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ON THE ABSOLUTELY PARACOMPACT
SUBSETS OF V“(w+1)*

By

Shoulian YANG

Rudin first proved under CH that the box product [J“w-+1) of count-
able many copies of w41 is paracompact. But since then it is still unknown
if this simplest box product is paracompact in ZFC. Kunen [K] showed that
the paracompactness of [(1“(w+1) is equivalent to that of the reduced box pro-
duct V¢ w+1). In this paper, we give out some special subsets of V¢(w-1)
which is paracompact in ZFC (see Theorems 5, 8), hoping that our results will
become helpful toward the solution of the paracompactness of V<?(w+1) itself.
For survey of box products see van Douwan [vD].

Given spaces X;({=w), an open box in the Cartesian product ig X; is a set

of the form JJU,, where U; is an open subset of X;. The topology generated
lew
by all open boxes is the box topology. TII X; with the product is denoted by
1€Ew
O X; and is called the box product. We define the reduced (or nabla) product
tew

Vv X; as the quotient space [J X;/=* by the equivalence relation =* such that

i€w 1ew
f=*g iff f(1)=g(i) for almost all i€w, that is, {i€w: f(G)=g@)} is finite. Let
us use ¢ to denote the quotient map -

q: OX,— vV X;.

i€w icw
When all factors are the same space X, we denote [J X, iev X; by 00X, ve¢X
tEw @

respectively. In this paper, we simply denote OO (w+1), EV (w+1) by O, V
€0 ew

respectively.
We make our convention that members of [] are denoted by f, g, A, -,
while members of v are denoted by x, y, z, ---. For each x=Vv, we choose

a fixed member of ¢~!(x) and denoted it by x2. To denote an arbitrary mem-
ber of ¢~!(x) we use the symbol xP.
For each x= v, we put
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F(x)={icw: x°()<w} and I(x)={icw: x%()=0}.

If E is an infinite subset of w, all the above definitions are naturally modified
to the product i]‘IEXi. Let
(]

ge: O%w+1) — VEw+1)

be the quotient mapping. For each x= v, x|E denotes ¢g(x°| E), where x| E
is the function x°<“w restricted on E.
For f, g, we define

fs*g iff f(1)<g(7) for almost all i<w.

<* is defined by <* and not =*. Note that <* is a quasi-order in [J. =<*
induces a partial order < in Vv, that is,

xZy if xBg*ys,
Similarly, <* induces <. For subsets A, BCw, we define
AC*B iff ANB is finite;
A=*B  iff AC*B and BC*A.

Let “woc (1 be the set of all functions from  to w. Then the image of “w by
g is V°@C V. Let us denote this V%w by V. 4

Since the togology of w+1 is the order topology, the basic set in OJ is of
the form ig [as, b;], where a;<w, or more strictly, we can add the condition

that a;=b, if b;<w. Hence, in vV, we make a convention that a basic set in Vv
means an interval :
[x, yY]={zeV:xs25y)
such that (1). x=vVw;
(2). x=y on F(y), that is, x°(’)=y°() for almost all ;= F(y).
We say a point yE Ve is increasing or unbounded if some x"=“w is so.
Let E be an infinite subset of w. For an unbounded function fefw we
define a function A(f)=“w by

h(fXn)=f(1), new
where -
j=min{i€E: i=n and f({)=max{f(k): ke E, k<i}}.

Note that the condition f(;)=max{f(k): ke E, k<i} is always satisfied if f is
increasing.

We call this h(f) the hat of f. For an unbounded x< V¥w the hat of x is
defined by B



On the Absolutely paracompact subsets of V“(w-+1) 115

h(x)=q(h(x")eVw.
For x& v such that x|F(x) is unbounded, we often use
h(x | F(x)).

and abbreviate this to 4(x). Note that h(x)E Vo, and that h(x)<x if x|F(x)
is increasing. When we consider h(x), we always assume that x|F(x) is un-
bounded.

LEMMA 1. Let ECw be infinite, and x<VFw be bounded. If yEVaw is
increasing, then y|E<x implies y<h(x).

PROOF. The condition y| E<x implies A(y| E)<h(x). Since 3y is increas-
ing, we know that y<h(y|E). Hence we get y<h(x).

Recall our convention that the basic set [x, y] is chosen so that x=y on
F(y). Then the following lemma is easy to see.

LeEMMA 2. Suppose that x, yev, anda V.=[%, x], V,=[5, y] are basic
sets. Then VNV ,#@ if all the following three conditions hola :

(1) x=y on F(x)NF(y);

(2) =<y on F(yNF(x);

(B) y=x on F(x)\F(y).

. We define a special relation in v, denoted <, as follows. We write x<y
if the following two conditions are satisfied :
(i) x=y on F(x)N\F(3);
(ii) h(x)<y on F(y)\F(x).
Note that if x<y, then A(x)<h(y). ‘ .
A subset of Vw is called dominating if it is cofinal in {(Vw, <), or equi-
valently, cofinal in <{w®, <*)>. Define the cardinal

d=min{|D|: D is a dominating subset in Jo}.
Note w,<d<c=2%. In the sequel, we fix a dominating family
D={ga: a=d}, ¢a=q(fa), [faE"0®
in VoC vV 'such that each f. is increasing. For every a<d put |
I, ={x=V:x<qs on F(x)},
MI=0.,\Ull;.

f<a
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Since 9 is dominating, we have
V=U{ll,: a<d}.

Focusing on the partial order <, we call that a subset ACV is super-bounded
if for each xev
{a<d: h(y|F(YNF(x)ell,, x<ys A}

is bounded in d. (Note that if there is no y with x<y= A for each x€ v,
then A is super-bounded.)
More precisely, let call A super-bounded by g: V—d if for every x€v

g(x)=sup{a<d: W(y|FyNF(x)Nell,., x<ysA}.

Let A be super-bounded by g and let x&<V be an arbitrary point. Since
{g«: @=g(x)} can not dominate Vw, there exists y.& Vw such that y,Zgq,. for
all a<g(x). Fix these y,’s. Let C be an open cover of V. For each x4,
we call V,=[%, x] a good basic neighborhood of x relative to A and C if it
satisfies the following :

(i) V. is a basic set and is contained in some member of C:

(ii) E>h(x);

(iii) X>gp, where B is such that Xeﬁﬁ;

(iv) %>y., where y. is as above;

(v) Z is increasing.

LEMMA 3. Let A be super-bounded, and x, y=A. If V., V, are good basic
neighborhoods, then the conditions

x&V, ana y&EV,

imply
V.N\V,=@.

PROOF. We consider five cases.

(1) x#y on F(x)NF(y). Then V.N\V,=@ by Lemma 2.

(2) F(x)NF(y)=*@. Then, either y3>h(x) on F(y) or x> h(y) on F(x).

Indeed, if y>h(x) on F(y), then h(y)>h(x) since F(x)N\F(y)=*@. Hence
x<h(y) on F(x). Since *>h(x) and 5>h(y), it follows that either y2% on
F(y) or x27 on F(x) happens; which means V.N\V,=@® by Lemma 2.

Now in the following cases, we can assume that x=y on F(x)N\F(») and
that F(x)N\F(y) is infinite. Take a, 8 such that x=Ils, yell, and assume

that a<8.
(3) F(xa)NF(y) is infinite. Since x,=g. On F(x.), and §>g¢,, we have
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J=<x on F(x )NF(y).
Since F(x.)C*F(x), we get
¥<x  on F(x\F(y).

Hence V,N\V,=@ by Lemma 2.

(4) F(y)\F(x,) is infinite and F(x.)C*F(y). If x«y, then h(x)£y on
F(y)\F(x) because x and y satisfy the first condition of x<y. From %> h(x)
it follows that

Ly on F(y)\F(x).

Hence V.N\V,=@ by Lemma 2. Note thrt F(y)\NF(x)=*F(y)\F(x,) because
F(O)NF(xNF(x2)=*@. So F(y)\F(x) is infinite,.
If x<y, then
h(y| FONF(x)ell,

for some £<g(x) because y=A and A is super-bounded by g. This means

h(Y | F(yNF(x)=q;¢ .
On the otheer hand, by the definition of y,, we have

yx,ig% .
From %>y, it follows that
.%j<__-05 .
Hence
FELR(Y|F(yNF(x)).
By we get
Ly on F(y)\NF(x).

which shows V.N\V =@ by Lemma 2.
(5) F(y)=*F(x,). Since x=y on F(y) and x&¢V ,, there exists an infinite
subset GCF(x)\F(y) such that ‘

x<y on G.
Hence V. NV ,=@.
This completes the proof of Lemma 3.
x€ vV is called a boundea point if x“|F(x) is bounded. The points in the
previous lemma are unbounded points. For every bounded point x, we simply

choose an increasing % so that V.[X, x] is contained in some member of C.
Such V. is also called a good neighborhood. The next lemma is easy.

LEMMA 4. Suppose that x, y are boundea ana x+y, or that x is boundea
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but y is unbounded. Then
V.NV,=@
for gooa neighborhoods V ., V.

Now we come to the main theorem.

THEOREM 5. Every super-bounded subset of < is paracompact. Precisely,
every open cover of a super-boundea subset of <V has a refinement consisting of
pairwise disjoint basic sets.

PROOF. Suppose that A is the super-bounded subset of ¥. By induction
we will define the families K(a) for a<d so that the following hold :

(1) K(a) is a disjoint collection consisting of good basic neighborhoods of
some points in AN/, ;

(2) K(a) refines C;

(3) K(a) covers ANIl,;

4) Kla)CK(B) if a<p.

For a stage B<d, let B=(ANIIg)\NU{K(a): a<f}, and define

K'(B)={V.,: V. is good neighborhood of x& B},

K(B)=K'(B)JU{K(a): a<B}.
By and 4 we can conclude that K(B) satisfies (1). Then, it is easy
to check that K(a), a<pf, satisfy (1)-(4). By (3). {K(a):a=<d} covers A=
U{ANIT,: a<d}. By (1) and (2), {K(a): a<d} is a disjoint collection refining
C. Thus we can conclude that A is paracompact.

x, yEV are said be compatible if x=y on F(x)N\F(y). Then, xUyEV is
a point such that F(x\Uy)=F(x)UF(y), (xUy)|F(x)=x|F(x) and (x\Uy)|F(y)
=y F().

Let A, B are super-bounded, and xe ACB. B is called on expansion of A
by x if we have x\Uye B whenever y is a point in A such that: (i) x, y are
compatible; x>A(y) on F(x)\F(y); (iii) y>h(x) on F(y\NF(x). Let x¢&\UU,
where A is a family of super-bounded sets and B is a super-bounded set. Theén
B is called an expansion of A by x if xUy= B whenever y is 'a point in \U.A
such that (i), (it), (iii) as above. C

LEMMA 6. Suppose A is a super-bounded set, and x& A. Then the least
expansion of A by x exists.

- PROOF. Let
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B=AUU{x\Uy: y= A satisfies the above (i), (ii) and (iii)}.

To show B is the desired expansion, it suffices to show B is super-bounded.
Note first that for each z& v

{a: h(xUy | F(x\UyNF)ell,, xUyB, 2<xUy} (*)

is bounded in d.
Indeed,
{a: h(xUy|F(xUyNF(2)ell,, ye B, z<y}

is bounded in 4. So let B be the supremum of this set; then
h(x\ Uy F(x\Jy)NF(2)<qpV h(x | F{x)\F(2))
where \/ is an operation on Vv such that
wVv=q(w V"), (wBVVE)(@)=max {w"(), v°(@)}.
From the fact () it follows that for each z& Vv,
{a: h(y|FYONF(2)E I, yE B, 2<y}

is bounded in d. Hence B is super-bounded.

Fix f<cof(d). Let A,, a<pf, be super-bounded subsets in V. Let & be
a refinement of C covering \U{A.:a<B}. & is called a gooa refinement if
every V,.=[%, x]=® is a good basic neighborhood of x relative to A,, where

r=min{a<B:x=A, and V.= 3}.

LEMMA 7. If B<cof(d), and B is a good refinement covering \U{A,: a<B},
then \UB is closed in V.

PROOF. Let A, be super-bounded by g,. Let g: V—d be a function with
the property that g(x)=sup(g.(x): a<B}. (Such g exists because B<cof(d))
Fix a set B, which is super-bounded by g; then it is clear that U{A,: a<f}

C B,.
Assume x&\U4®. Let B be the expansion of B, by x, the existence of

which is assured by Lemma 6. Define an ¥= Vo so that:
(i) V.,=[%, x] is a good basic neighborhood of x relative to B:

(ii) %>ge where
§=sup{a: h(y)| FOINF(x)el,, x<y< B}.

To sho U3 is closed, we will claim that V. NV ,=@ for every V & 3.
In the cases that (1) xs=y on F(x)N\F(y), or (2) F(x)NF(y)=*@, it is easy
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to prove V,N\V,=@ by the same argument as in the proof of Lemma 3. So,
in the next cases (3) and (4), we assume that x=7v on the infinite F(x)N\F(y).

CAsE (3): XEﬁﬁ, yeﬁa and B=a.

Suppose that y=A; and V, is the good neighborhood of y in A,. Since
g(x)=g,x) fir all x€v and we many assume that B is super-bounded by g,
we get that V,N\V =@ by the same way as in Lemma 3.

CASE (4): xeﬁﬁ, yeﬁa and B<a.

If xA(h(y) on F(x)\NF(y) or y%(h(x) on F(y)\F(x), then the conditions
#>h(x) and §>h(y) imply that

x25 on F(x)\NF(y) or yZ% on F(y)\F(x).

Hence V.N\V,=@® by Lemma 2. If x>h(y) on F(x)\F(») and y>h(x) on
F(y)/F(x), then x\Uye B. Then

h(x Uy | F(x UYNF(x)<q,; <% .
On the other hand,

h(y | F(YNF(x)=h(x Uy | F(x\Uy)\F(x))
since
YIFONF(x)=xUy|F(x Uy)NF(x) .
So we have

h(y | F(ONF(x)<X% .
Hence, by Lemma 1, y £ % on F(y)\F(x), which shows V.N\V ,=@ by Lemma 2.

THEOREM 8. The union of cof(d) many super-bounded sets is paracompact.

PROOF. Let A,, a<d, be super-bounded subsets. Applying [Theorem 5 and
Lemma 71 we can show that \U{A,: a<cof(d)} is paracompact. Indeed, let
B<cof(d) and @ be a disjoint good refinement covering \U{A.: a<fB}. Then,
by Lemma 7, \U is closed. For the set (V\8)"\A;, as a super-bounded set,
there is a good refinement covering it by [Theorem 5 Since V\\U$ is open,
by suitable contraction we can make A satisfy that 4\ 3 is a disjoint collec-
tion. Thus, by induction, we can get a refinement covering \U{A,: a<cof(d)}
consistinng of disjoint basic sets. This completes the proof.

Now remains an open question: Is ¥ a union of cof(d) many super-bounded
sets in ZFC? I conjecture NO. To answer this question, it may be useful to

answer first the question whether remains true if one replaces 8 by
cof (d).
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