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ON DUAL-BIMODULES

(Dedicated to Prof. G. Azumaya for his seventieth birthday)

By

Y. KURATA and K. HASHIMOTO

A ring $R$ with identity in which $l=r_{R}l_{R}(l)$ for every right ideal 1 and $J=$

$l_{R}r_{R}(J)$ for every left ideal $J$ of $R$ is called a dual ring. This ring has been
investigated by many authors. As is well-known, an Artinian dual ring is a
QF-ring and, recently, Hajarnavis and Norton [4] have studied dual rings and
pointed out that certain properties well-known for QF-rings are also seen to
hold without the Artinian assumption.

In this paper, we shall introduce the notion of dual-bimodules and try to
give a module-theoretic characterization of dual rings. Let $R$ and $S$ be rings
with identity and $RQ_{s}$ an $(R, S)$-bimodule. We shall call $Q$ a left dual-bimodule
if

(1) $l_{R}t_{Q}(A)=A$ for every left ideal $A$ of $R$ , and
(2) $r_{Q}l_{R}(Q^{\prime})=Q^{\prime}$ for every S-submo\’oule $Q^{\prime}$ of $Q$ .
A right dual-bimodule is similarly defined and we shall call $Q$ a dual-

bimodule if it is a left dual-bimodule and is a right dual-bimodule as well. A
left dual-bimodule need not be a right dual-bimodule in general (see Example
4.2).

Trivially a dual ring is a dual-bimodule. A bimodule which defines a Morita
duality is a dual-bimodule [1, Exercise 24.7]. Furthermore, a dual-bimodule is
a quasi-Frobenius bimodule in the sense of Azumaya [2] (cf. also [5, Theo-
rem 4]).

In Section 1, we shall study basic properties of left dual-bimodules and
show that, among other things, an $(R, S)$-bimodule $Q$ such that the mapping

$\lambda:R-End(Q_{S})$

given by $a\rightarrow a_{L}$ , the left multiplication by $a$ , is surjective is a left dual-bimodule
if and only if every factor module of $RR$ and $Q_{S}$ is Q-torsionless (Theorem 1.4),

for a left dual-bimodule $RQ_{s}$ the ring $R$ is semilocal (Theorem 1.10) and that
for every R-module $RQ\neq 0,$ $RQ_{s}$ is a left dual-bimodule with $S=End(_{R}Q)$ if and
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only if $R$ is simple Artinian (Theorem 1.16). Finally, in closing this section,
we shall show that the notion of left dual-bimodules is closed under Morita
equivalence (Theorem 1.20).

We shall treat in Section 2 dual-bimodules. It is shown that for an $(R, S)-$

bimodule $Q$ with both $RQ$ and $Q_{S}$ finitely generated, $Q$ is a dual-bimodule if
and only if $RR$ and $S_{S}$ are Q-reflexive and every factor module of $RR,$ $S_{S},$ $RQ$

and $Q_{S}$ is Q-torsionless (Theorem 2.8). Furthermore, if $Q_{S}$ is finitely generated
and rad $(_{R}Q)\leqq rad(Q_{S})$ , then the ring $R$ is semiperfect (Theorem 2.10).

In Section 3, we shall consider a duality defined by a left dual-bimodule
$RQ_{s}$ . It is shown that, in case $RQ$ is finitely generated, a duality defined by $Q$

exists if and only if $Q_{S}$ is quasi-injective and $\lambda$ is surjective (Theorem 3.3) and
that the duality is one between the full subcategory of R-mod of finitely gen-
erated Q-reflexive R-modules and the full subcategory of mod-S of finitely
cogenerated Q-reflexive S-modules (Proposition 3.4).

Finally we shall provide, in Section 4, some examples of left dual-bimodules
to illustrate the results given in this paper.

Throughout this paper, $R$ and $S$ will denote rings with identity. If $RM$ is
a left R-module and $M^{\prime}$ is a submodule of $M$, then we shall write $M^{\prime}\leqq RM$, in
particular, $A\leqq RR$ will mean $A$ is a left ideal of $R$ . For $M‘\leqq_{R}M,$ $M^{\prime}\leqq e(’)RM$

will mean $M^{\prime}$ is essential (small) in $M$. We shall use similar notations for
right S-modules. For an $(R, S)$-bimodule $Q$ , we write $($ $)^{*}=Hom$ $($ –, $Q)$ to de-
note the Q-dual functor.

For notations, definitions and familiar results concerning the ring theory
we shall mainly follow [1].

1. Left $Dual\cdot Bimodules$ .
We shall begin with the following

LEMMA 1.1 [1, Exercise 24.3]. Let $Q$ be a left dual-bimodule. Then for
each indexed set $(A_{\lambda})_{\Lambda}$ of left ideals of $R$ and each indexed set $(Q_{\lambda}^{\prime})_{\Delta}$ of sub-
modules of $Q_{S}$

$r_{Q}(\bigcap_{\Lambda}A_{\lambda})=\Sigma_{\Lambda}t_{Q}(A_{\lambda})$ and $l_{R}(\bigcap_{\Lambda}Q_{\lambda}^{\prime})=\Sigma_{\Lambda}l_{R}(Q_{\lambda}^{\prime})$ .
The preceding lemma implies that if $Q$ is a left dual-bimodule, then the

mapping $A\rightarrow t_{Q}(A)$ is a lattice anti-isomorphism with inverse $Q^{\prime}\rightarrow l_{R}(Q^{\prime})$ between
the submodule lattices of $RR$ and $Q_{S}$ . In particular, we have $l_{R}(Q)=0,$ $i.e$ . $RQ$

is faithful.
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LEMMA 1.2. Let $Q$ be an $(R, S)$-bimodule. Then for $A\leqq RR$ the following
conditions are equivalent:

(1) $l_{R}r_{Q}(A)=A$ .
(2) $R/A$ is a Q-torsionless R-module.

PROOF. This follows from the fact that $l_{R}r_{Q}(A)/A=Rej_{R/A}(Q)$ for every
$A\leqq RR$ [ $1$ , Lemma 24.4], where $Rej_{R/A}(Q)=\cap\{Kerh|h\in Hom_{R}(R/A, Q)\}[1,$ $p$ .
109].

Let $Q$ be a left dual-bimodule. Then by (1.2) $RR$ is Q-torsionless. Hence,
not only cyclic R-modules, but also left ideals of $R$ are Q-torsionless.

Note that if a bimodule $Q$ defines a Morita duality, then every left ideal
of $R$ is Q-reflexive [1, p. 278]. However, there is a dual-bimodule $Q$ which
has no Q-reflexive left ideal of $R$ (see Example 4.1). Hence a dual-bimodule
need not define a Morita duality, in general.

Recall that $\lambda:R\rightarrow End(Q_{S})$ is the mapping given by $a\rightarrow a_{L}$ , the left multi-
plication by $a$ . If $Q$ is a left dual-bimodule, then $RQ$ is faithful and hence $\lambda$

is injective.

LEMMA 1.3. Let $Q$ be an $(R, S)$-bimodule. Then for $Q^{\prime}\leqq Q_{S}$ the following
conditions are equivalent:

(1) $r_{Q}l_{R}(Q^{\prime})=Q^{\prime}$ .
(2) $Q^{\prime}\cong\phi(R/l_{R}(Q^{\prime}))^{*}$ , where $\phi:Q^{\prime}\rightarrow(R/l_{R}(Q^{\prime}))^{*}$ denotes the monomorphism

given by $\phi(u)(a+l_{R}(Q^{\prime}))=au$ for $u\in Q^{\prime},$ $a\in R$ .
Furthermore, (1) implies

(3) $Q/Q^{\prime}$ is Q-torsionless,
$ana$ if $\lambda$ is surjective, then (3) implies (1).

PROOF. Since $Q^{\prime}\leqq r_{Q}l_{R}(Q^{\prime})$ and the composite map of the canonical iso-
morphism $(R/l_{R}(Q^{\prime}))^{*}\cong r_{Q}l_{R}(Q^{\prime})$ with $\phi$ is the identity map of $Q^{\prime}$ , the equality

holds if and only if $\phi$ is onto. This means that (1) and (2) are equivalent.
(1) $\Rightarrow(3)$ follows from the fact that $Rej_{Q/Q^{\prime}}(Q)\leqq t_{Q}l_{R}(Q^{\prime})/Q^{\prime}$ . If $\lambda$ is surjec-

tive, these are the same and (3) implies (1).

Clearly $Q_{S}$ is Q-torsionless. Hence, for a left dual-bimodule $Q$ by (1.3) not
only submodules of $Q_{S}$ , but also factor modules of $Q_{S}$ are Q-torsionless.

Combining these two lemmas, we have

THEOREM 1.4. Let $Q$ be an $(R, S)$-bimodule. If $\lambda$ is surjective, then the



88 Y. KURATA and K. HASHIMOTO

following conditions are equivalent:
(1) $Q$ is a left dual-bimodule.
(2) Every factor module of $RR$ and $Q_{S}$ is Q-torsionless.

As we shall show in (2.7), if $Q$ is a dual-bimodule and $Q_{S}$ is finitely gen-
erated, then $\lambda$ is surjective. However, in case $\lambda$ is not surjective, though every
factor module of $RR$ and $Q_{S}$ is Q-torsionless, we can not conclude that $Q$ is a
left dual-bimodule, in general (see Example 4.4).

The followmg lemma is often useful.

LEMMA 1.5. Let $Q$ be a left dual-bimodule, $A\leqq RR$ and $Q^{\prime}\leqq Q_{S}$ . Then we
have

(1) $A\leqq_{e(s)R}R$ if $ana$ only if $r_{Q}(A)\leqq\iota(e)Q_{s}$ .
(2) $Q^{\prime}\leqq_{e(S)}Q_{S}$ if and only if $l_{R}(Q^{\prime})\leqq s(e)RR$ .

PROOF. (1) Suppose that $A\leqq_{sR}R$ and $n_{Q}(A)\cap Q^{\prime}=0$ for some $Q^{\prime}\leqq Q_{S}$ . Then
by (1.1) $A+l_{R}(Q^{\prime})=R$ and hence $l_{R}(Q^{\prime})=R$ . Thus we have $Q^{\prime}=0$ , from which
we see that $t_{Q}(A)\leqq eQ_{S}$ .

Conversely, suppose that $r_{Q}(A)\leqq eQ_{s}$ and $A+A^{\prime}=R$ for some $A^{\prime}\leqq RR$ . Then
$t_{Q}(A)\cap r_{Q}(A^{\prime})=0$ and hence $r_{Q}(A^{\prime})=0$ . Thus we have $A^{\prime}=R$ , which shows that
$A\leqq sRR$ .

(2) follows from (1) at once.

From this lemma, we can see that the socle corresponds to the radical to

each other under the lattice anti-isomorphism between the submodule lattices
of $RR$ and $Q_{S}$ . Indeed, we have

PROPOSITION 1.6. Let $Q$ be a left dual-bimodule. Then
(1) $Z(RQ)=rad(Q_{S})=r_{Q}(soc(_{R}R))$ where $Z(RQ)$ denotes the singular submodule

$of_{R}Q$ .
(2) rad $(R)=l_{R}(soc(Q_{S}))$ .

PROOF. (1) If $u\in Z(RQ)$ , then by (1.5) $uS\leqq\$ Q_{S}$ and hence $u\in rad(Q_{S})$ .
Conversely, if $u\in rad(Q_{S})$ , then $u$ is contained in some small submodule $Q^{\prime}$ of
$Q_{S}$ . Hence, $uS$ is also small in $Q_{S}$ . Again by (1.5) $l_{R}(u)\leqq eRR$ and $u$ is in
$Z(RQ)$ .

Furthermore, rad $(Q_{S})=\cap$ { $Q^{\prime}\leqq Q_{S}|Q^{\prime}$ is maximal in $Q_{S}$ } $=\cap\{r_{Q}(A)|A$ is
minimal in $RR$ } $=r_{Q}(soc(RR))$ .

Likewise (2) follows from (1.1).
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PROPOSITION 1.7. Let $Q$ be a left dual-bimodule. Then $Q_{S}$ has finite Goldie
dimension.

PROOF. Let $0\neq u\in Q$ . If there is no nonzero submodule of $Q_{S}$ not contain-
ing $u$ , then $Q_{S}$ is indeed uniform. 0therwise there exists a submodule $Q_{u}$ of
$Q_{S}$ maximal with respect to not containing $u$ by Zorn’s lemma. Then $Q/Q_{u}$

is uniform.
Now clearly $\bigcap_{0\neq u\in Q}Q_{u}=0$ . Therefore $R=\Sigma_{0\neq u\in Q}l_{R}(Q_{u})$ and hence there

exist $u_{1},$ $\cdots,$ $u_{n}$ in $Q$ such that $l_{R}(Q_{u_{1}})+\cdots+l_{R}(Q_{u_{n}})=R$ . We therefore have
$\bigcap_{i1}^{n_{=}}Q_{u_{i}}=0$ . Thus $Q$ is embedded into $Q/Q_{u_{1}}\oplus\cdots\oplus Q/Q_{u_{n}}$ , from which we
see that $Q_{S}$ has finite Goldie dimension.

From this proof we see at once

PROPOSITION 1.8. Let $Q$ be a left dual-bimodule. Then
(1) $Q_{S}$ is finitely cogenerated.
(2) soc $(Q_{S})$ is finitely generatea and is the smallest essential submodule of

$Q_{S}$ [ $1$ , Proposition 10.7].

(3) There are only finitely many non-isomorphic simple submodules of $Q_{S}$ .

The preceding proposition is based on the fact that $RR$ is finitely generated.
Hence, we have

PROPOSITION 1.9. Let $Q$ be a left dual-bimodule. Then $Q_{S}$ is finitely gen-
erated if $ana$ only if $RR$ is finitely cogenerated.

If this is the case, soc $(_{R}R)$ is finitely generated and is the smallest essential

left ideal of $R$ .

PROOF. The proof of the “only if” part is similar to that of (1.8). To
prove the “if” part, suppose that $RR$ is finitely cogenerated. Since $Q_{S}=\Sigma_{u\in Q}uS$ ,

it follows that $0=\bigcap_{u\in Q}l_{R}(uS)$ . By assumption there exist $u_{1},$ $\cdots,$ $u_{n}$ in $Q$ such
that $0=\bigcap_{i1}^{n_{=}}l_{R}(u_{i}S)$ and hence we have $Q=\Sigma_{i1}^{n_{=}}u_{i}S$ . This shows that $Q$ is
finitely generated.

THEOREM 1.10. Let $Q$ be a left dual-bimodule. Then $R$ is semilocal, $i.e$ .
$R/rad(R)$ is semisimple.

PROOF. Let soc $(Q_{S})=\oplus_{i}^{n_{\Rightarrow 1}}Q_{i}$ , where each $Q_{i}$ is a simple submodule of $Q_{S}$ .
Then rad $(R)=\bigcap_{i=1}^{n}l_{R}(Q_{t})$ . Since each $l_{R}(Q_{i})$ is a maximal left ideal of $R$ and
$0\rightarrow R/rad(R)\rightarrow\oplus_{i1}^{n_{=}}R/l_{R}(Q_{i})$ is exact, $R/rad(R)$ is semisimple.
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In particular, we have by [1, Proposition 15.17]

PROPOSITION 1.11. For a left dual-bimodule $Q$ , we have

soc $(_{R}Q)=r_{Q}(rad(R))=soc(Q_{S})$ .
Henceforth we shall denote soc $(RQ)=soc(Q_{s})$ simply by soc $(Q)$ .
Using [1, Corollary 15.18], for any R-module $RM$,

rad $(_{R}M)=rad(R)\cdot M$

and $M/rad(_{R}M)$ is semisimple, $i.e$ . $RM$ is semisimple if and only if rad $(_{R}M)=0$ .
As an application of (1.6) and (1.11), we have

PROPOSITION 1.12. Let $Q$ be a left dual-bimodule. Then the following con-
ditions are equivalent:

(1) $R$ is semisimple.
(2) $Q_{S}$ is semisimple.
(3) $RQ$ is semisimple.
(4) $Z(RQ)=0$ .
(5) rad $(Q_{S})=0$ .

LEMMA 1.13. Let $Q$ be a left dual-bimodule. Then every R-homomorphism

from a left ideal of $R$ to $Q$ with finitely generated image is given by a right
multiplication of an element of $Q$ .

PROOF. Cf. [4, Proposition 5.2].

The preceding lemma implies that, for every finitely generated left ideal $A$

of $R$ , every diagram of the form
$A\leqq R$

$ Q\downarrow$

is completed by an R-homomorphism $R\rightarrow Q$ .
Hence, by [6, Proposition 2.8] we have

COROLLARY 1.14. Let $Q$ be a left dual-bimodule. If either $RQ$ or $RR$ is
Noetherian, then $RQ$ must be an injective cogenerator.

In general, for a finitely generated left ideal $A$ of $R$ , the mapping $Q/r_{Q}(A)$

$\rightarrow A^{*}$ given by $u+r_{Q}(A)\rightarrow u_{R}|_{A}$ is an S-monomorphism. The lemma also shows
that this mapping is surjective and hence
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$Q/r_{Q}(A)\cong A^{*}$ .
Let $Q$ be a left dual-bimodule and $Q^{\prime}$ an $(R, S)$-submodule. If $RQ^{\prime}s$ is also

a left dual-bimodule, then $RQ^{\prime}$ must be faithful. Hence, $Q^{\prime}=r_{Q}l_{R}(Q^{\prime})=r_{Q}(0)=Q$ .
Thus, there is no proper $(R, S)$-submodule which is also a left dual-bimodule.
However, we have

PROPOSITION 1.15. Let $Q$ be a left aual-bimodule, $Q^{\prime}$ an $(R, S)$-submodule
$ anaR=R/l_{R}(Q^{\prime})\leftarrow$ . Then $BQ^{\prime}s$ is a left dual-bimodule.

PROOF. Since $Q^{\prime}$ can be regarded as an R-module by defining $a+l_{R}(Q^{\prime})\cdot u^{\prime}$

$=au^{\prime}$ for $a\in R$ and $u^{\prime}\in Q^{\prime}$ , we have $r_{Q^{\prime}}(A/l_{R}(Q^{\prime}))=r_{Q^{\prime}}(A)$ for $A/l_{R}(Q^{\prime})\leqq R\overline{R}$ and
$l_{R}(Q^{\prime\prime})=l_{R}(Q^{\prime\prime})/l_{R}(Q^{\prime})$ for $Q^{\prime\prime}\leqq Q^{\prime}s$ . Therefore, we have $l_{\overline{R}}r_{Q^{\prime}}(A/l_{R}(Q^{\prime}))=l_{\overline{R}}r_{Q^{\prime}}(A)$

$=l_{R}r_{Q^{\prime}}(A)/l_{R}(Q^{\prime})=(l_{R}r_{Q}(A)+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})=l_{R}r_{Q}(A)/l_{R}(Q^{\prime})=A/l_{R}(Q^{\prime})$ and $r_{Q^{\prime}}l_{B}(Q^{\prime\prime})$

$=r_{Q^{\prime}}(l_{R}(Q^{\prime\prime})/l_{R}(Q^{\prime}))=r_{Q^{\prime}}l_{R}(Q^{\prime\prime})=r_{Q}l_{R}(Q^{\prime\prime})\cap Q^{\prime}=Q^{\prime\prime}\cap Q^{\prime}=Q^{\prime\prime}$ .

In particular, for a left dual-bimodule $Q$ , soc $(Q)$ is an $(R, S)$-submodule and
hence $R^{SO}c(Q)_{S}$ is a left dual-bimodule satisfying the equivalent condition of
(1.12), where $\overline{R}=R/rad(R)$ .

The following theorem characterizes simple Artinian rings by means of the
notion of left dual-bimodules.

THEOREM 1.16. For a ring $R$ the following conditions are equivalent:
(1) $R$ is simple Artinian.
(2) For every R-module $RQ\neq 0,$ $RQ_{s}$ is a left dual-bimodule with $S=End(_{R}Q)$ .
(3) For every finitely generated R-module $RQ\neq 0,$ $RQ_{s}$ is a left dual-bimodule

with $S=End(RQ)$ .
(4) For every simple R-module $RQ,$ $RQ_{s}$ is a left dual-bimodule with $S=$

End $(_{R}Q)$ .
(5) There exists a simple R-module $RQ$ such that $RQ_{s}$ is a left dual-bimodule

with $S=End(_{R}Q)$ .
If this is the case, $ R\cong\lambda$ End $(Q_{S})$ for every R-module $RQ\neq 0$ with $S=End(_{R}Q)$ .

Furthermore, in case $RQ$ is finitely generatea, $S$ is also simple Artinian.

PROOF. (1) $\Rightarrow(2)$ . Let $R$ be a simple Artinian ring, $RQ\neq 0$ and $S=End(_{R}Q)$ .
Then by [1, Exercise 13.10] $RQ$ is a cogenerator. Hence every (cyclic) R-
module is Q-torsionless.

Furthermore, $RQ$ is balanced by [1, Excrcise 18.32] which means that $\lambda$ is
surjective. However, $Ker\lambda$ must be zero, since $R$ is a simple ring and $Q\neq 0$ .
Thns, we have $R\cong\lambda End(Q_{S})$ .
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Since $RR$ is semisimple, we can write $R$ as $R=m_{1}\oplus\cdots\oplus m_{n}$ with each $m_{i}$

a minimal left ideal of $R$ . Using this decomposition, $ Q_{S}\cong Hom_{R}(R, Q)\cong$

$Hom_{R}(m_{1}, Q)\oplus\cdots\oplus Hom_{R}(m_{n}, Q)$ , where each $Hom_{R}(m_{i}, Q)$ is either simple or
zero by [1, Exercise 16.18]. It follows that $Q_{S}$ is semisimple.

Now let $Q^{\prime}\leqq Q_{S}$ . Then $Q/Q^{\prime}$ is isomorphic to a submodule of $Q_{S}$ and
hence is Q-torsionless. Thus, by (1.4) $RQ_{s}$ is a left dual-bimodule.

(2) $\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)$ are clear.
(5) $\Rightarrow(1)$ . Let $RQ$ be a simple R-module such that $RQ_{s}$ is a left dual-bimodule

with $S=End(_{R}Q)$ . Then for any ideal $A$ of $Rr_{Q}(A)$ is an $(R, S)$-submodule of
$Q$ and is either $Q$ or $0$ . Hence $A$ must be either $0$ or $R$ and $R$ is a simple

ring. Since rad $(R)=0,$ $RR$ is semisimple by (1.10). Thus $R$ is simple Artinian
by [1, Proposition 13.5].

Note that in the preceding theorem each condition of (1) to (5) is also equi-

valent to each one of the following
(3’) For every finitely generated R-module $RQ\neq 0,$ $RQ_{s}$ is a dual-bimodule

with $S=End(_{R}Q)$ .
(4) For every simple R-module $RQ,$ $RQ_{s}$ is a dual-bimodule with $S=$

End $(_{R}Q)$ .
(5) There exists a simple R-module $RQ$ such that $RQ_{s}$ is a dual-bimodule

with $S=End(_{R}Q)$ .
To see this, assume that $R$ is simple Artinian and $RQ\neq 0$ is a finitely gen-

erated R-module with $S=End(_{R}Q)$ . As was shown in the proof of (1) $\Rightarrow(2)$ of
the preceding theorem, $RQ_{s}$ is a left dual-bimodule and $R\cong^{\lambda}$ End $(Q_{S})$ . Hence,

to prove (3‘) it is sufficient to show that $S$ is simple Artinian. Since $RQ$ is
semisimple by (1.12) and is finitely generated, we can write $RQ$ as $ Q=Q_{1}\oplus\cdots$

$\oplus Q_{n}$ with each $RQ_{i}$ simple and $Q_{i}\cong Q_{j}$ for all $i$ and $j$ [ $1$ , Exercise 13.1].

Therefore, $S$ is isomorphic to the ring of all $nXn$ matrices over the division
ring End $(_{R}Q_{i})$ and thus it is simple Artinian. This shows that (1) $\Rightarrow(3^{\prime})$ and
$(3^{\prime})\Rightarrow(4^{\prime})\Rightarrow(5^{\prime})\Rightarrow(5)$ are evident.

As we shall. show in Example 4.5, the condition (2) corresponding to the
condition (2) of (1.16) does not hold in general.

The following proposition follows from (1.14) and the proof of (1) $\Rightarrow(2)$ of
(1.16).

PROPOSITION 1.17. Let $R$ be a semisimple ring and $RQ$ an R-module with
$S=End(_{R}Q)$ . Then $RQ_{s}$ is a left dual-bimodule if and only if $RQ$ is a coge-
nerator.
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Let $Q$ be a left dual-bimodule. Then $Q_{S}$ is finitely cogenerated and hence
by [1, Exercise 10.15] $Q_{S}$ has a finite indecomposable decomposition $ Q_{S}=Q_{1}\oplus$

$...\oplus Q_{n}$ with each $Q_{i}$ indecomposable. Each $Q_{i}$ can be written as $Q_{i}=r_{Q}(A_{i})$

for some $A_{i}\leqq RR$ and $R/A_{i}$ is indecomposable. For, if $R/A_{i}$ is decomposable

and $R/A_{i}=A^{\prime}/A_{i}\oplus A^{\prime\prime}/A_{i}$ for $A_{i}\leqq A^{\prime},$ $A^{\prime\prime}\leqq_{R}R$ , then we have $Q_{i}=r_{Q}(A^{\prime})\oplus r_{Q}(A$ ‘’
$)$ ,

a contradiction. Since $r_{Q}(A_{i}+\bigcap_{j\neq i}A_{j})=Q_{i}\cap\sum_{j\neq i}Q_{j}=0,$ $(A_{i})_{1\underline{\leq}i\leq n}$ is coindepend-

ent and hence the R-homomorphism $f:R\rightarrow\oplus_{i=1}^{n}R/A_{i}$ defined by $f(a)=(a+A_{i})$

for $a\in R$ is surjective by [1, Exercise 6.18]. Furthermore, $Kerf=\bigcap_{i=1}^{n}A_{i}=$

$l_{R}(Q)=0$ . Thus, we have $R\cong f\oplus_{i=1}^{n}R/A_{i}$ and $R$ has a finite indecomposable

decomposition.

PROPOSITION 1.18. Let $Q$ be a left dual-bimodule. Then both $Q_{S}$ and $RR$

have finite indecomposable decompositions. In particular, $Q_{S}$ is indecomposable

if $ana$ only if $RR$ is indecomposable.

Finally, in closing this section, we shall show that the notion of left dual-
bimodules is closed under Morita equivalence.

To see this, let $RQ_{s}$ be a left dual-bimodule and $T$ a ring equivalent to $S$

via an equivalence $H:mod - S\rightarrow mod - T$ . There exists a $(T, S)$-bimodule $P$ such
that $\tau^{P}$ and $P_{S}$ are progenerators and $H$ is given by $H\cong Hom_{S}(P, -)[1$ , Theorem
22.1]. We assume that for simplicity $H=Hom_{S}(P, -)$ . Using [1, Proposition
21.7], each submodule of $H(Q)_{T}$ is of the form ${\rm Im} H(\nu)$ for some $Q^{\prime}\leqq Q_{S}$ and
the inclusion map $\nu;Q^{\prime}\rightarrow Q$ .

LEMMA 1.19. With the same notation as above, we have
(1) $l_{R}({\rm Im} H(\nu))=l_{R}(Q^{\prime})$ .
(2) $r_{H(Q)}l_{R}({\rm Im} H(\nu))={\rm Im} H(\nu)$ .
For a left ideal $A$ of $R$ and the inclusion map $\mu:t_{Q}(A)\rightarrow Q$ ,

(3) $r_{H(Q)}(A)={\rm Im} H(\mu)$ .
(4) $l_{R}r_{H(Q)}(A)=A$ .

PROOF. (1) Suppose that $a\in l_{R}(Q^{\prime})$ . Then for any $f\in H(Q^{\prime})$ and any $p\in P$

$(a\cdot\nu f)(p)=a\cdot f(p)\in aQ^{\prime}=0$ and hence $l_{R}(Q^{\prime})\leqq l_{R}({\rm Im} H(\nu))$ . Conversely, suppose
that $a\in l_{R}({\rm Im} H(\nu))$ . Since $P_{S}$ is a generator, there exists a set $\Lambda$ such that
$P^{(\Lambda)}\rightarrow^{\alpha}Q^{\prime}\rightarrow 0$ is exact. For the injection map $\nu_{\lambda}$ : $P\rightarrow P^{(\Lambda)},$ $\lambda\in\Lambda,$

$\alpha\nu_{\lambda}$ is in $H(Q^{\prime})$

and hence by assumption $(a\cdot\alpha\nu_{\lambda})(p)=0$ for each $p\in P$ and each $\lambda\in\Lambda$ . Let
$u^{\prime}\in Q^{\prime}$ and let $x\in P^{(\Lambda)}$ such that $\alpha(x)=u^{\prime}$ . Then $x$ can be written as $x=$

$\nu_{\lambda_{1}}(p_{1})+\cdots+\nu_{\lambda_{k}}(p_{k})$ for some $\lambda_{1},$

$\cdots,$
$\lambda_{k}\in\Lambda$ and $p_{1},$ $\cdots,$ $p_{k}\in P$. Then au $=$

$a\cdot\alpha(x)=(a\cdot\alpha\nu_{\lambda_{1}})(p_{1})+\cdots+(a\cdot\alpha\nu_{\lambda_{k}})(p_{k})=0$ . Hence, $a\in l_{R}(Q^{\prime})$ and thus $l_{R}({\rm Im} H(\nu))$
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$\leqq l_{R}(Q^{\prime})$ .
(2) Let $f\in t_{H(Q)}l_{R}({\rm Im} H(\nu))=\tau_{H(Q)}l_{R}(Q^{\prime})$ . Then for each $a\in l_{R}(Q^{\prime})$ and each

$p\in Pa\cdot f(p)=(a\cdot f)(p)=0$ . Hence $f(p)\in t_{Q}l_{R}(Q^{\prime})=Q^{\prime}$ , since $RQ_{s}$ is a left dual-
bimodule. It follows that $f(p)=\nu(f(p))=(\nu f)(p)$ and thus $f=\nu f\in 1mH(\nu)$ .
Hence we have $r_{H(Q)}l_{R}({\rm Im} H(\nu))\leqq 1mH(\nu)$ and thus (2) follows.

(3) Let $f\in r_{H(Q)}(A)$ . Then for each $a\in A$ and each $p\in Pa\cdot f(p)=(af)(p)$

$=0$ . It follows that $f(p)\in r_{Q}(A)$ and hence $f=\mu f\in 1mH(\mu)$ . Conversely, let
$\mu f\in{\rm Im} H(\mu)$ , where $f\in H(r_{Q}(A))$ . Then for each $a\in A$ and each $p\in P(a\cdot\mu f)(p)$

$a\cdot f(p)=0$ . Hence, $a\cdot\mu f=0$ and $\mu f\in r_{H(Q)}(A)$ . Thus, we have $t_{H(Q)}(A)={\rm Im} H(\mu)$ .
(4) Using (1), $l_{R}(1mH(\mu))=l_{R}r_{Q}(A)$ and hence by (3) $l_{R}r_{H(Q)}(A)=l_{R}r_{Q}(A)=A$ ,

since $RQ_{s}$ is a left dual-bimodule.

THEOREM 1.20. Let $Q$ be a left dual-bimodule and let $T$ be a ring equi-
valent to $S$ via an equivalence $H:mod - S\rightarrow mod - T$ . Then ${}_{R}H(Q)_{T}$ is also a left
dual-bimodule.

As is well-known, $S$ and the ring $(S)_{n}$ of all $n\times n$ matrices over $S$ are
equivalent via $H=-\otimes_{S}S^{n}$ ; $mod - S\rightarrow mod-(S)_{n}$ . Hence, we have

COROLLARY 1.21. Let $Q$ be a left dual-bimodule. Then for each $n>0,$ $RQ_{(s)_{n}}^{n}$

is also a left dual-bimodule.

In particular, if $R$ is a dual ring, then for each $n>0,$ $RR_{(R)_{n}}^{n}$ is a left dual-
bimodule.

2. Dual-Bimodules.

If $Q$ is a left dual-bimodule, then there are only finitely many non-isomor-
phic simple submodules of $Q_{S}$ . However, in case $Q$ is a dual-bimodule, by
(1.10) there are only finitely many non-isomorphic simple right S-modules and
each of which is isomorphic to a submodule of $Q_{S}$ [ $6$ , Proposition 2.8]. Further-
more, we have

THEOREM 2.1. Let $Q$ be a dual-bimodule. Then
(1) The Q-dual of every simple left R-module as well as that of every simple

right S-module is simple.
(2) Every simple left R-module as well as every simple right S-module is Q-

reflexive.
(3) There is a bijection between the irredundant sets of representatives of

the simple left R-modules and the simple right S-modules.
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PROOF. Suppose first that $Q$ is a left dual-bimodule and $RM$ is a simple

R-module. Then by [6, Proposition 2.8] $M$ is isomorphic to a simple submodule
$Ru$ of $RQ$ for some $u\in Q$ . Therefore, $M^{*}\cong(R/l_{R}(u))^{*}\cong r_{Q}l_{R}(u)=uS$ and hence
$M_{S}^{*}$ is simple, since $l_{R}(u)$ is a maximal left ideal. Thus, for each $u\in Q,$ $RRu$

is simple if and only if $uS_{S}$ is simple and further we have $uS\cong(Ru)^{*}$ via us
$\rightarrow s_{R}|_{Ru}$ .

However, if in addition $Q$ is a right dual-bimodule, then every simple right

S-module is of the form $uS$ for some $u\in Q$ . Since $(uS)^{*}\cong(S/r_{S}(u))^{*}\cong l_{Q}r_{S}(u)$

$=Ru,$ $Ru\cong(uS)^{*}$ via $au\rightarrow a_{L}|_{uS}$ and thus for each $u\in Q$ the mapping $Ru\rightarrow uS$

can be seen as a bijection between irredundant sets of representatives of the
simple left R-modules and the simple right S-modules.

Finally it is easy to see that isomorphisms mentioned above yield the con-
dition (2).

More precisely, we have

PROPOSITION 2.2. For a dual-bimodule $Q$ , let $\overline{e}_{I},$ $\cdots,\overline{e}_{m}$ and $\overline{f}_{1},$ $\cdots$ , $\overline{f}_{m}$ be
basic sets of idempotents of the semisimple ring $\overline{R}=R/rad(R)$ and $\overline{S}=S/rad(S)$ ,

respectively. Then

$e_{1}$ . soc $(Q),$ $e_{2}$ . soc $(Q),$ $\cdots$ , $e_{m}$ . soc $(Q)$

and
soc $(Q)\cdot f_{1}$ , soc $(Q)\cdot f_{2}$ , –, soc $(Q)\cdot f_{m}$

exhaust non-isomorphic simple right S-modules $ana$ that of simple left R-modules,
respectively.

PROOF. For each $i,$ $l_{R}(e_{i}\cdot soc(Q))=\{a\in R|ae_{i}\in rad(R)\}$ and hence the map-
ping $R\rightarrow\overline{R}\overline{e}_{i}$ , given by $a\rightarrow\overline{a}\overline{e}_{i}$ , is an R-epimorphism with kernel $l_{R}(e_{i}\cdot soc(Q))$ .
Therefore, $e_{i}\cdot soc(Q)$ is a simple submodule of $Q_{S}$ . Furthermore, $ e_{i}\cdot soc(Q)\cong$

$(R/l_{R}(e_{i}\cdot soc(Q)))^{*}\cong(\overline{R}\overline{e}_{i})^{*}$ . Thus, the proposition follows from (2.1).

THEOREM 2.3. Let $Q$ be a dual-bimodule. Then every finitely generatea
submodule of $Q_{S}$ as well as that of $RQ$ is Q-reflexive.

To see this, we need a lemma which is shown by a similar way as in [4,

Proposition 5.2].

LEMMA 2.4. Let $Q$ be a dual-bimodule and $Q^{\prime}\leqq Q_{S}$ . Then every S-homo-
morphism from $Q^{\prime}$ to $Q$ with finitely generatecl image is given by a left multi-
plication of an element of $R$ .
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It follows from this lemma that if $Q_{S}$ is Noetherian, then $Q_{S}$ is quasi-
injective.

PROOF OF (2.3). For every finitely generated submodule $Q^{\prime}$ of $Q_{S}$ , the R-
momomorphism $R/l_{R}(Q^{\prime})\rightarrow Q^{\prime*}$ given by $a+l_{R}(Q^{\prime})\rightarrow a_{L}|_{Q^{\prime}}$ yields by (2.4)

$R/l_{R}(Q^{\prime})\cong Q^{J*}$

Therefore, using the natural isomorphism $Q^{\prime}=r_{Q}l_{R}(Q^{\prime})\cong(R/l_{R}(Q^{\prime}))^{*}$ , we see
that $Q^{\prime}$ is Q-reflexive.

The preceding theorem is not true without the assumption that $Q^{\prime}$ is finitely

generated (see Example 4.1).

Since soc $(Q_{S})$ is finitely generated, the above isomorphism $R/l_{R}(Q^{\prime})\cong Q^{\prime*}$

yields, in particular,
$R/rad(R)\cong End$ (soc $(Q)_{S}$ )

as rings.
From (2.3) and [1, Proposition 20.14] we have

COROLLARY 2.5. Let $Q$ be a dual-bimodule. Then for every finitely gen-
erated submodule $Q^{\prime}$ of $Q_{S},$ $R/l_{R}(Q^{\prime})$ is Q-rejZexive.

The proof of [4, Theorem 5.3] carries over almost word for word to the
case of dual-bimodules.

PROPOSITION 2.6. Let $Q$ be a dual-bimodule. Then for each $n>0$ every

factor moaule of $Q_{S}^{n}$ has finite Goldie dimension.
In particular, in case where $Q_{S}$ is a generator, every finitely generated righl

S-module has finite Goldie dimension.

PROOF. First we shall prove by induction on $n$ that every semisimple
submodule of any factor module of $Q_{S}^{n}$ is finitely generated.

Let $n=1$ and $K\leqq Q^{\prime}\leqq Q_{S}$ . Suppose that $Q^{\prime}/K$ is semisimple, which is not
finitely generated. Then by (2.2) $Q^{\prime}/K$ contains a countably infinite direct sum
$\oplus_{i\geqq 1}(u_{i}S+K)/K$, where each $(u_{i}S+K)/K$ is simple and is isomorphic to the
same simple S-module $e\cdot soc(Q)$ . Let $f_{i}$ : $u_{i}S+K\rightarrow e\cdot soc(Q)$ be the composite
of the canonical map $\pi_{i}$ : $u_{i}S+K\rightarrow(u_{i}S+K)/K$ with the isomorphism. Then by

(2.4) $f_{i}=a_{iL}$ for some $a_{i}\in l_{R}(K)$ and hence we have $a_{i}u_{i}S=e\cdot soc(Q)$ .
We now define for any subset $\Lambda$ of $N$, where $N$ denotes the set of positive

integers, an S-homomorphism
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$/\iota_{\Lambda}$ : $\Sigma_{i\leqq 1}(u_{i}S+K)-e$ . soc $(Q)$

to be $h_{\Lambda}(u_{i})=a_{i}u_{i}$ whenever $i\in\Lambda,$ $h_{\Lambda}(u_{i})=0$ whenever $i\not\in\Lambda,$ $h_{\Lambda}(K)=0$ and ex-
tending this definition by linearity. By (2.4) $h_{\Lambda}=b_{\Lambda L}$ for some $b_{\Lambda}\in l_{R}(K)$ and
hence for each $\Lambda$ and $i\in N$ we have $eb_{\Lambda}u_{i}=b_{\Lambda}u_{i}$ , since the image of $h_{\Lambda}$ is
$e$ . soc $(Q)$ .

Using [4, Lemma 5.1] there is an uncountable independent collection $C$ of
subsets of $N$. We shall show that

$\Sigma_{\Lambda\in C}(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$

is a direct sum. To this end, let $\Lambda_{1},$

$\cdots,$
$\Lambda_{n}$ be distinct elements of $C$ and let

$c_{1}eb_{\Lambda_{1}}+\cdots+c_{n}eb_{\Lambda_{n}}\in l_{R}(Q^{\prime})$ where $C_{1},$ $\cdots,$
$c_{n}\in R$ . For each $j,$ $1\leqq j\leqq n$ , take an

$t_{j}\in\Lambda_{j}\cap(\Lambda_{1}^{-1}\cap\cdots\cap\Lambda_{j-1}^{-1}\cap\Lambda_{j+1}^{-1}\cap\cdots\cap\Lambda_{n}^{-1})$ , where $\Lambda_{i}^{-1}$ means the set $N\backslash \Lambda_{i}$ . Since
$u_{\iota_{j}}\in Q^{\prime},$ $c_{1}eb_{\Lambda_{1}}u_{t_{j}}+\cdots+c_{n}eb_{\Lambda_{n}}u_{t_{j}}=0$ . But if $k\neq j$ , then $t_{j}\not\in\Lambda_{k}$ . Hence $b_{\Lambda_{k}}u_{t_{j}}$

$=0$ and therefore we have $c_{j}eb_{\Lambda_{j}}u_{\iota_{j}}=0$ for $ 1\leqq$ ] $\leqq n$ . We now show that $ c_{j}e\in$

rad $(R)$ for $ 1\leqq$] $\leqq n$ . Suppose that $c_{j}e\not\in rad(R)$ for some $j$ . Then $Rc_{j}e+rad(R)$

$\neq rad(R)$ and hence $\overline{R}\overline{e}=(Re+rad(R))/rad(R)\geqq(Rc_{j}e+rad(R))/rad(R)\neq 0$ . Since
$\overline{R}\overline{e}$ is simple, $Re+rad(R)=Rc_{j}e+rad(R)$ and therefore we have $ eb_{\Lambda_{f}}u_{t_{j}}\in$

$(Re+rad(R))b_{\Lambda_{j}}u_{t_{j}}=(Rc_{j}e+rad(R))b_{\Lambda_{J^{\mathcal{U}_{t}}J}}=Rc_{j}eb_{\Lambda_{j}}u_{t_{j}}+rad(R)b_{\Lambda_{j}}u_{t_{j}}=0$ , since
$c_{j}eb_{\Lambda_{j}}u_{\iota_{j}}=0$ and $b_{\Lambda_{j}}u_{t_{j}}\in e\cdot soc(Q)\leqq soc(Q)=rQ(rad(R))$ . However, $eb_{\Lambda_{j}}u_{t_{j}}=b_{\Lambda_{j}}u_{t_{j}}$

$=a_{t_{j}}u_{c_{j}}\neq 0$ , a contradiction.
Since $Q^{\prime}/K$ is semisimple, $Q^{\prime}/K\cdot rad(S)\leqq rad(Q^{\prime}/K)=0$ and so we have

$Q^{\prime}\cdot rad(S)\leqq K$, which means that $l_{R}(K)\cdot Q^{\prime}\cdot rad(S)=0$ and $l_{R}(K)\cdot Q^{\prime}\leqq l_{Q}(rad(S))=$

$r_{Q}(rad(R))$ by (1.11). Therefore, rad $(R)\cdot l_{R}(K)\cdot Q^{\prime}=0$ and we have rad $(R)\cdot l_{R}(K)$

$\leqq l_{R}(Q^{\prime})$ . Since $c_{j}e\in rad(R)$ and $b_{\Lambda_{j}}\in l_{R}(K),$ $c_{j}eb_{\Lambda_{j}}\in l_{R}(Q^{\prime})$ . This shows that
$\sum_{\Lambda\in C}(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$ is a direct sum.

As we have shown above, rad $(R)\cdot l_{R}(K)\leqq l_{R}(Q^{\prime})$ , from which we see that
$l_{R}(K)/l_{R}(Q^{\prime})$ is an R-module and is a semisimple R-module. On the other hand,
$b_{\Lambda}\in l_{R}(K)$ implies that $(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$ is a submodule of $l_{R}(K)/l_{R}(Q^{\prime})$ .
Hence it is semisimple and so $\oplus_{\Lambda\in C}(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$ is also semisimple.
Thus, we see that $\dim(l_{R}(K)/l_{R}(Q^{\prime}))\geqq|C|>|N|$ (see [4, p. 259] for the defini-
tion). A symmetrical argument now gives $\dim(Q^{\prime}/K)>|N|$ . But this holds
whenever $Q^{\prime}/K$ is a non finitely generated semisimple S-module and in parti-

cular when $Q^{\prime}/K=\oplus_{i\geq 1}(u_{i}S+K)/K$. However, clearly in this case $\dim(Q^{\prime}/K)$

$=|N|$ , a contradiction. Thus, we have established that every semisimple sub-
module of any factor module of $Q_{S}$ is finitely generated.

Now suppose that, for $k\leqq n-1$ , every semisimple submodule of any factor
module of $Q_{S}^{k}$ is finitely generated. Let $k=n$ and $K\leqq Q_{S}^{n}$ . Then $(Q^{n-1}+K)/K\leqq$
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$Q^{n}/K$ and we have soc $(Q^{n}/K)\cong soc((Q^{n-1}+K)/K)\oplus soc(Q^{n}/K)/soc$ ((Q $+K)/K$ ),

Since $(Q^{n-1}+K)/K\cong Q^{n-1}/(Q^{n-1}\cap K)$ , it follows that by induction hypothesis
soc ((Q $+K)/K$ ) is finitely generated. On the other hand, soc $(Q^{n}/K)/soc((Q^{n-1}$

$+K)/K)\cong soc(Q^{n}/K)/(soc(Q^{n}/K)\cap(Q^{n-1}+K)/K)\cong(soc(Q^{n}/K)+(Q^{n-1}+K)/K)/$

((Q $+K)/K$ ) $\leqq Q^{n}/(Q^{n-1}+K)$ . Let $K_{n}$ denote the submodule of all the n-th
coordinates of elements of $K$. Then $Q^{n}/(Q^{n-1}+K)$ is isomorphic to $Q/K_{n}$ via
$\overline{(v_{1},\cdots,v_{n})}\rightarrow\overline{v}_{n}$ and hence soc $(Q^{n}/K)/soc((Q^{n-1}+K)/K)$ can be seen as a semi-
simple submodule of $Q/K_{n}$ . Hence, it is finitely generated. Therefore, we see
that soc $(Q^{n}/K)$ is also finitely generated.

Finally, for any $K\leqq Q_{S}^{n}$ , we shall show that $Q^{n}/K$ has finite Goldie dimen-
sion. Let $0\neq Q_{a}/K\leqq Q^{n}/K$ for $\alpha\in A$ and suppose that $(Q_{\alpha}/K)_{\alpha\in A}$ is indepen-
dent. For each $\alpha\in A$ , take $0\neq\overline{x}_{a}=x_{a}+K\in Q_{\alpha}/K$. Then $\overline{x}_{\alpha}\cdot rad(S)\neq\overline{x}_{\alpha}S$ by
Nakayama’s lemma and hence $\overline{x}_{\alpha}S/\overline{x}_{\alpha}\cdot rad(S)$ is a nonzero semisimple S-module.
Using [1, Exercise 6.3] we have $\oplus_{A}\overline{x}_{\alpha}S/\oplus_{A}\overline{x}_{\alpha}\cdot rad(S)\cong\oplus_{A}(\overline{x}_{\alpha}S/\overline{x}_{\alpha}\cdot rad(S))$ and
both $\oplus_{A}\overline{x}_{a}S$ and $\oplus_{A}\overline{x}_{\alpha}\cdot rad(S)$ are submodules of $Q^{n}/K$. Hence we can see that
$\oplus_{A}(\overline{x}_{\alpha}S/\overline{x}_{\alpha}\cdot rad(S))$ is a semisimple submodule of $Q^{n}/K^{\prime}$ for some $K^{\prime}\leqq Q_{S}^{n}$ and
is finitely generated. It follows that $A$ is a finite set, which completes the
proof of the proposition.

THEOREM 2.7. Let $Q$ be a $dual\rightarrow bimodule$ . Then $R$ is a dense subring of
End $(Q_{S})$ .

In particular, if $Q_{S}$ is finitely generated, then we have

$ R\cong\lambda$ End $(Q_{S})$ .
PROOF. Let $f\in End(Q_{S}),$ $u_{1},$ $\cdots,$ $u_{n}$ finitely many elements of $Q$ and $Q^{\prime}=$

$u_{1}S+\cdots+u_{n}S$ . Then the mapping $f|_{Q^{\prime}}$ belongs to $Q^{\prime*}$ and hence by (2.4)

there exists an $a\in R$ such that $f|_{Q^{\prime}}=a_{L}|_{Q^{\prime}}$ . Thus, $f(u_{i})=au_{i},$ $1\leqq i\leqq n$ , and $R$

is dense in End $(Q_{S})$ .

If $Q_{S}$ is not finitely generated, the theorem is not always true in general
(see Example 4.1). We note that the last part of the theorem also follows
from (2.5).

By [1, Theorem 24.1], an $(R, S)$-bimodule $Q$ defines a Morita duality if and
only if every factor module of $RR,$ $S_{S},$ $RQ$ and $Q_{S}$ is Q-reflexive. However,
for a dual-bimodule by (1.4) and (2.7) we have

THEOREM 2.8. Let $Q$ be an $(R, S)$-bimodule such that both $RQ$ and $Q_{S}$ are
finitely generated. Then the following conditions are equivalent:

(1) $Q$ is a dual-bimodule.
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(2) $RRanaS_{S}$ are Q-reflexive and every factor module of $RR,$ $S_{S,R}Q$ and
$Q_{S}$ is Q-torsionless.

LEMMA 2.9. Let $Q$ be a dual-bimodule with $\lambda$ surjective. Assume that
rad $(_{R}Q)\leqq sQ_{s}$ . Then every idempotent of $R$ can be lifted modulo rad $(R)$ .

PROOF. Cf. [4, Theorem 3.8].

Thus, we have

THEOREM 2.10. Let $Q$ be a dual-bimodule with $Q_{S}$ finitely generated and
rad $(_{R}Q)\leqq rad(Q_{S})$ . Then $R$ is semiperfect.

As we shall show in Example 4.1, there is a dual-bimodule $Q$ for which $R$

is semiperfect, but $Q_{S}$ is not finitely generated.

3. Dualities.

For a left dual-bimodule $Q$ , it is shown in (1.2) every cyclic R-module is
Q-torsionless. The following theorem gives a criterion for every cyclic R-
module being Q-reflexive. First, we need a lemma.

LEMMA 3.1 (cf. [3, Proposition 1.1]). Let $RQ_{s}$ be an $(R, S)$-bimodule and
$N_{S}$ an S-module such that $Q_{S}$ is N-injective and $N_{S}$ is Q-reflexive. Then for
$K\leqq N_{S},$ $N/K$ is Q-torsionless if and only if $K$ is Q-reflexive.

PROOF. Let $Q_{S}$ be N-injective and $K\leqq N_{S}$ . Then we have a commutative
diagram with exact rows

$0\rightarrow K\rightarrow N\rightarrow N/K-\rightarrow 0$

$\sigma_{K}\downarrow$ $\downarrow\sigma_{N}$ $\downarrow\sigma_{N/K}$

$0-K^{**-}N^{**-}(N/K)^{**}$

where $\sigma_{*}$ means the evaluation map. Assume that $N_{S}$ is Q-reflexive. Then
by [1, Lemma 3.14] we see that $\sigma_{N/K}$ is monic if and only if $\sigma_{K}$ is epic and
this is so if and only if $\sigma_{K}$ is an isomorphism, since $K$ is Q-torsionless as a
submodule of $N_{S}$ .

THEOREM 3.2. Let $Q$ be a left dual-bimodule. Then the following condi-
tions are equivalent:

(1) $Q_{S}$ is quasi-injective and $\lambda$ is surjective.
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(2) Every cyclic R-module is Q-reflexive.
(3) Every finitely generated Q-torsionless R-module is Q-reflexive.
Moreo $\ddagger$)$er$ , if each one of these conditions holds, then $R$ is semiperfect and

every submodule of $Q_{S}$ is finitely cogenerated Q-reflexive.

PROOF. (1) $\Rightarrow(3)$ . Let $RM$ be a finitely generated Q-torsionless R-module.
Then $R^{n}\rightarrow M\rightarrow 0$ is exact for some $n>0$ . Since $(R^{n})^{*}\cong Q^{n}$ and $Q$ is $Q^{n}$ -injective,
we have a commutative diagram with exact rows

$R^{n}-$ $M-0$
$\sigma_{Rn}\downarrow$ $\downarrow\sigma_{M}$

$(R^{n})^{**}\rightarrow M^{**}\rightarrow 0$

Since $\lambda$ is surjective, $\sigma_{Rn}$ is an epimorphism and hence $\sigma_{M}$ is also an epimor-
phism. Thus, $M$ is Q-reflexive.

(3) $\Rightarrow(2)$ . This is evident by (1.2).

(2) $\Rightarrow(1)$ . For any $A\leqq RR$ the mapping $\lambda_{A}$ : $R\rightarrow t_{Q}(A)^{*}$ given by $a\rightarrow a_{L}|t_{Q^{(A)}}$

is an R-homomorphism. With the canonical S-isomorphism $h:(R/A)^{*}\rightarrow t_{Q}(A),$ $\lambda_{A}$

yields a commutative diagram

$R\rightarrow\pi R/A$

$\lambda_{A}\downarrow$ $\downarrow\sigma_{R/A}$

$r_{Q}(A)^{*}\rightarrow h*(R/A)^{**}$

Since $\sigma_{R/A}$ is an epimorphism, so is $\lambda_{A}$ . Therefore, for every S-homomorphism
$f:t_{Q}(A)\rightarrow Q$ , there exists an $a\in R$ such that $f=a_{L}|\tau_{Q^{(A)}}$ . Thus, $Q_{S}$ is quasi-
injective. In particular, if we take $A=0$ , then we see that $\lambda$ is surjective.

As was pointed out in [3, p. 120], if $Q_{S}$ is quasi-injective, then End $(Q_{S})$

is semiperfect if and only if $Q_{S}$ has finite Goldie dimension. Hence, the last
part of the theorem follows from (1.3), (1.7) and (3.1).

As is seen from (2.4) and (2.7), if $Q$ is a dual-bimodule and $Q_{S}$ is Noetherian,

then $Q$ satisfies the equivalent condition of the preceding theorem.
It is also to be noted that the equivalence in the preceding theorem is

closely related to the assumption that $Q$ is a left dual-bimodule and without
this assumption we can not prove (3) $-\Rightarrow(1)$ . See Example 4.6.

We shall give another criterion for every cyclic R-module being Q-reflexive.

To do this, for an $(R, S)$-bimodule $RQ_{s}$ , consider the full subcategory $\underline{M}$ of R-
mod of finitely generated Q-torsionless R-modules and the full subcategory $\underline{N}$
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of mod-S whose objects are all the S-modules $N$ such that there exists an exact
sequence of the form $0\rightarrow N\rightarrow Q^{n}\rightarrow Q^{I}$ for some $n>0$ and a set 1.

THEOREM 3.3. For an $(R, S)$-bimoaule $Q$ , consider the following conditions:
(1) $Q_{S}$ is quasi-injective $ ana\lambda$ is surjective.
(2) The pair $(H^{\prime}, H^{\prime\prime})$ of functors

$H^{\prime}=Hom_{R}(-, Q);\underline{M}\rightarrow\underline{N}$ and $H^{\prime\prime}=Hom_{S}(-, Q);\underline{N}-\underline{M}$

defines a duality between $\underline{M}$ and $\underline{N}$.
Then (1) implies (2). If $Q$ is a left dual-bimodule with $RQ$ finitely generated,

then (2) implies (1) and in this case (1) and (2) are equivalent.

PROOF. (1) $\Rightarrow(2)$ (cf. [3, Proposition 1.3]). First, we note that from the
proof of (1) $\Rightarrow(3)$ of (3.2) each $RM\in\underline{M}$ is Q-reflexive.

Next we show that $M^{*}\in\underline{N}$ for every $RM\in\underline{M}$ . Since $M$ is finitely generated,
$R^{n}\rightarrow M\rightarrow 0$ is exact for some $n>0$ . Hence $0\rightarrow M^{*}\rightarrow^{\alpha}Q^{n}$ is exact. We may show
that $Q^{n}/\alpha(M^{*})$ is Q-torsionless. Since $\lambda$ is surjective, $\sigma_{R}$ is an epimorphism
and hence $R^{*}$ is Q-reflexive. Therefore, $Q$ is Q-reflexive and so is $Q^{n}$ . Apply-
ing (3.1) to $Q_{S}$ and $Q_{S}^{n}$ , we see that $Q^{n}/\alpha(M^{*})$ is Q-torsionless, since $M^{*}$ is Q-

reflexive.
Now we show that $N_{S}\in\underline{N}$ implies $N^{*}\in\underline{M}$ . Let $0\rightarrow N\rightarrow Q^{n}\rightarrow Q^{I}$ be exact

for some $n>0$ and 1. Since $Q_{S}$ is $Q^{n}$ -injective, $(Q^{n})^{*}\rightarrow N^{*}\rightarrow 0$ is exact. Further-
more, $\lambda$ is surjective and hence $R^{n}\rightarrow(Q^{*})^{n}\rightarrow 0$ is exact. Thus, $R^{n}\rightarrow N^{*}\rightarrow 0$ must
be exact, from which we see that $N^{*}$ is finitely generated. By [1, Proposition
20.14] $N^{*}$ is Q-torsionless.

Finally we see that $N$ is Q-reflexive for $N_{S}\in\underline{N}$, applying (3.1) again.
(2) $\Rightarrow(1)$ . This follows from a similar way as in the proof of [1, Theorem

23.5]. Note that, by the assumption that $RQ$ is finitely generated, we may use
[1, Exercise 20.5].

As is shown above, the quasi-injectivity of $Q_{S}$ implies a duality between
$\underline{M}$ and $\underline{N}$. The converse, however, is not the case without the assumption that
$Q$ is a left dual-bimodule. See Example 4.6.

Now let $RQ_{s}$ be an $(R, S)$-bimodule and let $\underline{M}$ and $\underline{N}$ be as above. Assume
that $Q_{S}$ is quasi-injective and $\lambda$ is surjective. Then as is remarked in the proof
of (3.3), $\underline{M}$ is the full subcategory of finitely generated Q-reflexive R-modules.
On the other hand, if we assume further that $Q_{S}$ is finitely cogenerated, then
$\underline{N}$ becomes the full subcategory of mod-S of finitely cogenerated Q-reflexive S-



102 Y. KURATA and K. HASHIMOTO

modules.

PROPOSITION 3.4. Let $Q$ be an $(R, S)$-bimodule such that $Q_{S}$ is quasi-injective
and $\lambda$ is surjective. Assume further that $Q_{S}$ is finitely cogenerated. Then

$\underline{M}=t_{R}M|M$ is finitely generated and Q-reflexive},
$ana$

$\underline{N}=$ { $N_{S}|N$ is finitely cogenerated and Q-reflexive}.

PROOF. It is clear that each $N_{S}\in\underline{N}$ is finitely cogenerated and Q-reflexive.
Conversely, suppose that $N_{S}$ is finitely cogenerated Q-reflexive. Then there

exists an $n>0$ for which $0\rightarrow N_{S}\rightarrow^{\alpha}Q^{n}$ is exact. By (3.1) $Q^{n}/\alpha(N)$ is Q-torsion-

less and thus $0\rightarrow N_{S}\rightarrow^{\alpha}Q^{n}\rightarrow Q^{t}$ is exact for some set 1.

For a dual-bimodule $Q$ , by [6, Proposition 2.8] and [7, Lemma 4], we have

LEMMA 3.5. For a dual-bimodule $Q$ wilh $\lambda$ surjective, the following condi-
tions are equivalent:

(1) $Q_{S}$ is injective.
(2) $Q_{S}$ is a cogenerator,
(3) $E(Q_{S})$ is Q-torsionless.

Let $RFG$ and $RFC$ be the full subcategory of finitely generated and finitely
cogenerated left R-modules, respectively. We shall use similar notations for
right S-modules.

THEOREM 3.6. For a dual-bimodule $Q$ with $RQ$ finitely generated, the fol-
lowing conidtions are equivalent:

(1) $Q_{S}$ is injective and $\lambda$ is surjective.
(2) $(H^{\prime}, H^{\prime\prime})$ defines a duality between $\underline{M}$ and $FC_{S}$ .

PROOF. (1) $\Rightarrow(2)$ follows from [1, Excersise 10.3], (3.3), (3.4) and (3.5).

(2) $\Rightarrow(1)$ . As is seen from the proof of (3.3) each $RM\in\underline{M}$ is Q-reflexive and
hence by (3.2) $\lambda$ is surjective. On the other hand, since $Q_{S}\in FC_{S},$ $E(Q_{S})\in FC_{S}$ .
Therefore, $E(Q_{S})\cong M^{*}$ for some $M\in\underline{M}$ and thus $E(Q_{S})$ is Q-torsionless. This
shows that $Q_{S}$ is injective by (3.5).

Let $RQ_{s}$ be an $(R, S)$-bimodule. Then by [1, Theorem 24.1] $Q$ defines a
Morita duality if and only if $Q$ is a balanced bimodule such that $RQ$ and $Q_{S}$

are injective cogenerators. Hence, as a consequence of (3.6), we obtain
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THEOREM 3.7. Let $Q$ be a dual-bimodule with $RQ$ and $Q_{S}$ finitely generated.
Then the following conditions are equivalent:

(1) $Q$ defines a Morita duality.
(2) $Q$ is a balanced bimodule such that $RQ$ and $Q_{S}$ are injective.
(3) $(H^{\prime}, H^{\prime\prime})$ defines a duality between $RFG$ and FCs and one between $RFC$

and $FG_{S}$ .

THEOREM 3.8. Let $R$ and $S$ be rings. Then the following conditions are
equivalent:

(1) There exists a duality between $RFG$ and FGs.
(2) There exists a dual-bimodule $RQ_{s}$ such that $RR$ is Artinian $anaRQ$ is

finitely generated.
(3) There exists a dual-bimodule $RQ_{s}$ such that $S_{S}$ is Artinian and $Q_{S}$ is

finitely generated.
Moreover, if this is the case, a left $R-(rightS-)module$ is Q-reflexive if and

only if it is finitely generated if and only if it is finitely cogenerated.

PROOF. (1) $\Rightarrow(2)$ follows from [1, Theorem 24.8].

(2) $\Rightarrow(1)$ . Assume (2). Then $Q_{S}$ is Noetherian and is finitely generated.
Hence, by (1.14) and its right-hand version, both $RQ$ and $Q_{S}$ are injective and,
by (2.7) and its right-hand version, $Q$ is a balanced bimodule. Therefore, $Q$

defines a Morita duality by (3.7). Thus, again by [1, Theorem 24.8] there
exists a duality between $RFG$ and $FC_{S}$ .

Similarly we can prove the equivalence of (1) and (3). The rest of the
theorem also follows from [1, Theorem 24.8].

4. Examples.

EXAMPLE 4.1. Let $p$ be a prime number and $R=Z_{(p)}=\{a/b\in\underline{Q}|(a, b)=1$

and $p$ I $b$ }, where $\underline{Q}$ is the field of rational numbers. Then $R$ is a commuta-
tive local ring with the unique maximal ideal $Rp$ and nonzero proper ideals of
$R$ are exhausted by $Rp^{n},$ $n>0$ . The quotient field of $R$ is $Q$ .

Now let $Q=\underline{Q}/R$ . Then $Q$ is an $(R, R)$-bimodule and the only nonzero
proper submodules of QR are those of the form $p^{-n}R/R$ for some $n>0$ . Further-
more we have

(1) $RQ_{R}$ is a dual-bimodule, since for each $n>0,$ $r_{Q}(Rp^{n})=p^{-n}R/R$ and
$l_{R}(p^{-n}R/R)=Rp^{n}$ .

(2) QR is an injective cogenerator. However, it is not finitely generated.
(3) $RQ_{R}$ can not define a Morita duality. Indeed, as was pointed out in [4,
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Example 6.1], $\lambda$ is not surjective and hence $RR$ is not Q-reflexive. However,

by (2.5), each $R/Rp^{n}$ is Q-reflexive. The class of Q-reflexive R-modules is
closed under extensions. Hence each $Rp^{n}$ can not be Q-reflexive. This shows
that every factor module $(\neq R)$ of $RR$ is Q-reflexive, but there is no nonzero
left ideal of $R$ which is Q-reflexive.

(4) QR is not Q-reflexive. Indeed, if QR is Q-reflexive, then so is $Q^{*}$ .
Hence, the exactness of the sequence $0\rightarrow R\rightarrow^{\lambda}Q^{*}$ implies that $RR$ must be Q-
reflexive, a contradiction.

EXAMPLE 4.2. Using the same notations as above, let $Q^{\prime}=p^{-n}R/R$ and
$\overline{R}=R/Rp^{n}$ . Then $\hslash Q_{R}^{\prime}$ is a left dual-bimodule by (1.15), but not a right dual-
bimodule. Indeed there is no lattice isomorphism between the submodule lattices
of $R_{R}$ and $\overline{R}Q^{\prime}$ .

EXAMPLE 4.3. Using the same notations as above, $RQ_{R}^{\prime}$ can be regarded

as a dual-bimodule again by (1.15). $RQ_{R}^{\prime}$ defines a Morita duality, since $\overline{R}$ is
an Artinian ring.

EXAMPLE 4.4. Let $Q=\underline{Q}/\underline{Z}$ , where $\underline{Z}$ is the ring of integers. Then $Q$ is
a $(\underline{Z},\underline{Z})$-bimodule and every factor module of $\underline{Z}\underline{Z}$ and $Q_{\underline{Z}}$ is Q-torsionless, since
$Q$ is a cogenerator over Z. However, $\lambda$ is not surjective and $Q$ is not a left
dual-bimodule by (1.10).

EXAMPLE 4.5. Let $R$ be a simple Artinian ring and take $RQ=R^{N}$ , where
$N$ denotes the set of positive integers. Then $RQ$ is not finitely cogenerated

and hence by (1.16) $RQ_{s}$ with $S=End(_{R}Q)$ is a left dual-bimodule but not a
right dual-bimodule by (1.8).

EXAMPLE 4.6. Let $R$ be the ring of $2\times 2$ upper triangular matrices over a
field and let $Q=RR_{R}$ . Then

(1) $Q$ is not a left dual-bimodule, since soc $(RQ)\neq soc(Q_{R})$ .
(2) Every finitely generated Q-torsionless left R-module is Q-reflexive,

since $R$ is left and right Artinian and hereditary and every Q-torsionless left
R-module is projective.

(3) QR is not (quasi-)injective.

(4) $\underline{M}=t_{R}M|M$ is finitely generated projective}.
(5) $\underline{N}=$ { $N_{R}|N$ is finitely generated projective}.
It is clear that each $N_{R}\in\underline{N}$ is finitely generated projective. Conversely, let

$N_{R}$ be a finitely generated projective R-module. Then $R^{m}\rightarrow N_{R}\rightarrow 0$ is split exact
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for some $m>0$ . Hence $0\rightarrow N_{R}\rightarrow^{\alpha}R^{m}$ is also split exact. Thus, $R^{m}/\alpha(N)$ is
finitely generated projective and is finitely cogenerated Q-reflexive. There
exists an $k>0$ such that $0\rightarrow N_{R}\rightarrow^{\alpha}R^{m}\rightarrow R^{k}$ is exact.

(6) Though QR is not quasi-injective, the pair $(H^{\prime}, H^{\prime\prime})$ defines a duality
between $\underline{M}$ and $\underline{N}$, as is well-known.
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