) and F,=F(n(m,, p, t), y).

We have U(d,, n)N\(C X AP)=U(m,, p, t, F,). Since dSCXATSC X AP we
have that dSU(m,, p, t, F1)=C,X AP, where s=s(F,). Hence, st(¢n(g)(x), n(p, 1))
cC, for every g AT,

Since n(m—1, e)=n(p, t) (See property (7) of Lemma 3.2) we have that
stigm(g)x), n(m—1, )< st(Pm(g)x), n(p, t)). By proyerty (9) of Lemma 3.2 it
follows that st((¢m(g)F)*, n(m—1, e))SC,. By property (11) of Lemma 3.2 we
have that Cs~SC,. Hence, by property (12) of Lemma 3.2, U(m, m, r, F)=
Csem XATPSC,Xx AP=U(m,, p, t, F,)&U. Obviously, U(m, m, r, F)=U(d, 0) (See
property (6) of Remarks 3.4). Hence, the integer n=0 is the required integer.

2) If APNAT!=0, then by properties (1)-(4) of Remarks 3.4 it follows
that for every neN, U(d, n)©\U(d,, n,)=0. Hence, we can suppose that
ATNATL#0.

Let m<p, where p=m,+n, and let ¢, F and F, be the same as in the cor-
responding part of case (1).

If m=m, and F=F,, then r=r, and dSU which is a contradiction. Hence,
either m+#m,, or m=m, and F+F,.

In both cases, by properties (13) and (14) of Lemma 3.2 we have that
U(m, p, t, FYNU(m,, p, t, F1)=0. Since U(d, p—m)N(C X AP)=U(m, p, t, F) and
Uld,, n)N\(C X AP)=U(m,, p, t, F;) and since ¢ is an arbitrary element of I(p)
for which APS ATNAT! we have that U(d, p—m)NU(d,, n,)=0, that is, the
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integer n=p)—m is the required integer.

Now, let p<m, hence, ATS AT: and let e, ¢, ' and F, be the same as in
the corresponding part of case (1).

We have U(d,, n,))\(C X AP)=U(m,, p, t, F,)=C;xX AP, where s=s(F,). Hence,
(Csx AP)Nd=0. This means that for every g€ A7, st(¢n(g)x), n(p, tHNCs=0.
Since n(m—1, e)=n(p, t) (See property (7) of Lemma 3.2) we have st(¢m(g)(x),
n(m—1, p)H)MCs=90.

By property (9) of Lemma 3.2 it follows that st((¢n(g)(F))*, n(m—1, e))N\C;
=0. Since n(m, r)>n(m—1, ¢) we have that st((¢n(g)F)*, n(m, r))N\C;=0, that
is, CscrmMCs=0.

Thus, (Cscry X ATIN(Cs X AP)=0, that is, U(m, m, r, F)N\U(m,, p, t, F1)=0.
Hence, U(m, m, r, F)N\U(d,, n,)=0, that is, U(d, 0)N\U(d;, n,)=0 and n=0 is
the required integer.

(3) It is easy to see that APMAT+#0. Let m<p, where p=m;+n, and
let t€1(p) such that APS AT and APS AT}, Let F and F, be the same as in
the corresponding part of case (1). As in that case we prove that if m=m;
and F=F,, then dSU and if either m+#m, or m=m, and F+F,, then dN\U=9,
which is a contradiction.

Hence p<m. Then. ATS ATi. Let e, ¢, F and F, be same as in the cor-
responding part of case (1).

We have UN(C X AP)=U(m,, p, t, F,). Since dSCXATSCX A} we have
dNU(my, p, t, F1)#0 and dN{(C x ANU(m,, p, t, F1))+0. Moreover, if (a, g)=
dN(C X ANU(m,, p, t, F))), then (a, g)&U.

There exist elements g, and g, of AT such that ¢n(g)(x)NC;+#0 and
On(g@)(X)N(CNCs)#0, where s=s(F,). Since n(m—1, e)=n(p, t) there exist ele-
ments 1, and 7, of C,cm-1,0 such that C; SC,, C;,SC\Cs, ¢u(g)(x)NCi,#0
and ¢m(g:)X(x)NCi,#0.

By property (9) of Lemma 3.2 it follows that for every z&F we have
Om(2:)(2)NC3,#0 and ¢n(g.)(2)N\Ci,#0. This means that d(z, m, r)NU(m, p, t, Fy)
#0 and d(z, m, rYN(CXANU(m,, p, t, F1)#0, that is, d(z, m, r)NU=+0 and
d(z, m, YN(C X ANU)+#0. Hence, the neighbourhood O(x)=F is the required
neighbourhood of x in M,(A7).

3.6. LEMMA. Let d=d(x, m, r)&T1) and V=V (i, p, )eV. The following
are true:

(1) If dEV, then there exists an integer n=0 such that U(d, n)SV.

(2) If dN\V =0, then there exists an integer n=0 such that U(d, n)N\'V =0.

(3) If dNV #0 and dN(C X ANV )+0 then there exists an open and closed
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neighbourhood O(x) of x in M,(AT) such that d(z, m, YV #0 and d(z, m, r)N
(CXANV)Y#D for every z<O(x).

PROOF. (1) By properties (1) and (8) of Remarks 3.4 it follows that p<<m
and ATS AP. Hence n(m, r)>n(p, t). Let F=F(n(m, m, r), x).

Since dSV and n(m, r)>n(p, t) we have that ¢.(g)(x)S C; for every g AT.
Hence, by property (9) of Lemma 3.2 it follows that (¢.(g)(F))*< C;.

By property (11) of Lemma 3.2 and since n(m, r)>n(p, t) we have Cip)
€(C;. Since ATS AP we have CupXATSC; X A?. Hence, U(m, m, r, F)=
U, 0)EV (i, p, t). Thus, the integer n=0 is the required integer.

(2) If ATNAP=0, then for any integer n= N, U(d, n)"\V=0. Hence, we
can suppose that ATNAP+0.

Let m<p. Then, APS A™. Let F=F(n(m, p,t), x). By the definition of
the elements of V it follows that U(m, p, t, F)N(C; x AP)=0. Setting n=m,—m
we have U(d, n)N\(C X AP)=U(m, p, t, F). Hence, U(d, n)NV (4, p, t)=0, that is,
the integer n=m,—m is the required integer.

Now, let p<m. Then, ATS AF. Let eI(m—1) such that ATS A and
F=F(n(m, m, r), x).

We have U(d, 0)=U(m, m, r, F)=Csr X A" (See property (12) of Lemma
3.2). Hence, U(d, O)ONV #0 if and only if CecryCi#0.

If g€ A7, then st((Pn(gXF))*, n(m, r))=C,sr, (See property (11) of Lemma
3.2). Since dNV =0 it follows that st(¢n(g)(x), n(p, )NC;=0. Since n(m—1,e)
=n(p, t), we have si(¢a(g)x), n(m—1, e))S st(¢Pn(g)x), n(p, t)) and, hence,
st(¢Pm(g)x), n(m—1, e))N\Ci;=0.

By property (9) of Lemma 3.2 it follows that st(¢n(g)(x), n(m—1, e))=
st(Pm(@)F)*, n(m—1, e)). Since n(m, r)>n(m—1, e) we have st((Pm(g)F)*,
n(m, r)S st((Pn(g)F))*, n(m—1, e)) and, hence, st((Pn(g)F)*, n(im, r)NC;=0,
that is, the integer n=0 is the required integer.

(3) As in case (1) we have p<<m and ATES AP. Let e=l(m—1) such that
AP<S A™' and let F=F(n(m, m, ), x).

Since dN\V #0 there exists g;= AT such that ¢.(g.)(x)NCi#0. Also, since
dN{(C X ANV)+#0 there exists g,= AT such that ¢n(g:)(x)N(C\C;)#0. Since
n(m—1, e)=n(p, t) there exist i;, ,E Lacm-1,e» such that C; EC;, C;,EC\Cj,
Om(g)(x)NC7,#0 and Pm(g:)Xx)NCi,#0.

By property (9) of Lemma 3.2, for every g A7 and for every z&F we
have ¢n(g)2)NC;,#0 and ¢n(gX2)N\Ci,#0, and, hence, ¢n(gXz2)NC;#0 and
On(@)ZIN(CNC7)#0, that is, d(z, m, )NV #0 and d(z, m, )N{(C X ANV )=#0.
Thus, the neighbourhood O(x)=F is the required neighbourhood of x in M,(AT).
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3.7. LEMMA. Let d={(a, g)}, where g=(S, D), V,V,&V and U, U,&U.
The following are true:

(1) If dSC;xX AT, then there exists an element W of UUV such that d<
WeCix AT,

(2) If VNV #0, then either VSV, or V, SV,

(38) If dSV U, then there exists an element W of O\UV such that dSW
SVNuU.

4) If dSUNU,, then there exists an element W of ONV such that dSW
SUNU,. '

B) If dNV =0, then there exists an element W of U UV such that dSW
and WNV =0.

®) If dN\U=0, then there exists an element W of UOUV such that dSW
and WNU=0.

PROOF. Let i L, and let £ be an integer such that k—1=max{n, m}.

There exists an integer p=% such that si(a, n(p, O)N\st{(Dy*, n(p, t))=0
for every ¢<k, where t=r(p, g).

Let jeL,p..» and a=Cj; Suppose that jé&s(p, t). Then, the set W=
C;x AP belongs to V. Obviously, we have {(a, g)}SW, C;SC; and APSA™.
Hence, WSV, that is, W is the required element of U uv. Suppose that j&
s(p, t), that is, j=s(g, p, t, F) for some ¢, 0<g=<p, and some FS(MAF) @b,
Hence, C;S st((¢Q(@)F))*, n(p, t)) (See property (11) of Lemma 3.2). This means
that st(a, n(p, )N st((Dy*, n(p, t))+0 and, hence, k<gq.

Let x&F and ¢(g)x)NC;+#0. Since ¢>n we have that ¢(g)(x)EC;. Let
Q=F(n(q, q, e), x), where e=r(q, g). Since n(qg—1, r(¢g—1, g))>n we have that
sti(g(g)(x), n(g—1, r(g—1, g)))SC; and, hence st(¢(g)Q)*, nlg—1, rig—1, g)))
SC; (See property (9) of Lemma 3.2). Since n(g, e)>r(p—1, g)) we have
st(e(gXQ))*, n(g, €))=Csr & Cs.

By properties (11) and (12) of Lemma 3.2 it follows that U(g, g, e, Q)=
Csgy XAISCi X AISEV.

Since {(a, )} SU(q, q, e, Q)=U(d(x, g, e), 0)cU, the set W=U(q, ¢, e, Q) is
the required element of DUV.

(2) Let V=V (i, m,r) and V,=V(j, p, t). Since VNV ,#0 we have AN AP
#0 and CiNC;#0. Let m<p. Then, APS AT and since n(p, )=n(m, r),
C;&C;. Hence, V,&V. Similarly, if p<m, then VEV,.

(3) Let U=U(d(x,m,r),n) and V=V, p,t). We have {(a, g)}c
U(m, q, e, F)=Csr, X AYCU, where g=m-+n, e=r(q, g) and F=F(n(m, g, e), x).

Let k=max{p, ¢} and n,=max{n(p, t), n(g, e)}. Let s be a subset of all
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elements j of L, for which C;SCiNCsry. Then, C;=CiNCscry. Also, we
have APNAI=A%. .. Then, dS(CiX AP)N(Crir X AN =CyX Akt (, SVNU.
Hence, the proof of this case follows from case (1).

(4) Let U=U(d(x, m, r), n) and U,=U(d(x,, my, 1), n,). As in case (3)
we have dSCyry X AICSU, where g=m+n, e=r(q, g) and F=F(n(m, q, e), x).
Similarly, dSCecp,XAUSU,, where ¢, =m+n, e=r(q, g) and F,=
F(n(m,, q., e1), x).

Let p=max{q, ¢} and k=max{n(q, g), n(q:, g)}. There exists a subset s
of L, such that C,=C,»NCsrp. Hence, dS(CoryXADNCocrpX AB)=
C:XAPSUNU,, where t=r(p, g). The rest of the proof of this case follows
from case (1).

(5) Let V=V (i, m, ») and let a=Cj, where j& L,(m. -,. Since dNV=0 we
have that either C;N\C;=0 or APN AV, .»=0. Hence, (C;X AFm, ) Ci X AT)
=0. Since {(a, 9)}SC;X A%n, 5, the existence of the set W follows from
case (1).

(6) Let U=U(d(x, m, r), n). Let 1 be an element of L,, where k=
n(m+n, r(m+n, g)), such that a=C;. Then, it is easy to see that (C; X A&, o)
NU=0. Hence, the proof of this case also follows from case (1).

3.8. LEMMA. Let d,, d,=T and d,#d,. Then, there exist elements W, and
W, of OUV such that d,SW,, d,SW, ana W,N\W,=0.

PROOF. We consider the cases:

(1) di={(ai, gy} and d,={(a., g)},

(2) d,={(a, g)} and d,=d(x, m, r)<=T(1), and

(3) di=d(x,, my, ¥, )&€T() and d,=d(x,, m,, r,)=T(1).

In the first case either a,=a, or a,=a, and g,+#g,. If a,#a,, then there
exist an integer n and distinct elements 7 and j of L, such that a,&C; and
a,=Cj;. Then, we set V,=CiX A%w,zp and V,=CiX A, 4,>-

If a,=a, and g,+g,, then there exists an integer m such that r(m, g,)+
r(m, g.). Then, we set V=CgX ATm,op and V,=CgX AT(m, g5

In both subcases we have d, SV, d,&V, and VN\V,=0. By case (1) of
Lemma 3.7 there exist elements W, and W, of 0'\UV such that d,SW,SV, and
d,SW,sV,. Hence, W,NW,=0.

In the second case if g¢& AT, then there exists an element W, of ouv
such that d,SW,SCgX A%m. . Let W,=U(d(x, m, r), 0). Then, WN\W,=0.

Let g A?. Then, aé&¢n(g)x). There exists an integer p=m such that
st(a, n)Nst(Dp)*, n)=0, where n=n(p, r(p, g)). Let i L, such that a=C;.
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Then, i&s(m, p, e, F)=s(F), where e=r»(p, g)and F=F(n(m, p, e), x) (See pro-
perty (11) of Lemma 3.2).

- Let W,=U(d(x, m, r), p—m). We have W,"\(CyX A?)=U(m, p, e, F). Since
U(m, p, e, F)=CspyX A? and since 1= s(F) we have of d&W,.

By property (6) of Lemma 3.7 it follows that there exists an element W,
of UUV such that dSW, and W,N\W,.

Finally in the third case we consider the following subcases: (@) m;=m,
and r,#r,, (8) m,=m, and r,=r,. and () m,#m,.

In the first subcase we set W,=U(d(x,, mi, 1), 0) and W,=U(d(x,, m,, r5),0).
Obviously, d,SW,, d, W, and W,"\W,=0.

In the second subcase let n,=n(m,, m,, ;) be an integer such that there
exist two distinct elements F, and F, of (My (ATYH)" for which x;&F; and
x,=F,. Let n=n,—n(my, my, r;). We set W,=U(d(x,, my, r1), n) and W,=
U(d(xz, m,, 7,), n) and we prove that W,N\W,=0.

Indeed, if W ,N\W,+0, then there exists an element »<I(m,+n) such that
ATrS AT and W N (Cyg R AT NNAW,N(Cg X AT1*)#=0.  We have W,
(Cg XAy =U(my, mi+n, r, F1) and W,N\(CgX A™*") = U(my, my-+n, v, Fp).
Hence, U(my, t,, my+n, F)NU(m,, mo+n, r, Fy)#0. By property (14) of Lemma
3.2 this is a contradiction.

In the third subcase, without loss of generality, we can suppose that m,<m,.
Then, either ATzS A7, or ATeNATi=0. If AP:S ATL, then we set W=
U(d(xy, my, 71), my—m,) and W,=U(d(x,, m,, ¥,), 0). Obviously, we have W ,N\W,
=U(my, ms, 7y, F)NU(my, my, 7,, F3)=0, where Fi=F(n(m,, my, r,), x;) and F,=
F(n(my, my, r3), x»).

If AT2NAT?:=0, then it is sufficient to put W,=U(d(x,, m,, #,), 0) and W,=
U(d(x,, ms, 7,), 0).

3.9. LEMMA. Let deT and dSWeU\UV. There exists an element W, of
OUV such that dSW,SW and every element of T(l) intersecting W, is con-
tained in W,

PRrROOF. First we suppose that d=d(x, m, r). By property (1) of Lemma
3.5 and property (1) of Lemma 3.6 if follows that there exists an integer n=0
such that U(d(x, m, v), n)SW.

We prove that the set W,=U(d(x, m, r), n+1) is the required element of
OUV. Indeed, let dy=d(x,, mi, r)=T(1) and (a, g)=d: \W,. We have
Uld(x, m, r), n+DN(Cg X AP)=U(m, p,t, F), where p=n+m+1, t=r(m+n-+1, g)
and F=F(n(m, p, t), x).
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If m<p, then we can consider the set U(m,, p,t, Fy), where F,=
F(n(m,, p, t), x1). Since (a, g)€U(m, p, t, F)NU(m,, p, t, F,) by properties (13)
and (14) of Lemma 3.2 it follows that m=m, and F=F,. In this case, by the
definition of the elements of the set U it follows that d,SU(d(x, m, r), n+1)
CU(x, m, r), n).

Hence, we can suppose that m+n+1<m,. We have (a, g)U(m, p, t, F)=
CscryX AP. Hence, a=Cyr).

Let a=C; and i€ L,, where k=n(m,—1, r(im,—1, g)). Since a<Csr> and
k=n(p, t) we have C;SCscry.

By property (9) of Lemma 3.2 it follows that if g,=(S,, D)€ AT¢m-1.5)»
then ¢ni(g)(x)NC;#0 (we observe that a&¢n (g)(x1)), that is ¢m,(g)(x)N
st(Pm(@iXFN*, n(p, 1))+0. By property (10) of Lemma 3.2 it follows that
Pu(g)(x)S st(Pm(g ) QN*, n(m+n, r(m+n, g))=Cs, Where Q=F(n(m, m+n,
r(m+n, g)), x). This means that d,SCs X ATénsn, p=U(m, m~+n, r(m+n, g))
cU(d(x, m, r), n).

Now, we suppose that d={(a, g)}, where g=(S, D). It is easy to see that
there exists an integer m=0 such that (a, 2)€CiX A%m »SW, where i€
L,cm rem.g»- Let go be an integer such that go—1>n(m, r(m, g)). Since D is
an upper semi-continuous partition of S there exists an integer p=g, such that
st(a, n(p, D)Nst((DY*, n(p, t))=0, for every ¢<q,, where t=r(p, g).

Let s be the subset of L, for which a=C, and either s={j} and j¢&
s(p,t) or s=s(g, p,t, F)=s(F) for some g, 0=¢g<p, and some F=
F(n(g, p, 1), M(g)).

We set W,=C,x A’V and we prove that W, S C; X A% ,>. This is clear
if s={;}. Suppose that s=S(F). Then, st(a, n(p, ))Nst((Dy*, n(p, t))+0 and,
hence, ¢.<gq.

Let x&F and ¢(g)x)Nstla, n(p, 1))#0. Since g¢g>n(m, r(m, g)) and
st(a, n(p, ))SC; we have that ¢ (g)(x)S C;s.

Let Q=F(n(q, ¢, r(q, g)), x). Since n(g—1, r(¢g—1, g))>n(m, r(m, g)) by pro-
perty (9) of Lemma 3.2 it follows that (¢(gX@))*< C; and hence, st((¢(g)Q)*,
n(g, r(q, g)))ZC,(Q)EC;.

By properties (11) and (12) of Lemma 3.2 it follows that U(g, g, r(g, g), Q)
=Cs@yX A% nEC; X ATm, 4. Since Ulg, p, t, F)=U(q, q, r(q, g), Q) we have
ngCEXA?(m,g)-

Now, we prove that if d,=7(1) and d,"\W,+#0, then d,. SC;i X A%m. 5. In-
deed, let d,=d(x,, m,, t;) and (a,, gyye=d NW,.

If m,<p, then we can consider the set U(m,, p, t, F1)=U(F,), where F,=
F(n(m,, p, t), x,). Obviously, d."\W,SUF)NW,. It s={j} and j&s(p, t), then
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U(F,))NW,=0 which is contradiction. Hence, s=s(F) and since U(m,, p, t, F\)
NU(g, p, t, F)+0 by properties (13) and (14) of Lemma 3.2 it follows that m;=gq
and F=F,. Hence, d,SUF)=W,SCiX Amn. o>

Thus we can suppose that p<m;. Obviously, AT}ml,gl)gA?. Since a,=C;
and n(m;—1, r(m,—1), g1)=n(p, t) by property (9) of Lemma 3.2 it follows that
if go is an arbitrary element of AT(‘ml,gp, then ¢n (go)(x)NCs#0. Since m;>
n(m, r(m, g)) we have that ¢n (go)(x,)SC;, that is, diSCi X A%m, o

3.10. DEFINITIONS AND NOTATIONS. For every U=U(d, n)eU (respectively,
V=V, m, ¥)&V) we denote by O) or by O(d, n) (respectively, by O(V) or
by O(i, m, r)) the set of all elements d =T such that d SU (respectively, dS V).

We denote by U (respectivety, by <) the set of all sets of the form O(U),
UeU (respectively, O(V), VeV). Also, we set B=U\Jcy.

Let m& N, r<l(m) and F be a subset of M, (A™). We denote by d(F) the
subset of 7 consisting of all elements d(x, m, r), where x&F.

By d(m, r) we denote the map of M,(A7) onto d(M,.(A?)) defined as fol-
lows: d(m, r)(x)=d(x, m, r). Obviously, the map d(m, r) is one-to-one.

We say that a pair (S, D), where S is a subset of C and D is an upper
semi-continuous partition of C, has the dense property iff for every k=0, 1, -
and for every a=d< D, the point a is o limit point of the set S\(D,)*.

3.11. THEOREM. The set B is a countable basis of open sets for a topology
7 on the set T. The space T (that is, the set T with topology t) is a Hausdorff
regular space. The boundary of every element of B is a countable free union
of subsets of T which are homeomorphic to closed subsets of elements of M.
Moreover, if every element of the family A has the demse property, then the
boundary of every element of B is a countable free union of subsets of T which
are homeomorphic to simultaneously open and closed subsets of elements of M.

PROOF. If m, nEN, rel(m), FE(M.(A®)*, where k=n(m, m, r)4n, and
x, yEF, then U(d(x, m, r), n)=U(d(y, m, r), n). From this and since for every
me N the set A™ is countable it foljows that the set U, as well as, the set V
are countable. Hence, B is a countable set.

It is easy to see that the union of all elements of B is the set 7. Hence
in order to prove that B is a basis of open sets for a topology on the set T it
is sufficient to prove that if d=T, W,, W,eOUV and d=OW,)NOW,), then
there exists an element W of UV such that deOW)S oW ) NOW,), that is,
dEWSW,NW,. This follows immediately from the properties (1) of Lemma
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3.5, (1) of Lemma 3.6, (5) of Remarks 3.4 and from properties (2), (3) and (4)
of Lemma 3.7.

Let 7 be the topology on 7T for which B is a basis of open sets. By Lemma
3.8 it follows that the space T is a Hausdorff space.

We observe that by properties (2) of Lemma 3.5, (2) of Lemma 3.6 and by
(5) and (6) of Lemma 3.7 it follows that in the space 7' the boundary of every
element of B is contained in the subset T(1) of T. Hence, by Lemma 3.9 it
follows that the space T is regular.

Let me N and r=l(m). We prove that the map d(m, r) of M,(AT) onto
d(M,(A7)) is a homeomorphism. Indeed, by properties (1) of Lemma 3.5, (1)
of Lemma 3.6 and (5) of Remarks 3.4 it follows that the set {U(d(x, m, r), n),
ne N} is a basis of open neighbourhoods of d(x, m, r) (in the space T).

On the other hand, the set {F(n(m, m, r)+n, x): n=N} is a basis of open
neighbourhoods of x in M,(A?) (See Definitions and notations 3.1).

Also, by the construction of elements of U it follows that an element
d(y, m,r) of d(M,)A™) belongs to U(d(x,m,r), n) if and only if ye&
F(n(m, m, r)+n, x). From this it follows that the map d(m, r) is a homeo-
morphism.

Let meN and r=il(m). Let V=C,X AT, where s is a subset of L,cm,
such that either s={i} and i¢&s(m,») or s=s(F) for some element F of
M A™)Me@e™ ™ 0<g<m. We grove that for every p>n(m, r) and t€I(p) is
yeM,(AP) and d(y, p, )NV #0 (hence, A?S AT), then d(y, p, HEV.

Indeed, let (a, g)=d(y, p, )NV. Let a=Cj, where JE Lucp-1, rp-1,4»- Since
n(p—1, r(p—1, g))>p—1=n(m, r) we have that C;SC,. By property (9) of
Lemma 3.2 it follows that ¢,(g.)(»)NC;+#0 for every g,=Af. Since p>n(m,r)
we have that ¢,(g.)(y)EC; and, hence, since Al S AT we have that d(y, p, t)
CSC,XAT*=V,

Now, let s={i} and i¢s(m, »), that is, V=V, m, »)V. Then, by pro-
perty (8) of Remarks 3.4 and by Lemma 3.6 (properties (1) and (2)) it follows
that the boundary Bd(O(V)) of the element O(V) of B is contained in the set
B(k, m, r), where k=n(m, r), which is the union of all sets of the form
(M(A?), where m<g<k and e<I(g) such that AIS AT.

We prove that the set B(k, m, r) is the free union of the corresponding
sets d(M,(A®). For this it is sufficient to prove that for every ¢, m=<¢=<k, and
for every ec<I(q) for which AIS AT, there exists and open subset H(q, e, m, )
H(g, e) of T such that B(k, m, r)MH(q, e)=d(My(A?).

For every FE(M(AY))*@+»*+ -2 by x(F) we denote a point of F. We set
H(q, e)=\U rO(d(x(F), q, ), k—¢q). Obviously, H(q, ¢) is an open subset of T.
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Also, it is easy to see that d(My(AD)SQ(k, m, »)N\H(q, e).

Let d(y, qi, es)= B(k, m, )M H(q, e). We prove that d(y, qi, e;)=d(My(AY)).
Indeed since d(y, g;, e.)= B(k, m, r) we have m<g,<k and ALS AT. There
exists an elemcnt F of (M (A2))*@2e+k-2 guch that d(y, ¢1, e)NU(d(x(F), q, e),
k—q)+0. Let (a, g) belongs to this intersection. Consider the sets
U(g:, k, r(k, g), ) =UWF,) and U(q, k, r(k, g), F)=U(F), where F,=
F(n(qi, k, r(k, g)), y). Since (a, g)€UF)NU(F,) by properties (13) and (14) of
Lemma 3.2 it follows that g=¢q, and F=F;, that is, d(y, ¢, e;)=d(M(AY).

Thus, B(k, m, r)MH(g, e)=d(M,(A%)) and hence, the boundary of the set
O(i, m, r) is a countable free union of subsets of 7" which are homeomorphic
to closed subsets of elements of M.

Suppose now that U=U(d(x,, my, 1), n,) be an arbitrary element of U.
Let m=m,+n,. We prove that the boundary Bd(O(U)) of the set O(U) is con-
tained in the union of all sets of the form B(n(m, »), m, r), where r&I(m) and
ATS ATL

Indeed, let d(y, p, t)= Bd(OU)) and let (a, g)=d(y, p, )N\U. There exist
an integer g, 0<¢=<m, an element r<I(m) and an element F=(M,(AR))*@™ ™
such that (a, g)€U(q, m, r, F)=U(F). 1If p<m, then we can consider the set
U(p, m, r, Q)=U(Q), where Q=F(n(p, m, r), v). (We observe that »(m, g)=r).
Then, (a, g)eUF)NU(Q) and, hence, p=q and F=Q, that is, d(y, p, t)EU,
which is a contradiction. Hence, m<p.

On the other hand, since U(F)=Csry X A®, d(y, p, O)N\U+#0 and d(y, p, t)
ZU by the preceding it follows that p=<n(m,»). Hence, d(y, p, )
Bn(m, »), m, r).

Let k=n(m, r). For a fixed r=1(m) as we already proved the set B(k,m,7r)
is the free union of the corresponding sets d(M,(A%)). Since the union of all
elements of H(q, e, m, ) is contained in the set C X AT we have that the union
of sets B(k, m, r) for all re<I(m) for which ATS AT} is also free.

Hence, the boundary of the set O(d(x,, m,, #,), m;) is a countable free union
of subsets of T" which are homeomorphic to closed subset of elements of M.

Finally, suppose that every element of the family A has the dense property.
In this case we prove that if OW)eB and d=d(x, m, r)&T(1) such that
d(x, m, ’"N\W=+0 and d(x, m, r)N\(C X ANW)#0, then d< Bd(OW)).

Indeed, obviously, d&O(W). Let g AT such that (¢n(g)x) X {g:}H)NW 0.
Let OU) be an arbitrary neighbourhood of d in T. We prove that O(U)NOW).
#0. We can suppose that U=U(d(x, m, r), n) for some integer n= N.

Let ¢n(g)(x)={a, b}=D(1). We can suppose that (a, g)€W and that there
exists an integer ¢ such that (a, g)€V=CsX A% »H»,EUNW, where s is a sub-
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set of L, rq 00 and either s={i} and i€s(g, (¢, g)) or s=s(F) for some ele-
ment F of (M,(A%q )", where n,=n(k, q, r(q, g)) and 0<k<m. Let VN
(Cx{g})=0=x{g}. Then, O is an open neighbourhood of a in C.

Since g has the dense property there exists a point c€ ON(SN\(Dn,)*) such
that either ceS\(D())* or c=d,=D, and p>n(q, (g, g)). In the first case,
{(c, }=sO0V)SOWUINOW), and hence OU)NOW)+#0.

In the second case, let y= M,(A%,. ,>) Such that c=¢,(g)(y). As we proved
above, d(y, p, v(p, g)EV. Hence, d(y, p, r(p, g)sOV)SOU)NOW) and
OoUNOW)+0. Thus, d= Bd(OW)).

By properties (3) of Lemma 3.5 and (3) of Lemma 3.6 it follows that the
boundary of every element of B is a countable free union of subsets of T

which are homeomorphic to simultaneously open and closed subsets of elements
of M.

4. Some properties of scattered spaces.

Definitions and notations. Let a=f-+m be an ordinal, where f=f(a) and

m=m(a)>0.
We denote by Tr(a) the set of all triads r=(a, X, M) such that: (a) M is
a compactum having type a, (8) M‘““~VY={a}, and (y) X is a subset of M for

which M\M®Z X. We observe that if U is an open and closed neighbourhood
of a in M, then the triad (a, XNU, U)=7(U) is an element of Tr(a).

Let 7,=(a,, Xi, M,) and 7,=(a,, X;, M,) be two elements of T ,(a). We say
that 7, and 7, are equivalent and we write 7,~17, iff there exist: (a) an open
and closed neighbourhood U of a, in M,, (8) an open and closed neighbourhood
V of a, in M,, and (7) a homeomorphism f of U onto V such that f(UNX,)=
VN X, (Obviously, in this case f(a,)=f(a,)).

13

It is easy to prove that the relation “~” on the set Tr(a) is an equivalent
relation. We denote by ETr(a) the set of all equivalence classes of this rela-
tion. For every 7T .(a) we denote by e(r) the equivalence class of ETr(a)
which contains the element 7.

Let 7=(a, X, M)eTr(a). An open and closed neighbourhood U of a in M
is called stanaard iff tor every r,=(a,, X,, M;)=e(r) there exists an open and
closed neighbourhood V of a, in M, and a homeomorphism f of U onto V such
that f(UNX)=VNX,. In this case we say that the element z has a standara
neighbourhood. It is clear that it an element of an equivalence class of ETr(a)
has a standard neighbourhood, then every element of this class has also a

standard neighbourhood.
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The element 7 is called standara iff the neighbourhood U=M of a is
standard. Obviously, if U is a standard neighbourhood of a in M, then =(U)
is a standard element of e(7).

It is easy to prove that an open and closed ueighbourhood U of a in M is
standard if and only if for every neighbourhood W of a in M there exist an
open and closed neighbourhood V of a in M, which is contained in W and a
homeomorphism f of U onto V such that f(UNX)=VNX.

We denote by P(a) the set of all pairs {=(X, M) such that M is a com-
pactum having type a and X is a subset of M for which M\M®c X,

We say that the pairs {,=(X;, M;) and {,=(X,, M,) of P(a) are equivalent
and we write {,~, iff there exists a homeomorphism f of M,; onto M, such
that f(X,)=X,.

It is clear that the relation “~” on the set P(a) is an equivalent relation.
We denote by EP(a) the set of all equivalent classes of this relation and for
every {&P(a) by e({) the equivalence class of EP(a) which contains the ele-
ment .

4.2. LEMMA. For every isolated ordinal o the set ETr(a) is finite and every
element of this set contains a standard element of Tr(a).

PROOF. Let a=f—m, where B=p(a) and m=m(a)>0. We prove the
lemma by induction on integer m.

Let m=1. Let 7,=(a,, X;, My)eTr(a) and t,=(a,, X;, M,)eTr(a) such
that X,=M, and X,=M\MP=M~\{a,}.

Let r=(a, X, M) be an element of T7(a). Then, M®=M-D={g} and,
hence, either X=M or X=M\M®=M~{a}. By it follows that there
exist a homeomorphism f, of M, onto M and a homeomorphism f, of M, onto
M. We have that if X=M, then f(X;)=X and if X=M M, then f,(X,)
=X. Hence, either e(r)=e(r,) or e(r)=e(r,), that is, ETr(a)={e(ry), e(r,)}.
Also, by the above it follows that the elements 7, and 7, are standard.

Now, we suppose that the lemma is proved for every m for which 1<m<n
and we prove it for m=n.

Let ETr(ay)={e(a—1), ---, e’(a—1)}. For every k=1, .-, t we denote by
th(a—1)=(c*, X*, M*) a fixed standard element of e¢*(a—1).

Let z,=(a;, X;, M;), 7=1, 2, be two arbitrary elements of 7T»(a). Whithout
loss of generality we can suppose that the spaces M, and M, are metric.

Let M{*=">\M{*"V={b;,, b;,, ---}, ;=1, 2, ---. Every element of these sets
is isolated (in the corresponding relative topology). Let W} be an open and
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closed neighbourhood of b;; in M; such that W) ;M {*~*={b;;}. Then the triad
75:=(b;5, X;NW$, W9, is an element of Tr(a)and the element e(r;;) of ET#(a)
is independent from the neighbourhood W}Y;, that is, if W}; is another such
neighbourhood of b;; in M; and j,=(b;;, X,N\W},, W},), then e(r;)=e(r}). We
denote by e;; the element e(z;;).

There exists an open and closed neighbourhood W;; of b,; in M;, j=1, 2,
1=1, 2, ---, such that: (a) Wun\M{*®={b;}, (B) W;; "W,;,=0 if i,5%d,, ()
}g}} (diam(W ;1))=0, () a,e(M \W;)“®, where W;=W; UW;,\U -~ and (e) if

e;;=e*9(a—1), then there exists a homeomorphism f;; of M*Y® onto W,; such
that f;(X*99)=X;N\W;;. We observe that by the properties of the sets W,;
it follows that W, j=1, 2, ---, is an open subset of M; such that CI(W,)\W;
={a;}.

Let V; be an open and closed neighbourhood of a; in M;\W; such that
(Vi)t*-»={a;}. Then, the triad /=(a;, X;N\V;, V;) is an element of Tr(a—1).
We can suppose that if e(z/)=e*“’(a—1), then there exists a homeomorphism
f; of M*Y> onto A; such that fi(X*P)=X,NV,.

There exists an open and closed neighbourhood U;, j=1, 2, of a; in M,
such that: (a) U,N(M W)=V, (B)if for some integer =1, 2, ---, W;;NU;+0,
then W;;SU;, and (7) if for some integer i, W;;SU;, then theile exists an in-
creasing sequence of integers iy, 7,, -+ for which W;; SU; and e;;=¢e;:, q=
1,2, .

Now, we prove that z,~7, if the following conditions are true: (a) e(r!)
=e(7?) and (B) if for some integer k= {l, ---, t} there exists an integer 7(1)=1
such that W;,&U, and e;;y=e*(a—1), then there exists an integer (2)=1
such that W,;,EU, and e,;,=e*(a—1).

Indeed, it is not difficult to prove that between the set U,N\(M{&D\M{a-D
and the set U, N\(M{*DN\M{*-1) there exists an one-to-one correspondence such
that if b,, corresponds to by, then e,,=e,,.

We construct a homeomorphism f of U, onto U, as follows: on the set V,
we set f=f,of7'. Let W,,SU,. Then, b,&€U, and if b,, corresponds to b,
then on the set W,, we set f=f,°fip. Obviously, f is a homeomorphism of
U, onto U, such that f(X,"\U,)=X,N\U,. Hence, v,~7,.

From the above it follows that the number of equivalence classes of the set
Tr(a) is finite, that is, the set ET7»(a) is finite.

In order to complete the lemma it is sufficient to prove that every element
of ETr(a) contains a standard element of Tr(a). For this, since 7, is an
abitrary element of Tr»(a), it is sufficient to prove that z,(U,) is a standard
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element.

Let W be an arbitrary neighbourhood of ¢ in M,. LetV be an open and
closed neighbourhood of a, in M,\W, such that: (a) VEW and (8) there exists
a homeomorphism f, of M*® onto V for which f,(X*®)=X,NV.

There exists a neighbourhood U’ of a, in M, such that: (o) U'EW, (B)
UNM W)=V and (7) if for some integer 7, W,;,N\U’+#0, then W,,SU’.

A homeomorphism f’ of U, onto U’ for which f/(X,"\U,)=X,N\U’ can be
constructed in the same manner as we constructed the homeomorphism f of U,
onto U,. Hence, 7(U,) is a standard element.

4.3. THEOREM. For every isolated orainal a the set EP(a) is countable.

PrROOF. Let a=f+m, where B=f(a) and m=m(a)=1. We prove the
theorem by induction on integer m.

Let m=1. For every i=1, 2, --- we denote by M; a compactum such that
|IM{E9|=|M¥|=;. Hence, if X, and X, are two subsets of M, for which
M~MP®SX,NX,, then X=X, iff X,\n\M@V=X,N\M@V, Therefore, the
number of such set is finite. Let X, -+, Xitqy be these sets and let {;;=
(X My), i1=1,2, -, j=1, ---, ().

Let {=(X, M) be an arbitrary element of P(a) and let |M¢-V|=;. Then,
by there exists a homeomorphism f of M; onto M. There exists an
integer j, 1<7<t(), such that X;;=f"'(X). Hence, f(X;;)=X, that is, {~;,.
From this it follows that the set EP(a) is countable.

We suppose that the theorem is proved for every m for which 1<m<n and
we prove the theorem for m=n.

Let o'=(c,, X', M*), ---, t*=(c?, X?, MP?) be standard elements of Tr(a—1)
such that ETr(a—1)={e(z!), ---, e(z?)}. Also, let {1)=(X(1), M), L2)=
(X(2), M(2)), --- be elements of P(a—1) such that EP(a—1)={e({(1)), e({(2)), ---}.

Now, let {;=(X;, M;), j=1, 2, be two arbitrary elements of the set P(a),
such that |M{*V|={a;, -+, a;s}. Without loss of generality we can suppose
that the spaces M, and M, are metric. There exists en open and closed subset
Uj; of M;, j=1, 2, t=1, .-+, 7, such that: (a) U;;,\U;;,=0 if 1%, (B) Uj\J -+
WU ;s;=M;, and () a;;€Uj,.

Let U;N\(M§EPNM*-)={bj;, b%;, ---}. Let (W%)° be an arbitrary neigh-
bourhood of &% in M;, k=1, 2, ---, such that: (@) (W%)°'SU;, and (B) (W)’
M§*-»={b%}. We denote by e; the element e(r%) of ETr(a—1), where z%,=
bk, X;m(WE)°, (W%)). Obviously, the element e%; is independent from the
neighbourhood (W%,;)°.
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For every j=1, 2, i=1, -+, t, k=1,2, ---, let W% be an open and closed
neighbourhood of &% in M; such that: W4 SU,;, (B) WiNM=>={b}, )
WANW =0, if ki#k,, (8) lim (diam(W50))=0, (¢) the set (U;\W;0)*™, Where

W;=W}i UW?%\U -+ contains at least two distinct points and the point aj; be-
longs to this set, and ({) if e%;=e(z7*/¥), then there exists a homeomorphism

ko of M7*7® onto W%, such that f4%(X7*/D)=X;NW*,. Obviously, W;; is an
open subset of M; such that CI(W;;))\W;={a;:}.

Let V,; be an open and closed neighbourhood of a;; in M;\W;; such that
ViGUj and (V)¢ 2={a;;}. The triad t;;=(a;;, X;N\V i, V) is an element
of Tr(a—1). We suppose that if e(r;;))=e(zr"¢?), then there exists a homeo-
morphism f,; of M7™9® onto V;; such that f;;(X"99)=X;N\V ;.

We observe that the set H;;=U,;\N(W;;\UV ;) is an open and closed subset
of M; and by property (¢) of the sets W%, it follows that (H;;)“~®+0. Hence,
the pair {;;=(X;N\H,;, H;;) is an element of P(a—1).

If el;;)=e(g(s7))), then by g;; we denote a homeomorphism of M(q(y7))
onto Hj; such that g;;(X(q(s2)))=X,NH;;.

Now, we prove that {,~{, if the following conditions are true: (a) for a
given element e(z”) of ETr(a—1) and for a fixed integer 7, the number of ele-
ments b% of the set {bl;, b%;, ---} for which e(s7)=¢e%; is the same with the
number of the elements b%; of the set {b};, b3;, ---} for which ef;=e(z7), (B) for
every integer 7=6, ---,t, e(ti;)=e(ry;), and (7) for every integer i=1, -, t,
e(C1)="e(C20).

Indeed, by the above condition (a) it follows that for every integer 7, be-
tweed the elements of the set {b!;, b%;, ---} and the elements of the set {bi,,

2., ---} there exists an one-to-one correspondence such that if b% corresponds
to bf;, then ef;=el;.

We construct a homeomorphism f of M, onto M, as follows: for every
integer 7z, on the set V,; we set f=f,°f7/ and on the set H,; we set f=
g:081¢. If the point b%f; corresponds to b;;, then on the set W%, we set f=
faio(f%)7t. It is easy to prove that f is a homeomorphism of M,; onto M, such
that f(X,)=X..

From the above it follows that the set EP(a) is countable.

4.3.1. REMARK. From Theorem 4.3 it follows Lemma 2 of Section 1.3 of
[1:], that is, for a given isolated ordinal a the set of all (mutually non-homeo-
morphic) spaces X for which there exists a compactum K having type a, such
that XS K and KNK#C X, is countable.

Also, from Lemma 4.2 it follows Lemma 1 of Section 1.2 of [[/,].
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5. Universal spaces.

5.1. DEFINITIONS. Let a>0 be an ordinal and < N such that 0< (2 <m*(a)—1.
Let Xe R:(a). An extension X of X is called a c-extension (respectively, lc-
extension) iff X has a basis B(X y={V,, V,, ---} of open sets such that:

(1) the set Bd(V;), :=0, 1, ---, is a compactum (respectively, a locally com-
pact subset of X )

(2) type(Bd)V))sa+k+1, ,

(3) type((Bd(V )N X)U(BAV INBA(V ) Fe»)<a,

(4) loc-com-type((Bd(V )N X)J(Bd(V )N Bd(V )P )< a+k.

We observe that by Lemma 2.4 for every element X< R%.(a) there exists a
c-extension of X. Also, if X is a c-extension of X, then using the method of
the proof of Lemma 1 of [/,] we can construct a basis B()?)Z{Vo, Vi -} of
open sets of X having properties (1)-(6) of Lemma 2.4.

Let K be a space, Sp be a family of spaces, (Sp), be a subfamily of Sp
and let < be a property of topological spaces. We say that the space K has
the property of P-intersections with respect to subfamily (Sp), of Sp iff for
every X&Sp there exists a homeomorphism 7x of X into K such that if ¥ and
Z are distinct elements of Sp and Y &(Sp),, then the set (Y )Niz)Z) has pro-
perty 2.

For every X&Sp let ix be a homeomorphism of X into K. We say that
the space K has the property of <P-intersections with respect to subfamily
{ix: XE(SP)} of all homeomorphisms iy iff for every Y &(Sp), and for every
Z<Sp, the set 1y(Y)Niz(Z) has the property 2.

In particular, if ¢ means that the corresponding intersection (a) is finite,
(B) has type <a, (7) is compact and has tyye <a, (d) has type <a and comfact
type <a-+k, and (¢) has type <a and locally compact type <a-Fk, then instead
of phrase “®-intersections” we will use, respectively, the words: (a) “finite
intersections”, (8) “a-intersections”, (¥) “compact a-intersections”, (d) “a%-inter-
sections”, and (&) “a%.-intersections”.

We observe that the notion of “the property of finite intersections” given
in [/Is] is different from that of the present paper, because in [/;] we suppose
that both spaces Y and Z belong to the corresponding subfamily. But, it is
not difficult to see that the universal space T for the family R(a) constructed
in [1,] has the property of finite intersections (in sense of the present paper)
with respect to a given subfamily of R(a) whose cardinality is less than on

equal to the continuum.
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The same is true with the notion of “the property of a-intersections” (in
actually, with the notion of “the property of compact a-intersections”) given

in [G-T].

5.2. REPRESENTATIONS. For every X< R%.(a) let X be a c-extension of X
and B()?)z{Vo()?), V,()?), -~} be an ordered basis of open sets of X having
properties (1)-(6) of Lemma 2.4.

We recall the contruction (with respect to the ordered basis B()? )) of the
subset S()? ) of C, the upper semi-continuous partition D()? ) of S()? ), the map
q()?) of S()?) onto X and the homeomorphism z'()?) of D()?) onto X given in
Sections 1.5 and 1.8 of [/,].

For every i=0, 1, ---, we set V‘}()?):Cl(Vi()?)) and V;()?):/\N’\Vi()?). For
every i1=¢,---i,&L,, we set )?g:C if n=0 and X;:Vﬁl()?)f\ /\Vf,"_l()z') if
n=1. The point a=C belongs to S()?) if and only if )?g(a,o)/\)?;m,,)f\ -~ 0,
The last set is a singleton for every point a of S()?). We define the q()?) of
S()?) onto X setting q()?)(a):x, where aES()?) and {x}=)2';(a,o)f\)?;(a_nr\
Finally, we set D(X)={(g(X))"'(x): x X} and define i(X) setting (X )((g(X))*(x))

=X,

5.2.1. LEMMA. For every X< R%(a), the pair (S(X), D(X)) has the dense
property.

PrOOF. Let nN and acde(D(X)),.. There exist elements x< Bd(V .(X)
and b=C such that d={a,b}:(q()?))‘1(x). Let x,, x,, --- be a sequence of
points of X snch that lim x;=x, x,&€V,(X) if a<b and x.=X\CIV (X)) if

b<a, i=1,2, ---. If n=1 we can suppose that foECl(Vo()?)U UV,,-,()?)).
By the construction of the sets X; it follows that there exists an element
i of L, such that a=C;, and b=Cy, if a<b and a=Ci, and b= Cy, if b<a.
Also, for every i=1, 2, ---, we have that the set (q()?))“‘(xi) is contained in
that of the sets C;, and Cj;, which contains the point a.
Since D()?) is an upper semi-continuous pardition of S()?) we have illl;l;l d;=d.

where d;=(g(X))"*(xs), i=1, 2, ---. Hence, if a,=d;, then lim a,=ga, that is,

100

the point a is a limit point of the set S()?)\((D()?)),,)*. This means that the
pair (S()? ), D()? )) has the dense property.

5.2.2. THE FAMILY A OF REPRESENTATIONS. Let R, be a subfamily of
R%.(a) the cardinality of which is less than or equal to the continuum and let
R;=Ri(a)\R,.
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For every Xe R, we set S(X)::C and we denote by ﬁ(X) the set which is
the union of the set D()?) and all singletons {x}, where xeC\(U;‘;:o((D()?))n)*).
It is easy to see that D(X) is an upper semi-continuous partition of S(X) and
the quotient space D()?) is homeomorphic to a subset of the quotient space
D(X).

Let A, be the family of all pair (S(X), D(X)), XER,. It is easy to see
that the cardinality of A, is less than or equal to the continuum.

For every X R, we set S(X):S()?) and D(X)zD()?). Let A, be the set
of all pairs (S(X), D(X)), XeR,. If X and Y are distinct elements of R,, then
(S(X), D(X)) and (S(Y), D(Y)) are considered as distinct elements of A,, while
it is possible S(X)=S(Y) and D(X)=D().

Let A be the free union of A, and A,. (Hence, if g,=A, and g,= A,, then
g, and g, are distinct elements of A). Obviously, the cardinality of A is less
than or equall to the continuum.

By Lemma 5.2.1 it follows that every element of A has the dense property.

In the present section we denote by M the set of all scattered compacta
M such that either type(M)<pB(a) or type(M)=p(a)+n, where n=1, 2, ---. We
suppose that distinct elements of M are not homeomorphic.

Let EP(B(a))=EP(B(a)+1)JEP(B(a)+2) . By Theorem 4.3 the set
EP(B(a)) is countable. Let e EP(B(a)). We denote by M(e) the element M
of M (if there exists such element) for which for some subset F of M, (F, M)
=e. Obviously, if there exists the element M(e), then it is uniquely deter-
mined, while the subset F of M(e) for whch (F, M(e))se, in general, is not
unique. We denote by F(e) a fixed subset of M such that (F(e), M(e))<e.

For every X R%.(a) and g=N by the construction of the pair (S(X), D(X))
it follows that (D(X))q:(D()?))q. Since (D()?))q is homeomorphic to Bd(Vq()?))
(See the proof of Lemma 11 of [/;]) by properties (1) and (4) of Lemma 2.4 it
follows that the pair g(X)=(S(X), D(X)) is an M-representation. By M,y(g(X))
we denote the element of M which is homeomorphic to (D(X)),. If type(D(X Ne)
<B(a), then by ¢(g(X)) we denote a fixed homeomorphism of M,(g(X)) onto
(D(X))q.

Suppose that type((D(X)))=B(a)+n. Let Fo(X)=(Bd(V (XNNX)U(Bd(V (X))
N(Bd(V (X)), Then, the pair (F(X), Bd(V(X))) belongs to an element e
of EP(B(a)) and, hence, there exists the pair (F(e), M(e)). By ¢ (g(X)) we
denote a fixed homeomorphism of My(g(X))=M(e) onto (D(X)), for which
gbq(g(X))(F(e)):(z‘()?))‘l(Fq(Xv)). (We observe that by the construction of the
homeomorphism i(X) it follows that i(X)(D(X)))=Bd(V (X))).

We suppose that for every M< M there exists a fixed decreasing sequence
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of decompositions of M.

Also we suppose that there exists a fied decreasing sequence of decomposi-
tions of A such that if E is an element of ¢'* decompositions, then the ele-
ment M(E) of M is determined (for notations see Section 3.1). Moreover, since
the set EP(B(a)) is countable, we can suppose that if type(M,(E))=p(a)+n and
(S(X), D(X)) and (S(Y), D(Y)) are two elements of FE, then the npairs
(FX), BA(V(X)) and (F(Y), Bd(V(Y)) belong to the same element of
EP(B(a)).

5.3. THEOREM. Let R, be a subfamily of Ri.a) the cardinality of which is
less than or equal to the continuum. For every element X< R%.(a) let X be a
c-extension of X. Then, there exist:

(1) an element K< Ri(a),

(2) a space T which is an lc-extension of K,

(3) a homeomorphism ix of X into K for every X< R%.(a), and

(4) a homeomorphism jz of X into T, for every X< Rt (a), which is an
extension of iy, that is, jz|x=ix, such that:

(5) the space K has the property of af.-intersections with respect to the
subfamily {ix: X R,} of all homeomorphisms ix, X< Ri(a).

(6) the space T has the property of compact (a+ k-+1)-intersections with
respect to subfamily {jz: X R,} of all homeomorphisms jz, X< Ri.(a). More-
over,

(7) the sel j;;r()?) is a closed subset of T, for every X&R,.

PrROOF. We use all notions and notations of Sections 5.2 and 5.2.2. Let T
be a space of Theorem 3.11 constructed for the family A of M-representations
of Section 5.2.2.

Now we define the subspace K of T as follows: every element d of T of
the form {(a, g)}, where (a, g)=C=xXC, belongs to K. Let d=T(l). Then,
there exist an integer m< N, an element » of I(m) and an element x of M,(AT)
such that d=d(x, m, r). If type(M.(AT))<B(a), then we consider that d€ K.
Let type(Mn(AT))=B(a)+n. By the properties of the fixed decreasing sequence
of decompositions of A it follows that there exists an element e of EP(B(a))
such that for every Xe& Ri(a) for which g(X)=(S(X), D(X))c A" we have
(Fu(X), Bd(V a(X)))<=e. Hence, M,(AT) = M,(g(X)) = M(e) and F(e)=
(Dm(g(X))(Fn(X)). We consider that deK iff x&F(e).

By the definition of the set Fm()?) and properties of a c-extension of X
(see Section 5.1) it follows that: (@) (d(Mu(AT)N(E(Mu(AP))FONS d(Mu(AT))
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NK, (B) type(d Mu(ATHNK)=a, (1) type(d(Ma(AT))Sa+k+1, () loc-com-
type(d(M(ATN)NK)Sa+k.

We observe that the above properties («)-(d) are true if we replace the set
d(M,(A™) by an open and closed subset of it. Hence, these properties are
also true if we replace the set d(M,)AT)) by a set which is a free union of
simultaneously open and closets of sets d(M,(A%)), me N, rel(m).

Consider the basis B of the space T. Let O(W)=B. By Theorem 5.3 the
set Bd(O(W)) is a free union of simultaneously open and closed subsets of sets
d(M,(A™). Hence, properties (a)-(d) are true if we replace the set d(Mn,(AT))
by the set Bd(OW)). From the it follows that K& R%(a). Since the set
Bd(O(W)) is a locally compact subset of T we also have that the space T is
an [c-extension of the space K.

Let T(X) be the subset of T consisting of all elements z of T for which
zN\V(Cx{g(X)})#0. We observe that for every zeT()? ) there exists an element
d=D(X) such that zN\(C X {g(X)})=d X {g(X)}. Also, for every d=D(X) there
exists an element z<T ()? ) such that the above relation is true. Hence, setting
7#(d)=z we have an one-to-one map of D(X) onto T()? ). It is easy to verify,
that jg((f)(X))q):d(Mq(AqT(q,g(X)))), for every g& N.

We prove that ;¢ is a homeomorphism. Let jz(d)=z. Let zeOW)eB.
Since the space T is regular there exists an element O(¥,) of B such that
zeOW)SCIOW,))SOW). By the construction of the element of the set
UUV, there exists an open subset V of S(X) such that dSV and V x{g(X)}
SW,. Let U be the set of all elements d’ of D(X) for which d’SV. Then,
U is an open subset of D(X) containing d. If d’€U, then jg(d")"\W,#0 and,
hence, j#(d)=OW), that is, js(U)SOW). Thus, s is a continuous map.
Let U be an open subset of f)(X) containing d. Let V=(p(X))"'(U), where
H(X) is the natural projection of S(X) onto D(X). There exists an element W
of UNV such that WNC X {g(X)HSV x{g(X)} and zSW. Hence, z=O)W).
If 22e0W)NT(X), then zEW and therefore z’N\(C X {g(X)ESV X {g(X)}, that
is, if d’=(£)"%2"), then d’SV. This means that d’U. Hence, (Jg) '(OW)
f\T()?))__C_U and the map (jz) ! is continuous. Thus, (j#)! is a homeomorphism
of D(X) onto T(X).

Since D(X) is a subset of D(X) we can consider the restriction j¢|pcg, Of
7z onto D(X). We set je=(#|pc>)°(G(X)!. Obviously, the map js is a
homeomorphism of X into a subset of T()?). '

If XeR,, then D()?):f)(X) and, hence, jfzjfo(z'()?))", that is, the map
7# is a homeomorphism of X onto T()?).

Set ix=j%|x. Hence, the map iy is a homeomorphism of X into T(X).
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Let X and Y be distinct elements R%(a) such that X R,. There exists
an integer meN such that r(q, g(X))=r(g, g¥')) for every 0<qg<m and
r(m, g(X))#r(m, g(Y)). It is clear that an element z of T belongs to T(X)
f\T(f’) if and only if d=d(M{A%«q. ,x»)) for some g, 0<g<m. Hence, the
subset T(X)NT(Y') of T is a compact subset having type<a-+k-+1.

Since (D)Y))=(D(Y)), for every q=N, we have jp(D(Y))<js(¥). Hence
TXNT V)=, 20N 7¢(¥), that is, property (6) of the theorem is true.

Since for every ¢, 0<¢<m, there exists an element e EP(B(a)) such that
KNd(My(A% . zcx»)=d(F(e)) it follows that the set ix(X)N\ip(Y) has type<a,
and locally compact type <a-+*k, that is, property (5) of the theorem is true.

Hence, in order to complete the proof of the theorem it is sufficient to
prove property (7). For this, since jf()?)zT()?) if XeR,, it is sufficient to
prove that the set T\(X ) is a closed subset of T.

Let z=T\T(X). If z has the ferm d(y, m, ») for some meN, r<I(m) and
YEMn(AT), then g(X)¢ A®. Hence, zeOU) and OWU)INT(X)=0, where U=
Uld(y, m, r), 0).

Let z={(a, g)}. There exists an integer m< N and distinct elements 7 and
7, of I(m) such that g AT and g(X)c A?. Then, zEC4x A™. By Lemma 3.7
case (1), there exists an element W of the set U'\UV such that zSW S Cyx A™.
Hence, ze O(W) and OW)NT(X)=0.

Thus, in both cases, the element z has an open neighbourhood which do
not intersect the subspace T ()?). Hence, T()?) is closed.

5.4. COROLLARIES. (1) In the family R%.(a) there exists a universal ele-
ment having the property of al.-intersections with respect to any subfamily of
Ri(a) the cardinality of which is less than or equal to the continuum.

(2) For the family R a) there exists a containing space belaining to R%.(a).

(3) For the family R a) there exists a containing continuum having type
Sa+k+1 and the property of ak*'-intersections with respect to a fixed subfamily
of Ra) the cardinality of which is less than or equal to the continuum.

This corollary follows from Theorem 5.3 (See property (6)), Theorem 2.5 and
Theorem 3 of [1,].

In particular, if k=0 and since R°™(a)<S R a) we have:

There exists a continuum having rim-type <a-+1 which is a containing space
for all compacta having rim-type <a.

(4) In the family R(a) (that is, in the family Ri.(a), where k=m*(a)—1)
there exists a universal element (See [I4]).



Universal spaces for some families 159

5.5. SOME PROBLEMS. (1) Does there exist a universal element of the
family Rj.(a), where a>0 and k=0, ---, m™(a)—1, having the property of -
intersections with respect to a given subfamily of R%(a) the cardinality of
which is less than or equal to the continuum if “@-intersections” means (a)
finite intersections, (8) compact a-intersections, (7) af.-intersections, where n=
0, .-, k—1 and (0) aP-intersections, where n=0, ---, k?

(2) Let K be a universal element of the family R%.(a), where a=0, ---, m*(a),
and let R, be a fixed subfamily of R%(a) the cardinality of which is less than
or equal to the continuum. Does the space K have the property of (a) finite
intersections, (8) compact a-intersections, (7) a-intersections, (0) af.-intersections,
where n=0, ---, and (&) al?-intersections, where n=0, ---, with respect to the
subfamily R,?

(3) Are the results and problems of the present paper true if we replace
all corresponding famillies of spaces by their plant part? (Plane part of a family
A is the subfamily consisting of all elements of A admitting an embedding in
the plane).
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