ON THE ABSOLUTELY PARACOMPACT SUBSETS OF $\nabla^{\omega}(\omega+1)^{(*)}$

By

Shoulian YANG

Rudin [R] first proved under CH that the box product $\square^{\omega}(\omega+1)$ of countable many copies of $\omega+1$ is paracompact. But since then it is still unknown if this simplest box product is paracompact in ZFC. Kunen [K] showed that the paracompactness of $\square^{\omega}(\omega+1)$ is equivalent to that of the reduced box product $\nabla^{\omega}(\omega+1)$. In this paper, we give out some special subsets of $\nabla^{\omega}(\omega+1)$ which is paracompact in ZFC (see Theorems 5, 8), hoping that our results will become helpful toward the solution of the paracompactness of $\nabla^{\omega}(\omega+1)$ itself. For survey of box products see van Douwan [vD].

Given spaces $X_i(i \in \omega)$, an open box in the Cartesian product $\prod_{i \in \omega} X_i$ is a set of the form $\prod_{i \in \omega} U_i$, where U_i is an open subset of X_i . The topology generated by all open boxes is the box topology. $\prod_{i \in \omega} X_i$ with the product is denoted by $\prod_{i \in \omega} X_i$ and is called the box product. We define the reduced (or nabla) product ∇X_i as the quotient space $\prod_{i \in \omega} X_i/=*$ by the equivalence relation =* such that f=*g iff f(i)=g(i) for almost all $i \in \omega$, that is, $\{i \in \omega: f(i)=g(i)\}$ is finite. Let us use g to denote the quotient map

$$q: \bigsqcup_{i\in\omega} X_i \longrightarrow \bigvee_{i\in\omega} X_i$$
.

When all factors are the same space X, we denote $\underset{i \in \omega}{\square} X_i$, $\underset{i \in \omega}{\nabla} X_i$ by $\underset{\omega}{\square} X_i$, $\underset{i \in \omega}{\nabla} X_i$ respectively. In this paper, we simply denote $\underset{i \in \omega}{\square} (\omega + 1)$, $\underset{i \in \omega}{\nabla} (\omega + 1)$ by $\underset{i \in \omega}{\square}$, $\underset{i \in \omega}{\nabla} (\omega + 1)$ respectively.

We make our convention that members of \square are denoted by f, g, h, \cdots , while members of ∇ are denoted by x, y, z, \cdots . For each $x \in \nabla$, we choose a fixed member of $q^{-1}(x)$ and denoted it by x^{\square} . To denote an arbitrary member of $q^{-1}(x)$ we use the symbol x^{\square} .

For each $x \in \nabla$, we put

^(*) The project supported by National Science Foundation of China. Received May 1, 1991. Revised July 15, 1991.

$$F(x) = \{i \in \omega : x^{\square}(i) < \omega\}$$
 and $I(x) = \{i \in \omega : x^{\square}(i) = \omega\}$.

If E is an infinite subset of ω , all the above definitions are naturally modified to the product $\prod_{i \in F} X_i$. Let

$$q_E: \Box^E(\boldsymbol{\omega}+1) \longrightarrow \nabla^E(\boldsymbol{\omega}+1)$$

be the quotient mapping. For each $x \in \nabla$, $x \mid E$ denotes $q_E(x^{\square} \mid E)$, where $x^{\square} \mid E$ is the function $x^{\square} \in {}^{\omega}\omega$ restricted on E.

For f, $g \in \square$, we define

$$f \leq *g$$
 iff $f(i) \leq g(i)$ for almost all $i < \omega$.

<* is defined by \leq * and not =*. Note that \leq * is a quasi-order in \square . \leq * induces a partial order \leq in ∇ , that is,

$$x \leq y$$
 if $x^{\square} \leq *y^{\square}$.

Similarly, $<^*$ induces <. For subsets A, $B \subset \omega$, we define

$$A \subset B$$
 iff $A \setminus B$ is finite;

$$A=*B$$
 iff $A\subset *B$ and $B\subset *A$.

Let ${}^{\omega}\omega \subset \Box$ be the set of all functions from ω to ω . Then the image of ${}^{\omega}\omega$ by q is $\nabla^{\omega}\omega \subset \nabla$. Let us denote this $\nabla^{\omega}\omega$ by $\nabla\omega$.

Since the togology of $\omega+1$ is the order topology, the basic set in \square is of the form $\prod_{i\in\omega} [a_i, b_i]$, where $a_i<\omega$, or more strictly, we can add the condition that $a_i=b_i$ if $b_i<\omega$. Hence, in ∇ , we make a convention that a basic set in ∇ means an interval

$$[x, y] = \{z \in \nabla : x \le z \le y\}$$

such that (1). $x \in \nabla \omega$;

(2). x=y on F(y), that is, $x^{\square}(i)=y^{\square}(i)$ for almost all $i\in F(y)$.

We say a point $y \in \nabla \omega$ is increasing or unbounded if some $x^{\square} \in {}^{\omega}\omega$ is so.

Let E be an infinite subset of ω . For an unbounded function $f \in {}^{E}\omega$ we define a function $h(f) \in {}^{\omega}\omega$ by

$$h(f)(n)=f(j), n\in\omega$$

where

$$j=\min\{i\in E: i\geq n \text{ and } f(i)=\max\{f(k): k\in E, k\leq i\}\}.$$

Note that the condition $f(i)=\max\{f(k): k\in E, k\leq i\}$ is always satisfied if f is increasing.

We call this h(f) the hat of f. For an unbounded $x \in \nabla^E \omega$ the hat of x is defined by

$$h(x)=q(h(x^{\square}))\in \nabla \omega$$
.

For $x \in \nabla$ such that $x \mid F(x)$ is unbounded, we often use

and abbreviate this to h(x). Note that $h(x) \in \nabla \omega$, and that $h(x) \leq x$ if $x \mid F(x)$ is increasing. When we consider h(x), we always assume that $x \mid F(x)$ is unbounded.

LEMMA 1. Let $E \subset \omega$ be infinite, and $x \in \nabla^E \omega$ be bounded. If $y \in \nabla \omega$ is increasing, then $y \mid E \leq x$ implies $y \leq h(x)$.

PROOF. The condition $y \mid E \leq x$ implies $h(y \mid E) \leq h(x)$. Since y is increasing, we know that $y \leq h(y \mid E)$. Hence we get $y \leq h(x)$.

Recall our convention that the basic set [x, y] is chosen so that x=y on F(y). Then the following lemma is easy to see.

LEMMA 2. Suppose that $x, y \in \nabla$, and $V_x = [\tilde{x}, x], V_y = [\tilde{y}, y]$ are basic sets. Then $V_x \cap V_y \neq \emptyset$ if all the following three conditions hold:

- (1) x = y on $F(x) \cap F(y)$;
- (2) $\tilde{x} \leq y$ on $F(y) \setminus F(x)$;
- (3) $\tilde{y} \leq x$ on $F(x) \setminus F(y)$.

We define a special relation in ∇ , denoted \prec , as follows. We write $x \prec y$ if the following two conditions are satisfied:

- (i) x=y on $F(x) \cap F(y)$;
- (ii) h(x) < y on $F(y) \setminus F(x)$.

Note that if x < y, then $h(x) \le h(y)$.

A subset of $\nabla \omega$ is called *dominating* if it is cofinal in $\langle \nabla \omega, \leq \rangle$, or equivalently, cofinal in $\langle \omega^{\omega}, \leq^* \rangle$. Define the cardinal

 $\underline{d} = \min\{|D| : D \text{ is a dominating subset in } \nabla \omega\}.$

Note $\omega_1 \le d \le c = 2^{\omega}$. In the sequel, we fix a dominating family

$$\mathcal{D} = \{q_{\alpha} : \alpha \leq \underline{d}\}, q_{\alpha} = q(f_{\alpha}), f_{\alpha} \in {}^{\omega}\omega$$

in $\nabla \omega \subset \nabla$ such that each f_{α} is increasing. For every $\alpha < \underline{d}$ put

$$\Pi_{\alpha} = \{ x \in \nabla : x \leq q_{\alpha} \text{ on } F(x) \},$$

$$\tilde{\Pi}_{\alpha} = \Pi_{\alpha} \setminus \bigcup_{\beta < \alpha} \Pi_{\beta}.$$

Since \mathcal{D} is dominating, we have

$$\nabla = \bigcup \{ \Pi_{\alpha} : \alpha < \underline{d} \}.$$

Focusing on the partial order \prec , we call that a subset $A \subset \nabla$ is super-bounded if for each $x \in \nabla$

$$\{\alpha < \underline{d} : h(y | F(y) \setminus F(x)) \in \Pi_{\alpha}, x < y \in A\}$$

is bounded in \underline{d} . (Note that if there is no y with $x < y \in A$ for each $x \in \nabla$, then A is super-bounded.)

More precisely, let call A super-bounded by $g: \nabla \rightarrow \underline{d}$ if for every $x \in \nabla$

$$g(x) = \sup\{\alpha < \underline{d} : h(y \mid F(y) \setminus F(x)) \in \Pi_{\alpha}, x < y \in A\}.$$

Let A be super-bounded by g and let $x \in \nabla$ be an arbitrary point. Since $\{q_{\alpha}: \alpha \leq g(x)\}$ can not dominate $\nabla \omega$, there exists $y_x \in \nabla \omega$ such that $y_x \leq q_{\alpha}$ for all $\alpha \leq g(x)$. Fix these y_x 's. Let \mathcal{C} be an open cover of ∇ . For each $x \in A$, we call $V_x = [\tilde{x}, x]$ a good basic neighborhood of x relative to A and \mathcal{C} if it satisfies the following:

- (i) V_x is a basic set and is contained in some member of C:
- (ii) $\tilde{x} > h(x)$;
- (iii) $\tilde{x} > q_{\beta}$, where β is such that $x \in \tilde{\Pi}_{\beta}$;
- (iv) $\tilde{x} > y_x$, where y_x is as above;
- (v) \tilde{x} is increasing.

LEMMA 3. Let A be super-bounded, and $x, y \in A$. If V_x, V_y are good basic neighborhoods, then the conditions

$$x \notin V_y$$
 and $y \notin V_x$

imply

$$V_x \cap V_y = \emptyset$$
.

PROOF. We consider five cases.

- (1) $x \neq y$ on $F(x) \cap F(y)$. Then $V_x \cap V_y = \emptyset$ by Lemma 2.
- (2) $F(x) \cap F(y) = *\emptyset$. Then, either $y \gg h(x)$ on F(y) or $x \gg h(y)$ on F(x).

Indeed, if y > h(x) on F(y), then h(y) > h(x) since $F(x) \cap F(y) = *\emptyset$. Hence x < h(y) on F(x). Since $\tilde{x} > h(x)$ and $\tilde{y} > h(y)$, it follows that either $y \not \geq \tilde{x}$ on F(y) or $x \not \geq \tilde{y}$ on F(x) happens; which means $V_x \cap V_y = \emptyset$ by Lemma 2.

Now in the following cases, we can assume that x=y on $F(x)\cap F(y)$ and that $F(x)\cap F(y)$ is infinite. Take α , β such that $x\in \tilde{H}_{\beta}$, $y\in \tilde{H}_{\alpha}$ and assume that $\alpha\leq \beta$.

(3) $F(x_{\alpha}) \setminus F(y)$ is infinite. Since $x_{\alpha} \leq q_{\alpha}$ on $F(x_{\alpha})$, and $\tilde{y} > q_{\alpha}$, we have

$$\tilde{y} \leq x$$
 on $F(x_{\alpha}) \setminus F(y)$.

Since $F(x_\alpha) \subset *F(x)$, we get

$$\tilde{y} \leq x$$
 on $F(x) \setminus F(y)$.

Hence $V_x \cap V_y = \emptyset$ by Lemma 2.

(4) $F(y) \ F(x_{\alpha})$ is infinite and $F(x_{\alpha}) \subset *F(y)$. If $x \not< y$, then $h(x) \not< y$ on $F(y) \ F(x)$ because x and y satisfy the first condition of x < y. From $\tilde{x} > h(x)$ it follows that

$$\tilde{x} \not\leq y$$
 on $F(y) \setminus F(x)$.

Hence $V_x \cap V_y = \emptyset$ by Lemma 2. Note that $F(y) \setminus F(x) = *F(y) \setminus F(x_\alpha)$ because $F(y) \cap (F(x) \setminus F(x_\alpha)) = *\emptyset$. So $F(y) \setminus F(x)$ is infinite.

If x < y, then

$$h(y|F(y)\backslash F(x)) \in \Pi_{\xi}$$

for some $\xi \leq g(x)$ because $y \in A$ and A is super-bounded by g. This means

$$h(y|F(y)\backslash F(x)) \leq q_{\varepsilon}$$
.

On the other hand, by the definition of y_x , we have

$$y_x \not\leq q_{\xi}$$
.

From $\tilde{x} > y_x$ it follows that

$$\tilde{x} \not\leq q_{\xi}$$
.

Hence

$$\tilde{x} \leq h(y|F(y) \setminus F(x))$$
.

By Lemma 1 we get

$$\tilde{x} \leq y$$
 on $F(y) \setminus F(x)$.

which shows $V_x \cap V_y = \emptyset$ by Lemma 2.

(5) $F(y)=*F(x_{\alpha})$. Since x=y on F(y) and $x \notin V_y$, there exists an infinite subset $G \subset F(x) \setminus F(y)$ such that

$$x < y$$
 on G .

Hence $V_x \cap V_y = \emptyset$.

This completes the proof of Lemma 3.

 $x \in \nabla$ is called a *bounded* point if $x^{\square}|F(x)$ is bounded. The points in the previous lemma are unbounded points. For every bounded point x, we simply choose an increasing \tilde{x} so that $V_x[\tilde{x}, x]$ is contained in some member of \mathcal{C} . Such V_x is also called a good neighborhood. The next lemma is easy.

LEMMA 4. Suppose that x, y are bounded and $x \neq y$, or that x is bounded

but y is unbounded. Then

$$V_x \cap V_y = \emptyset$$

for good neighborhoods Vx, Vy.

Now we come to the main theorem.

Theorem 5. Every super-bounded subset of ∇ is paracompact. Precisely, every open cover of a super-bounded subset of ∇ has a refinement consisting of pairwise disjoint basic sets.

PROOF. Suppose that A is the super-bounded subset of ∇ . By induction we will define the families $K(\alpha)$ for $\alpha < \underline{d}$ so that the following hold:

- (1) $K(\alpha)$ is a disjoint collection consisting of good basic neighborhoods of some points in $A \cap \Pi_{\alpha}$;
 - (2) $K(\alpha)$ refines C;
 - (3) $K(\alpha)$ covers $A \cap \Pi_{\alpha}$;
 - (4) $K(\alpha) \subset K(\beta)$ if $\alpha < \beta$.

For a stage $\beta < \underline{d}$, let $B = (A \cap \Pi_{\beta}) \setminus \bigcup \{K(\alpha) : \alpha < \beta\}$, and define

$$K'(\beta) = \{V_x : V_x \text{ is good neighborhood of } x \in B\},$$

$$K(\beta) = K'(\beta) \cup \bigcup \{K(\alpha) : \alpha < \beta\}.$$

By Lemma 3 and 4 we can conclude that $K(\beta)$ satisfies (1). Then, it is easy to check that $K(\alpha)$, $\alpha \leq \beta$, satisfy (1)-(4). By (3). $\{K(\alpha) : \alpha \leq \underline{d}\}$ covers $A = \bigcup \{A \cap \Pi_{\alpha} : \alpha < \underline{d}\}$. By (1) and (2), $\{K(\alpha) : \alpha < \underline{d}\}$ is a disjoint collection refining \mathcal{C} . Thus we can conclude that A is paracompact.

 $x, y \in \nabla$ are said be compatible if x = y on $F(x) \cap F(y)$. Then, $x \cup y \in \nabla$ is a point such that $F(x \cup y) = F(x) \cup F(y)$, $(x \cup y) | F(x) = x | F(x)$ and $(x \cup y) | F(y) = y | F(y)$.

Let A, B are super-bounded, and $x \in A \subset B$. B is called on *expansion* of A by x if we have $x \cup y \in B$ whenever y is a point in A such that: (i) x, y are compatible; x > h(y) on $F(x) \setminus F(y)$; (iii) y > h(x) on $F(y) \setminus F(x)$. Let $x \notin \bigcup \mathcal{A}$, where \mathcal{A} is a family of super-bounded sets and B is a super-bounded set. Then B is called an *expansion* of \mathcal{A} by x if $x \cup y \in B$ whenever y is a point in $\bigcup \mathcal{A}$ such that (i), (iii) as above.

LEMMA 6. Suppose A is a super-bounded set, and $x \notin A$. Then the least expansion of A by x exists.

PROOF. Let

 $B=A\cup\bigcup\{x\cup y:y\in A \text{ satisfies the above (i), (ii) and (iii)}\}.$

To show B is the desired expansion, it suffices to show B is super-bounded. Note first that for each $z \in \nabla$

$$\{\alpha: h(x \cup y \mid F(x \cup y) \setminus F(z)) \in \tilde{\Pi}_{\alpha}, \ x \cup yB, \ z < x \cup y\} \tag{*}$$

is bounded in d.

Indeed,

$$\{\alpha: h(x \cup y \mid F(x \cup y) \setminus F(z)) \in \tilde{\Pi}_{\alpha}, y \in B, z < y\}$$

is bounded in \underline{d} . So let β be the supremum of this set; then

$$h(x \cup y \mid F(x \cup y) \setminus F(z)) \leq q_{\beta} \vee h(x \mid F(x) \setminus F(z))$$

where \vee is an operation on ∇ such that

$$w \lor v = q(w^{\square} \lor v^{\square}), \qquad (w^{\square} \lor v^{\square})(i) = \max\{w^{\square}(i), v^{\square}(i)\}.$$

From the fact (*) it follows that for each $z \in \nabla$,

$$\{\alpha: h(y|F(y)\backslash F(z))\in \Pi_{\alpha}, y\in B, z \prec y\}$$

is bounded in \underline{d} . Hence B is super-bounded.

Fix $\beta < \operatorname{cof}(\underline{d})$. Let A_{α} , $\alpha < \beta$, be super-bounded subsets in ∇ . Let $\widetilde{\mathcal{B}}$ be a refinement of \mathcal{C} covering $\bigcup \{A_{\alpha} : \alpha < \beta\}$. $\widetilde{\mathcal{B}}$ is called a *good refinement* if every $V_x = [\widetilde{x}, x] \in \mathcal{B}$ is a good basic neighborhood of x relative to A_r , where

$$\gamma = \min \{ \alpha < \beta : x \in A_{\alpha} \text{ and } V_x \in \mathcal{B} \}.$$

LEMMA 7. If $\beta < \cot(d)$, and \mathcal{B} is a good refinement covering $\bigcup \{A_{\alpha} : \alpha < \beta\}$, then $\bigcup \mathcal{B}$ is closed in ∇ .

PROOF. Let A_{α} be super-bounded by g_{α} . Let $g: \nabla \to \underline{d}$ be a function with the property that $g(x) \ge \sup \{g_{\alpha}(x) : \alpha < \beta\}$. (Such g exists because $\beta < \operatorname{cof}(\underline{d})$) Fix a set B_0 which is super-bounded by g; then it is clear that $\bigcup \{A_{\alpha} : \alpha < \beta\}$ $\subset B_0$.

Assume $x \notin \bigcup \mathcal{B}$. Let B be the expansion of B_0 by x, the existence of which is assured by Lemma 6. Define an $\tilde{x} \in \nabla \omega$ so that:

- (i) $V_x = [\tilde{x}, x]$ is a good basic neighborhood of x relative to B:
- (ii) $\tilde{x} > q_{\tilde{\epsilon}}$, where

$$\xi = \sup\{\alpha : h(y) | F(y) \setminus F(x)\} \in \tilde{\Pi}_{\alpha}, x < y \in B\}.$$

To sho $\cup \mathcal{B}$ is closed, we will claim that $V_x \cap V_y = \emptyset$ for every $V_y \in \mathcal{B}$. In the cases that (1) $x \neq y$ on $F(x) \cap F(y)$, or (2) $F(x) \cap F(y) = \emptyset$, it is easy to prove $V_x \cap V_y = \emptyset$ by the same argument as in the proof of Lemma 3. So, in the next cases (3) and (4), we assume that x = y on the infinite $F(x) \cap F(y)$. CASE (3): $x \in \tilde{\Pi}_{\beta}$, $y \in \tilde{\Pi}_{\alpha}$ and $\beta \geq \alpha$.

Suppose that $y \in A_r$ and V_r is the good neighborhood of y in A_r . Since $g(x) \ge g_r(x)$ fir all $x \in \nabla$ and we many assume that B is super-bounded by g, we get that $V_x \cap V_y = \emptyset$ by the same way as in Lemma 3.

CASE (4): $x \in \tilde{\Pi}_{\beta}$, $y \in \tilde{\Pi}_{\alpha}$ and $\beta < \alpha$.

If $x \not> h(y)$ on $F(x) \setminus F(y)$ or $y \not> h(x)$ on $F(y) \setminus F(x)$, then the conditions $\tilde{x} > h(x)$ and $\tilde{y} > h(y)$ imply that

$$x \not \geq \tilde{y}$$
 on $F(x) \setminus F(y)$ or $y \not \geq \tilde{x}$ on $F(y) \setminus F(x)$.

Hence $V_x \cap V_y = \emptyset$ by Lemma 2. If x > h(y) on $F(x) \setminus F(y)$ and y > h(x) on F(y)/F(x), then $x \cup y \in B$. Then

$$h(x \cup y | F(x \cup y) \setminus F(x)) \leq q_r < \tilde{x}$$
.

On the other hand,

$$h(y|F(y)\backslash F(x)) = h(x \cup y|F(x \cup y)\backslash F(x))$$

since

$$y | F(y) \setminus F(x) = x \cup y | F(x \cup y) \setminus F(x)$$
.

So we have

$$h(y|F(y)\backslash F(x)) < \tilde{x}$$
.

Hence, by Lemma 1, $y \not\geq \tilde{x}$ on $F(y) \setminus F(x)$, which shows $V_x \cap V_y = \emptyset$ by Lemma 2.

THEOREM 8. The union of $cof(\underline{d})$ many super-bounded sets is paracompact.

PROOF. Let A_{α} , $\alpha < \underline{d}$, be super-bounded subsets. Applying Theorem 5 and Lemma 7 we can show that $\bigcup \{A_{\alpha} : \alpha < \operatorname{cof}(\underline{d})\}$ is paracompact. Indeed, let $\beta < \operatorname{cof}(\underline{d})$ and \mathcal{B} be a disjoint good refinement covering $\bigcup \{A_{\alpha} : \alpha < \beta\}$. Then, by Lemma 7, $\bigcup \mathcal{B}$ is closed. For the set $(\nabla \setminus \mathcal{B}) \cap A_{\beta}$, as a super-bounded set, there is a good refinement covering it by Theorem 5. Since $\nabla \setminus \bigcup \mathcal{B}$ is open, by suitable contraction we can make \mathcal{A} satisfy that $\mathcal{A} \cup \mathcal{B}$ is a disjoint collection. Thus, by induction, we can get a refinement covering $\bigcup \{A_{\alpha} : \alpha < \operatorname{cof}(\underline{d})\}$ consisting of disjoint basic sets. This completes the proof.

Now remains an open question: Is ∇ a union of $cof(\underline{d})$ many super-bounded sets in ZFC? I conjecture NO. To answer this question, it may be useful to answer first the question whether Lemma 7 remains true if one replaces β by $cof(\underline{d})$.

References

- [vD] E.K. van Douwen, Covering and separation properties of box products, Surveys in General Topology (ed. G.M. Reed), Academic Press 1980, pp. 55-129.
- [k] K. Kunen, On paracompactness of box products of compact spaces, Trans. AMS. 240 (1978), pp. 307-318.
- [R] M. E. Rudin, The box product of countable many compact metric spaces, General Top. Appl., 2 (1972), pp. 293-298.

Mathematics Department Beijing Teacher's Collage Beijing, China