ON DUAL-BIMODULES

(Dedicated to Prof. G. Azumaya for his seventieth birthday)

By

Y. KURATA and K. HASHIMOTO

A ring R with identity in which $I = r_{R}/R_{R}(I)$ for every right ideal I and $I=$ $l_{R}r_{R}(J)$ for every left ideal J of R is called a dual ring. This ring has been investigated by many authors. As is well-known, an Artinian dual ring is a QF-ring and, recently, Hajarnavis and Norton [\[4\]](#page-20-0) have studied dual rings and pointed out that certain properties well-known for QF-rings are also seen to hold without the Artinian assumption.

In this paper, we shall introduce the notion of dual-bimodules and try to give a module-theoretic characterization of dual rings. Let R and S be rings with identity and $_RQ_{S}$ an (R, S) -bimodule. We shall call Q a left dual-bimodule if

(1) $l_{R}r_{Q}(A) = A$ for every left ideal A of R, and

(2) $r_{Q}/r_{R}(Q^{\prime})=Q^{\prime}$ for every S-submodule Q^{\prime} of Q .

A right dual-bimodule is similarly defined and we shall call Q a dualbimodule if it is a left dual-bimodule and is a right dual-bimodule as well. A left dual-bimodule need not be a right dual-bimodule in general (see Example 4.2).

Trivially a dual ring is a dual-bimodule. A bimodule which defines a Morita duality is a dual-bimodule [1, Exercise 24.7]. Furthermore, a dual-bimodule is a quasi-Frobenius bimodule in the sense of Azumaya [\[2\]](#page-20-1) (cf. also [5, Theorem 4]).

In Section 1, we shall study basic properties of left dual-bimodules and show that, among other things, an (R, S) -bimodule Q such that the mapping

$$
\lambda\colon R\longrightarrow \mathrm{End}\,(Q_S)
$$

given by $a\rightarrow a_{L}$, the left multiplication by a, is surjective is a left dual-bimodule if and only if every factor module of $_RR$ and $Q_{\rm S}$ is Q-torsionless [\(Theorem](#page-2-0) 1.4), for a left dual-bimodule ${}_{R}Q_{S}$ the ring R is semilocal [\(Theorem](#page-4-0) 1.10) and that for every R-module ${}_{R}Q\neq 0$, ${}_{R}Q_{S}$ is a left dual-bimodule with $S=End({}_{R}Q)$ if and

Received October 11, 1990. Revised July 1, 1991.

only if R is simple Artinian [\(Theorem](#page-6-0) 1.16). Finally, in closing this section, we shall show that the notion of left dual-bimodules is closed under Morita equivalence [\(Theorem](#page-9-0) 1.20).

We shall treat in Section 2 dual-bimodules. It is shown that for an (R, S) bimodule Q with both $_{R}Q$ and Q_{S} finitely generated, Q is a dual-bimodule if and only if $_R R$ and $S_{\rm s}$ are Q-reflexive and every factor module of $_R R$, $S_{\rm s}$, $_R Q$ and Q_{S} is Q-torsionless [\(Theorem](#page-13-0) 2.8). Furthermore, if Q_{S} is finitely generated and rad $(_{R}Q) \leq$ rad (Q_{S}) , then the ring R is semiperfect [\(Theorem](#page-14-0) 2.10).

In Section 3, we shall consider a duality defined by a left dual-bimodule ${}_{R}Q_{S}$. It is shown that, in case ${}_{R}Q$ is finitely generated, a duality defined by Q exists if and only if Q_{S} is quasi-injective and λ is surjective [\(Theorem](#page-16-0) 3.3) and that the duality is one between the full subcategory of R -mod of finitely generated Q-reflexive R-modules and the full subcategory of mod-S of finitely cogenerated Q-reflexive S-modules [\(Proposition](#page-17-0) 3.4).

Finally we shall provide, in Section 4, some examples of left dual-bimodules to illustrate the results given in this paper.

Throughout this paper, R and S will denote rings with identity. If $_R M$ is a left R-module and M^{\prime} is a submodule of M, then we shall write $M^{\prime}\leq_R M$, in particular, $A\leq_R R$ will mean A is a left ideal of R . For $M'\leq_R M$, $M'\leq_{e(1)R}M$ will mean M^{\prime} is essential (small) in M . We shall use similar notations for right S-modules. For an (R, S) -bimodule Q, we write ($*=Hom (-, Q)$ to denote the Q-dual functor.

For notations, definitions and familiar results concerning the ring theory we shall mainly follow [\[1\].](#page-20-2)

1. Left Dual-Bimodules.

We shall begin with the following

LEMMA 1.1 [1, Exercise 24.3]. Let Q be a left dual-bimodule. Then for each indexed set $(A_{\lambda})_{\Lambda}$ of left ideals of R and each indexed set $(Q_{\lambda})_{\Delta}$ of submodules of Q_{S}

 $r_{Q}(\bigcap_{\Lambda}A_{\lambda})=\sum_{\Lambda}r_{Q}(A_{\lambda})$ and $l_{R}(\bigcap_{\Lambda}Q_{\lambda}^{\prime})=\sum_{\Lambda}l_{R}(Q_{\lambda}^{\prime})$.

The preceding lemma implies that if Q is a left dual-bimodule, then the mapping $A\rightarrow r_{Q}(A)$ is a lattice anti-isomorphism with inverse $Q^{\prime}\rightarrow l_{R}(Q^{\prime})$ between the submodule lattices of ${}_{R}R$ and Q_{S} . In particular, we have $l_{R}(Q)=0$, i.e. ${}_{R}Q$ is faithful.

LEMMA 1.2. Let Q be an (R, S) -bimodule. Then for $A \leq_R R$ the following conditions are equivalent:

- (1) $l_{R}r_{Q}(A)=A$.
- (2) R/A is a Q-torsionless R-module.

PROOF. This follows from the fact that $l_{R}r_{Q}(A)/A=Rej_{R/A}(Q)$ for every $A \leq_R R$ [1, Lemma 24.4], where $\text{Rej}_{R/A}(Q) = \bigcap \{\text{Ker } h | h \in \text{Hom}_{R}(R/A, Q)\}$ [1, p. 109].

Let Q be a left dual-bimodule. Then by (1.2) $_R R$ is Q-torsionless. Hence, not only cyclic R -modules, but also left ideals of R are Q -torsionless.

Note that if a bimodule Q defines a Morita duality, then every left ideal of R is Q-reflexive [1, p. 278]. However, there is a dual-bimodule Q which has no Q-reflexive left ideal of R (see Example 4.1). Hence a dual-bimodule need not define a Morita duality, in general.

Recall that $\lambda: R\rightarrow \text{End}(Q_{S})$ is the mapping given by $a\rightarrow a_{L}$, the left multiplication by a. If Q is a left dual-bimodule, then $_RQ$ is faithful and hence λ is injective.

LEMMA 1.3. Let Q be an (R, S) -bimodule. Then for $Q^{\prime} \leq Q_{S}$ the following conditions are equivalent:

 (1) $\iota_{Q}l_{R}(Q^{\prime})=Q^{\prime}$.

(2) $Q^{\prime} \cong {}^{\phi}(R/l_{R}(Q^{\prime}))^{*}$, where $\phi:Q^{\prime}{\rightarrow}(R/l_{R}(Q^{\prime}))^{*}$ denotes the monomorphism given by $\phi(u)(a+l_{R}(Q^{\prime}))=au$ for $u\in Q^{\prime}$, $a\in R$.

Furthermore, (1) implies

(3) Q/Q^{\prime} is Q-torsionless,

and if λ is surjective, then (3) implies (1).

PROOF. Since $Q^{\prime} \leq r_{Q}/R(Q^{\prime})$ and the composite map of the canonical isomorphism $(R/l_{R}(Q^{\prime}))^{*} \cong r_{Q}l_{R}(Q^{\prime})$ with ϕ is the identity map of Q^{\prime} , the equality holds if and only if ϕ is onto. This means that (1) and (2) are equivalent.

(1) \Rightarrow (3) follows from the fact that $\text{Rej}_{Q/Q^{\prime}}(Q) \leq r_{Q}l_{R}(Q^{\prime})/Q^{\prime}$. If λ is surjective, these are the same and (3) implies (1).

Clearly Q_{S} is Q-torsionless. Hence, for a left dual-bimodule Q by (1.3) not only submodules of $Q_{\mathcal{S}}$, but also factor modules of $Q_{\mathcal{S}}$ are Q-torsionless.

Combining these two lemmas, we have

THEOREM 1.4. Let Q be an (R, S) -bimodule. If λ is surjective, then the

following conditions are equivalent:

- (1) Q is a left dual-bimodule.
- (2) Every factor module of $_R R$ and Q_S is Q-torsionless.

As we shall show in (2.7), if Q is a dual-bimodule and Q_{S} is finitely generated, then λ is surjective. However, in case λ is not surjective, though every factor module of $_R R$ and Q_S is Q-torsionless, we can not conclude that Q is a left dual-bimodule, in general (see Example 4.4).

The followmg lemma is often useful.

LEMMA 1.5. Let Q be a left dual-bimodule, $A\leq_R R$ and $Q^{\prime}\leq Q_{S}$. Then we have

- (1) $A \leq_{e(s)} R$ if and only if $\mathfrak{r}_{Q}(A) \leq_{e(e)} Q_{S}$.
- (2) $Q^{\prime}\leq_{e(s)}Q_{S}$ if and only if $l_{R}(Q^{\prime})\leq_{s(e)}{}_{R}R$.

Proof. (1) Suppose that $A\leq_{sR}R$ and $i_{Q}(A)\cap Q^{\prime}=0$ for some $Q^{\prime}\leq Q_{S}.$ Then by (1.1) $A + l_{R}(Q^{\prime})=R$ and hence $l_{R}(Q^{\prime})=R$. Thus we have $Q^{\prime}=0$, from which we see that $r_{Q}(A) \leq_{e} Q_{S}$.

Conversely, suppose that $i_Q(A) \leq_e Q_{S}$ and $A+A^{\prime}=R$ for some $A^{\prime}\leq_R R$. Then $tr_{Q}(A)\cap tr_{Q}(A^{\prime})=0$ and hence $tr_{Q}(A^{\prime})=0.$ Thus we have $A^{\prime}=R,$ which shows that $A\leq_{sR}R$.

(2) follows from (1) at once.

From this lemma, we can see that the socle corresponds to the radical to each other under the lattice anti-isomorphism between the submodule lattices of ${}_{R}R$ and Q_{S} . Indeed, we have

PROPOSITION 1.6. Let Q be a left dual-bimodule. Then

(1) $Z({_RQ})=rad(Q_{S})=r_{Q}(soc({_RR}))$ where $Z({_RQ})$ denotes the singular submodule of $_RQ$.

(2) $rad(R)=l_{R}(soc(Q_{S}))$.

PROOF. (1) If $u\in Z(RQ)$, then by (1.5) $uS\leq R_{s}$ and hence $u\in rad(Q_{s})$. Conversely, if $u\in rad(Q_{S})$, then u is contained in some small submodule Q' of Q_s. Hence, uS is also small in Q_s. Again by (1.5) $l_{R}(u) \leq R_{\epsilon}R$ and u is in $Z(_{R}Q)$.

Furthermore, $\operatorname{rad}(Q_{\mathcal{S}}) = \bigcap \{ Q^{\prime} \leq Q_{\mathcal{S}} | Q^{\prime} \text{ is maximal in } Q_{\mathcal{S}} \} = \bigcap \{r_{Q}(A)|A \text{ is }$ minimal in $_RR$ } = $r_{Q}(\text{soc}(R))$.

Likewise (2) follows from (1.1) .

PROPOSITION 1.7. Let Q be a left dual-bimodule. Then Q_{S} has finite Goldie dimension.

PROOF. Let $0\neq u\in Q$. If there is no nonzero submodule of Q_{S} not containing u, then Q_{S} is indeed uniform. Otherwise there exists a submodule Q_{u} of $Q_{\rm s}$ maximal with respect to not containing u by Zorn's lemma. Then Q/Q_{u} is uniform.

Now clearly $\bigcap_{0\neq u\in Q}Q_{u}=0$. Therefore $R=\sum_{0\neq u\in Q}l_{R}(Q_{u})$ and hence there exist u_{1}, \dots, u_{n} in Q such that $l_{R}(Q_{u_{1}})+\cdots+l_{R}(Q_{u_{n}})=R$. We therefore have $\bigcap_{i=1}^{n}Q_{u_{i}}{=}0.$ Thus Q is embedded into $Q/Q_{u_{1}}{ \bigoplus\cdots\bigoplus Q/Q_{u_{n}}} ,$ from which we see that Q_{S} has finite Goldie dimension.

From this proof we see at once

PROPOSITION 1.8. Let Q be a left dual-bimodule. Then

(1) Q_{S} is finitely cogenerated.

(2) soc(Q_{S}) is finitely generated and is the smallest essential submodule of $Q_{\rm s}$ [1, Proposition 10.7].

(3) There are only finitely many non-isomorphic simple submodules of $Q_{\mathcal{S}}$.

The preceding proposition is based on the fact that $_R\ddot{R}$ is finitely generated. Hence, we have

PROPOSITION 1.9. Let Q be a left dual-bimodule. Then Q_{S} is finitely generated if and only if $_R R$ is finitely cogenerated.

If this is the case, $soc_{(R)}$ is finitely generated and is the smallest essential $left$ ideal of R .

PROOF. The proof of the "only if" part is similar to that of (1.8) . To prove the "if" part, suppose that $_R R$ is finitely cogenerated. Since $Q_{S}=\sum_{u\in Q}uS$, it follows that $0=\bigcap_{u\in Q}l_{R}(uS)$. By assumption there exist u_{1}, \cdots, u_{n} in Q such that $0=\bigcap_{i=1}^{n}l_{R}(u_{i}S)$ and hence we have $Q=\sum_{i=1}^{n}u_{i}S$. This shows that Q is finitely generated.

THEOREM $1.10.$ Let Q be a left dual-bimodule. Then R is semilocal, i.e. $R/rad(R)$ is semisimple.

Proof. Let soc $(Q_{\textit{S}})=\bigoplus_{i=1}^{n}Q_{i}$, where each Q_{i} is a simple submodule of $Q_{\textit{S}}$. Then rad $(R) = \bigcap_{i=1}^{n}l_{R}(Q_{i})$. Since each $l_{R}(Q_{i})$ is a maximal left ideal of R and $0\rightarrow R/rad(R)\rightarrow\bigoplus_{i=1}^{n}R/l_{R}(Q_{i})$ is exact, $R/rad(R)$ is semisimple.

In particular, we have by $\lceil 1$, Proposition 15.17]

PROPOSITION 1.11. For a left dual-bimodule Q , we have

 $\operatorname{soc}(R_{R}Q)=r_{Q}(\operatorname{rad}(R))=\operatorname{soc}(Q_{S})$.

Henceforth we shall denote $\operatorname{soc}(R_{R}Q)=\operatorname{soc}(Q_{S})$ simply by $\operatorname{soc}(Q)$. Using [1, Corollary 15.18], for any R-module $_RM$,</sub>

$$
\mathrm{rad}\,(_RM)\!=\!\mathrm{rad}\,(R)\!\cdot\!M
$$

and $M/rad(_{R}M)$ is semisimple, i.e. $_{R}M$ is semisimple if and only if rad $(_{R}M)=0$. As an application of (1.6) and (1.11) , we have

PROPOSITION 1.12. Let Q be a left dual-bimodule. Then the following conditions are equivalent:

- (1) R is semisimple.
- (2) Q_{S} is semisimple.
- (3) $_RQ$ is semisimple.
- (4) $Z(_RQ)=0$.
- (5) rad $(Q_{S})=0$.

LEMMA 1.13. Let Q be a left dual-bimodule. Then every R-homomorphism from a left ideal of R to Q with finitely generated image is given by a right multiplication of an element of $Q.$

PROOF. Cf. [4, Proposition 5.2].

The preceding lemma implies that, for every finitely generated left ideal A of R , every diagram of the form

$$
A \leq R
$$

$$
\downarrow
$$

$$
Q
$$

is completed by an R-homomorphism $R\rightarrow Q$.

Hence, by $\lceil 6$, Proposition 2.8] we have

COROLLARY 1.14. Let Q be a left dual-bimodule. If either ${}_{R}Q$ or ${}_{R}R$ is Noetherian, then $_RQ$ must be an injective cogenerator.

In general, for a finitely generated left ideal A of R, the mapping $Q/v_{\mathcal{Q}}(A)$ $\rightarrow A^{*}$ given by $u+r_{Q}(A)\rightarrow u_{R}|_{A}$ is an S-monomorphism. The lemma also shows that this mapping is surjective and hence

On dual-bimodules 91

 $Q/\mathfrak{r}_{q}(A)\cong A^{*}$.

Let Q be a left dual-bimodule and Q' an (R, S) -submodule. If $_RQ^{\prime}$ s is also a left dual-bimodule, then ${}_{R}Q^{\prime}$ must be faithful. Hence, $Q^{\prime}=r_{Q}/R(Q^{\prime})=r_{Q}(0)=Q$. Thus, there is no proper (R, S) -submodule which is also a left dual-bimodule. However, we have

PROPOSITION 1.15. Let Q be a left dual-bimodule, Q^{\prime} an (R, S) -submodule and $\bar{R}=R/l_{R}(Q^{\prime})$. Then ${}_{R}Q^{\prime}s$ is a left dual-bimodule.

PROOF. Since Q' can be regarded as an \bar{R} -module by defining $a+l_{R}(Q^{\prime})\cdot u^{\prime}$ $=$ au' for $a\!\in\! R$ and $u^{\prime}\!\in\! Q^{\prime}$, we have $\iota_{Q^{\prime}}(A/l_{R}(Q^{\prime}))\!=\!\iota_{Q^{\prime}}(A)$ for $A/l_{R}(Q^{\prime})\!\leq_{R}\!\bar{R}$ and $l_{R}(Q^{\prime\prime})=l_{R}(Q^{\prime\prime})/l_{R}(Q^{\prime})$ for $Q^{\prime\prime}\leq Q^{\prime}s$. Therefore, we have $l_{R}\tau_{Q^{\prime}}(A/l_{R}(Q^{\prime}))=l_{R}\tau_{Q^{\prime}}(A)$ $t = l_{R}r_{Q^{\prime}}(A)/l_{R}(Q^{\prime})=(l_{R}r_{Q}(A)+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})=l_{R}r_{Q}(A)/l_{R}(Q^{\prime})=A/l_{R}(Q^{\prime})$ and $r_{Q^{\prime}}l_{R}(Q^{\prime\prime})$ $t=r_{Q^{\prime}}(l_{R}(Q^{\prime\prime})/l_{R}(Q^{\prime}))=r_{Q^{\prime}}l_{R}(Q^{\prime\prime})=r_{Q}l_{R}(Q^{\prime\prime})\cap Q^{\prime}=Q^{\prime\prime}\cap Q^{\prime}=Q^{\prime\prime}.$

In particular, for a left dual-bimodule Q , soc (Q) is an (R, S) -submodule and hence $_{R}^{SOC}(Q)_{S}$ is a left dual-bimodule satisfying the equivalent condition of (1.12), where $\overline{R}=R/\text{rad}(R)$.

The following theorem characterizes simple Artinian rings by means of the notion of left dual-bimodules.

THEOREM 1.16. For a ring R the following conditions are equivalent:

 (1) R is simple Artinian.

(2) For every R-module ${}_{R}Q\neq 0$, ${}_{R}Q_{S}$ is a left dual-bimodule with $S=End(_{R}Q)$.

(3) For every finitely generated R-module ${}_{R}Q\neq 0$, ${}_{R}Q_{S}$ is a left dual-bimodule with $S=End(_{R}Q)$.

(4) For every simple R-module ${}_{R}Q_{s}$, ${}_{R}Q_{s}$ is a left dual-bimodule with $S=$ $End(_{R}Q).$

(5) There exists a simple R-module ${}_{R}Q$ such that ${}_{R}Q_{S}$ is a left dual-bimodule with $S=End(_{R}Q)$.

If this is the case, $R \cong^{\lambda}$ End (Q_{S}) for every R-module ${}_{R}Q\neq 0$ with $S=$ End $({}_{R}Q)$. Furthermore, in case $_RQ$ is finitely generated, S is also simple Artinian.

PROOF. (1)= \Rightarrow (2). Let R be a simple Artinian ring, $_RQ\neq 0$ and $S=End(_{R}Q)$. Then by [1, Exercise 13.10] $_RQ$ is a cogenerator. Hence every (cyclic) Rmodule is Q-torsionless.

Furthermore, $_RQ$ is balanced by [1, Excrcise 18.32] which means that λ is surjective. However, Ker λ must be zero, since R is a simple ring and $Q\neq 0$. Thns, we have $R \cong^{\lambda}$ End(Q_{S}).

Since ${}_{R}R$ is semisimple, we can write R as $R=m_{1}\oplus\cdots\oplus m_{n}$ with each m_{i} a minimal left ideal of R. Using this decomposition, $Q_{\text{S}}\cong \text{Hom}_{R}(R, Q)\cong$ $\text{Hom}_{R}(m_{1}, Q)\oplus\cdots\oplus\text{Hom}_{R}(m_{n}, Q)$, where each $\text{Hom}_{R}(m_{i}, Q)$ is either simple or zero by [1, Exercise 16.18]. It follows that Q_{S} is semisimple.

Now let $Q^{\prime} {\leq} Q_{S}$. Then Q/Q^{\prime} is isomorphic to a submodule of Q_{S} and hence is Q-torsionless. Thus, by (1.4) $_{R}Q_{S}$ is a left dual-bimodule.

 $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are clear.

(5)= \Rightarrow (1). Let $_RQ$ be a simple R-module such that $_RQ_{S}$ is a left dual-bimodule with $S = \text{End}_{RQ}$. Then for any ideal A of R $r_{Q}(A)$ is an (R, S) -submodule of Q and is either Q or 0. Hence A must be either 0 or R and R is a simple ring. Since rad $(R)=0$, $_RR$ is semisimple by (1.10). Thus R is simple Artinian by [1, Proposition 13.5].

Note that in the preceding theorem each condition of (1) to (5) is also equivalent to each one of the following

(3') For every finitely generated R-module ${}_RQ\neq 0$, ${}_RQ_{S}$ is a dual-bimodule with $S=End(_{R}Q)$.

(4') For every simple R-module ${}_{R}Q$, ${}_{R}Q_{S}$ is a dual-bimodule with $S=$ $\mathrm{End}\left(_{\mathbf{\mathit{R}}}\mathbf{\mathit{Q}}\right)$.

(5') There exists a simple R-module $_{R}Q_{\text{s}}$ such that $_{R}Q_{\text{s}}$ is a dual-bimodule with $S=End(_{R}Q)$.

To see this, assume that R is simple Artinian and $_RQ\neq 0$ is a finitely generated R-module with $S=End(_{R}Q)$. As was shown in the proof of (1) \Rightarrow (2) of the preceding theorem, $_RQ_{S}$ is a left dual-bimodule and $R \cong^{k} \text{End} (Q_{S})$. Hence, to prove (3') it is sufficient to show that S is simple Artinian. Since ${}_{R}Q$ is semisimple by (1.12) and is finitely generated, we can write ${}_{R}Q$ as $Q=Q_{1}\oplus\cdots$ $\bigoplus Q_{n}$ with each ${}_{R}Q_{i}$ simple and $Q_{i} \cong Q_{j}$ for all i and j [1, Exercise 13.1]. Therefore, S is isomorphic to the ring of all $n \times n$ matrices over the division ring End ($_{R}Q_{i}$) and thus it is simple Artinian. This shows that (1) \Rightarrow (3') and $(3^{\prime})\Rightarrow(4^{\prime})\Rightarrow(5^{\prime})\Rightarrow(5)$ are evident.

As we shall show in Example 4.5, the condition $(2')$ corresponding to the condition (2) of (1.16) does not hold in general.

The following proposition follows from (1.14) and the proof of (1) \Rightarrow (2) of (1.16).

PROPOSITION 1.17. Let R be a semisimple ring and $_RQ$ an R-module with $S=End_{RQ}$. Then $_{R}Q_{S}$ is a left dual-bimodule if and only if $_{RQ}Q$ is a cogenerator.

Let Q be a left dual-bimodule. Then Q_{S} is finitely cogenerated and hence by [1, Exercise 10.15] Q_{S} has a finite indecomposable decomposition $Q_{S}=Q_{1}\oplus$ $\cdots \bigoplus Q_{n}$ with each Q_{i} indecomposable. Each Q_{i} can be written as $Q_{i}=r_{Q}(A_{i})$ for some $A_{i} \leq_R R$ and R/A_{i} is indecomposable. For, if R/A_{i} is decomposable and $R/A_{i}=A^{\prime}/A_{i}\bigoplus A^{\prime\prime}/A_{i}$ for $A_{i}\leq A^{\prime}$, $A^{\prime\prime}\leq_{R}R$, then we have $Q_{i}=r_{Q}(A^{\prime})\bigoplus r_{Q}(A^{\prime\prime})$, a contradiction. Since $i_{Q}(A_{i}+\bigcap_{j\neq i}A_{j})=Q_{i}\bigcap \sum_{j\neq i}Q_{j}=0$, $(A_{i})_{1\leq i\leq n}$ is coindependent and hence the R-homomorphism $f: R\rightarrow\bigoplus_{i=1}^{n}R/A_{i}$ defined by $f(a)=(a+A_{i})$ for $a\in R$ is surjective by [1, Exercise 6.18]. Furthermore, Ker $f=\bigcap_{i=1}^{n}A_{i}=$ $l_{R}(Q)=0$. Thus, we have $R\cong f\oplus_{i=1}^{n}R/A_{i}$ and R has a finite indecomposable decomposition.

PROPOSITION 1.18. Let Q be a left dual-bimodule. Then both Q_{S} and ${}_{R}R$ have finite indecomposable decompositions. In particular, Q_{S} is indecomposable if and only if $_RR$ is indecomposable.

Finally, in closing this section, we shall show that the notion of left dualbimodules is closed under Morita equivalence.

To see this, let $_RQ_{S}$ be a left dual-bimodule and T a ring equivalent to S via an equivalence $H: \text{mod-}S \rightarrow \text{mod-}T$. There exists a (T, S) -bimodule P such that τ^{P} and P_{S} are progenerators and H is given by $H \cong Hom_{S}(P, -)$ [1, Theorem 22.1]. We assume that for simplicity $H=Hom_{S}(P, -)$. Using [1, Proposition 21.7], each submodule of $H(Q)_{T}$ is of the form ${\rm Im}\ H(\nu)$ for some $Q^{\prime}\leq Q_{S}$ and the inclusion map $\nu:Q^{\prime}\rightarrow Q$.

LEMMA 1.19. With the same notation as above, we have

(1) $l_{R}({\rm Im} H(\nu)) = l_{R}(Q^{\prime}).$

(2) $\iota_{H(\Omega)}\iota_{R}({\rm Im} H(\nu))={\rm Im} H(\nu)$.

For a left ideal A of R and the inclusion map $\mu: \mathfrak{r}_{Q}(A) \rightarrow Q ,$

- (3) $r_{H(Q)}(A)={\rm Im} H(\mu)$.
- (4) $l_{R}r_{H(Q)}(A)=A$.

PROOF. (1) Suppose that $a \in l_{R}(Q^{\prime})$. Then for any $f \in H(Q^{\prime})$ and any $p \in P$ $(a\cdot\nu f)(p)=a\cdot f(p)\in aQ^{\prime}=0$ and hence $l_{R}(Q^{\prime})\leq l_{R}(\text{Im } H(\nu))$. Conversely, suppose that $a \in l_{R}({\rm Im} H(\nu))$. Since P_{S} is a generator, there exists a set Λ such that $P^{(\Lambda)} \rightarrow^{\alpha} Q^{\prime} \rightarrow 0$ is exact. For the injection map $\nu_{\lambda} : P \rightarrow P^{(\Lambda)}, \lambda \in\Lambda, \alpha\nu_{\lambda}$ is in $H(Q^{\prime})$ and hence by assumption $(a\cdot\alpha\nu_{\lambda})(p)=0$ for each $p\in P$ and each $\lambda\in\Lambda$. Let $u^{\prime} {\in} Q^{\prime}$ and let $x {\in} P^{(\Lambda)}$ such that $\alpha(x)=u^{\prime}$. Then x can be written as $x=$ $\nu_{\lambda_{1}}(p_{1})+\cdots+\nu_{\lambda_{k}}(p_{k})$ for some $\lambda_{1}, \cdots, \lambda_{k}\in\Lambda$ and $p_{1}, \cdots, p_{k}\in P$. Then $au'=1$ $a\cdot\alpha(x)=(a\cdot\alpha\nu_{\lambda_{1}})(p_{1})+\cdots+(a\cdot\alpha\nu_{\lambda_{k}})(p_{k})=0$. Hence, $a\in l_{R}(Q^{\prime})$ and thus $l_{R}({\rm Im}\ H(\nu))$

 $\leq l_{R}(Q^{\prime}).$

(2) Let $f\in \tau_{H(Q)}l_{R}({\rm Im}\ H(\nu))=\tau_{H(Q)}l_{R}(Q^{\prime})$. Then for each $a\in l_{R}(Q^{\prime})$ and each $p\in P$ $a\cdot f(p)=(a\cdot f)(p)=0$. Hence $f(p)\in \mathfrak{r}_{Q}/(R_{R}(Q^{\prime})=Q^{\prime})$, since RQ_{S} is a left dualbimodule. It follows that $f(p)=\nu(f(p))=(\nu f)(p)$ and thus $f=\nu f\in \text{Im }H(\nu)$. Hence we have $\iota_{H(Q)}\iota_{R}({\rm Im}\ H(\nu))\leq {\rm Im}\ H(\nu)$ and thus (2) follows.

(3) Let $f\in \iota_{H(Q)}(A)$. Then for each $a\in A$ and each $p\in P$ $a\cdot f(p)=(af)(p)$ $=0$. It follows that $f(p)\in r_{Q}(A)$ and hence $f=\mu f\in \text{Im } H(\mu)$. Conversely, let $\mu f\in{\rm Im}\ H(\mu)$, where $f\in H(r_{Q}(A))$. Then for each $a\in A$ and each $p\in P(a\cdot\mu f)(p)$ $a \cdot f(p)=0$. Hence, $a \cdot \mu f=0$ and $\mu f\in \mathfrak{r}_{H(Q)}(A)$. Thus, we have $\mathfrak{r}_{H(Q)}(A)=$ Im $H(\mu)$.

(4) Using (1), $l_{R}(\text{Im }H(\mu))=l_{R}r_{Q}(A)$ and hence by (3) $l_{R}r_{H(Q)}(A)=l_{R}r_{Q}(A)=A$, since $_RQ_{S}$ is a left dual-bimodule.

THEOREM 1.20. Let Q be a left dual-bimodule and let T be a ring equivalent to S via an equivalence H : mod-S \rightarrow mod-T. Then $_{R}H(Q)_{T}$ is also a left dual-bimodule.

As is well-known, S and the ring $(S)_{n}$ of all $n\times n$ matrices over S are equivalent via $H = -\bigotimes_{S} S^{n}$: mod- $S\rightarrow$ mod-(S)_n. Hence, we have

COROLLARY 1.21. Let Q be a left dual-bimodule. Then for each $n>0$, ${}_{R}Q_{(S)}^{n}$ is also a left dual-bimodule.

In particular, if R is a dual ring, then for each $n>0$, ${}_{R}R_{(R)_{n}}^{n}$ is a left dualbimodule.

2. Dual-Bimodules.

If Q is a left dual-bimodule, then there are only finitely many non-isomorphic simple submodules of $Q_{\rm s}$. However, in case Q is a dual-bimodule, by (1.10) there are only finitely many non-isomorphic simple right S-modules and each of which is isomorphic to a submodule of Q_{S} [6, Proposition 2.8]. Furthermore, we have

THEOREM 2.1. Let Q be a dual-bimodule. Then

(1) The Q-dual of every simple left R-module as well as that of every simple right S-module is simple.

(2) Every simple left R-module as well as every simple right S-module is Qreflexive.

(3) There is a bijection between the irredundant sets of representatives of the simple left R-modules and the simple right S-modules.

On dual-bimodules 95

PROOF. Suppose first that Q is a left dual-bimodule and $_R M$ is a simple R-module. Then by [6, Proposition 2.8] M is isomorphic to a simple submodule Ru of ${}_{R}Q$ for some $u\in Q$. Therefore, $M^{*}\cong(R/l_{R}(u))^{*}\cong r_{Q}/R(u)=uS$ and hence M_{S}^{*} is simple, since $l_{R}(u)$ is a maximal left ideal. Thus, for each $u \in Q$, ${}_{R}Ru$ is simple if and only if uS_{S} is simple and further we have $uS\cong(Ru)^{*}$ via us \rightarrow S_R|_{Ru}.

However, if in addition Q is a right dual-bimodule, then every simple right S-module is of the form uS for some $u\in Q$. Since $(uS)^{*}\cong (S/r_{S}(u))^{*}\cong l_{Q}r_{S}(u)$ $=Ru$, $Ru\cong(uS)^{*}$ via $au\rightarrow a_{L}|_{uS}$ and thus for each $u\in Q$ the mapping $Ru\rightarrow uS$ can be seen as a bijection between irredundant sets of representatives of the simple left R-modules and the simple right S-modules.

Finally it is easy to see that isomorphisms mentioned above yield the condition (2).

More precisely, we have

PROPOSITION 2.2. For a dual-bimodule Q, let \bar{e}_{1}, \cdots , \bar{e}_{m} and \bar{f}_{1}, \cdots , \bar{f}_{m} be basic sets of idempotents of the semisimple ring $\overline{R}=R/\text{rad}(R)$ and $\overline{S}=S/\text{rad}(S)$, respectively. Then

 $e_{1} \cdot \text{soc}(Q), \ e_{2} \cdot \text{soc}(Q), \ \cdots, \ e_{m} \cdot \text{soc}(Q)$

and

$$
\operatorname{soc}(Q) \cdot f_1, \operatorname{soc}(Q) \cdot f_2, \cdots, \operatorname{soc}(Q) \cdot f_m
$$

exhaust non-isomorphic simple right S-modules and that of simple left R -modules, respectively.

PROOF. For each i, $l_{R}(e_{i}\cdot \text{soc}(Q))=\{a\in R| a\neq e_{i}\in \text{rad}(R)\}$ and hence the mapping $R\rightarrow\overline{R}\bar{e}_{i}$, given by $a\rightarrow\bar{a}\bar{e}_{i}$, is an R-epimorphism with kernel $l_{R}(e_{i}\cdot \text{soc}(Q))$. Therefore, $e_{i}\cdot \text{soc}(Q)$ is a simple submodule of Q_{s} . Furthermore, $e_{i}\cdot \text{soc}(Q) \cong$ $(R/l_{\textit{R}}(e_{i}\cdot \text{soc}(Q)))^{*}\cong(\overline{R}\,\bar{e}_{i})^{*}.$ Thus, the proposition follows from (2.1).

THEOREM 2.3. Let Q be a dual-bimodule. Then every finitely generated submodule of Q_{S} as well as that of $_RQ$ is Q-reflexive.

To see this, we need a lemma which is shown by a similar way as in $\lceil 4, \rceil$ Proposition 5.2].

LEMMA 2.4. Let Q be a dual-bimodule and $Q^{\prime} \leq Q_{S}$. Then every S-homomorphism from Q^{\prime} to Q with finitely generated image is given by a left multi $plication of an element of R .$

It follows from this lemma that if Q_{S} is Noetherian, then Q_{S} is quasiinjective.

PROOF OF (2.3). For every finitely generated submodule Q^{\prime} of $Q_{\mathcal{S}}$, the Rmomomorphism $R/l_{R}(Q^{\prime})\rightarrow Q^{\prime\ast}$ given by $a+l_{R}(Q^{\prime})\rightarrow a_{L}|_{Q^{\prime}}$ yields by (2.4)

 $R/l_{R}(Q^{\prime})\cong Q^{\prime*}$

Therefore, using the natural isomorphism $Q^{\prime}=r_{Ql_{R}}(Q^{\prime})\cong(R/l_{R}(Q^{\prime}))^{*}$, we see that Q^{\prime} is Q -reflexive.

The preceding theorem is not true without the assumption that Q^{\prime} is finitely generated (see Example 4.1).

Since soc(Q_{S}) is finitely generated, the above isomorphism $R/l_{R}(Q^{\prime})\cong Q^{\prime\ast}$ yields, in particular,

$$
R/rad(R) \cong End(soc(Q)S)
$$

as rings.

From (2.3) and [1, Proposition 20.14] we have

COROLLARY 2.5. Let Q be a dual-bimodule. Then for every finitely generated submodule Q' of Q_{S} , $R/l_{R}(Q^{\prime})$ is Q-reflexive.

The proof of [4, Theorem 5.3] carries over almost word for word to the case of dual-bimodules.

PROPOSITION 2.6. Let Q be a dual-bimodule. Then for each $n>0$ every factor module of Q_{S}^{n} has finite Goldie dimension.

In particular, in case where Q_{S} is a generator, every finitely generated right S-module has finite Goldie dimension.

PROOF. First we shall prove by induction on n that every semisimple submodule of any factor module of Q_{S}^{n} is finitely generated.

Let $n=1$ and $K \leq Q^{\prime} \leq Q_{S}$. Suppose that Q^{\prime}/K is semisimple, which is not finitely generated. Then by (2.2) Q'/K contains a countably infinite direct sum $\bigoplus_{i\geq 1}(u_{i}S+K)/K$, where each $(u_{i}S+K)/K$ is simple and is isomorphic to the same simple S-module $e\cdot \text{soc}(Q)$. Let $f_{i}: u_{i}S+K\rightarrow e\cdot \text{soc}(Q)$ be the composite of the canonical map $\pi_{i}: u_{i}S+K\rightarrow(u_{i}S+K)/K$ with the isomorphism. Then by (2.4) $f_{i}=a_{iL}$ for some $a_{i}\in l_{R}(K)$ and hence we have $a_{i}u_{i}S=e\cdot \text{soc}(Q)$.

We now define for any subset Λ of N, where N denotes the set of positive integers, an S-homomorphism

On dual-bimodules 97

$$
h_A \colon \Sigma_{i \leq 1} (u_i S + K) \longrightarrow e \cdot \text{soc}(Q)
$$

to be $h_{\Lambda}(u_{i})=a_{i}u_{i}$ whenever $i\in\Lambda, h_{\Lambda}(u_{i})=0$ whenever $i\not\in\Lambda, h_{\Lambda}(K)=0$ and extending this definition by linearity. By (2.4) $h_{\Lambda}=b_{\Lambda L}$ for some $b_{\Lambda}\in l_{R}(K)$ and hence for each Λ and $i\in N$ we have $eb_{\Lambda}u_{i}=b_{\Lambda}u_{i}$, since the image of h_{Λ} is $e \cdot \text{soc}(Q)$.

Using $[4,$ Lemma 5.1] there is an uncountable independent collection C of subsets of N . We shall show that

$\sum_{\Lambda\in C}(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$

is a direct sum. To this end, let $\Lambda_{1}, \cdots, \Lambda_{n}$ be distinct elements of C and let $c_{1}eb_{\Lambda_{1}}+\cdots+c_{n}eb_{\Lambda_{n}} \in l_{R}(Q^{\prime})$ where $c_{1}, \cdots, c_{n}\in R$. For each j, $1\leq j\leq n$, take an $t_j \in\Lambda_j \cap (\Lambda_1^{-1}\cap\cdots\cap\Lambda_{j-1}^{-1}\cap\Lambda_{j+1}^{-1}\cap\cdots\cap\Lambda_n^{-1})$, where Λ_i^{-1} means the set $N\setminus\Lambda_i$. Since $u_{t_{j}} \in Q^{\prime}$, $c_{1}eb_{\Lambda_{1}}u_{t_{j}}+\cdots+c_{n}eb_{\Lambda_{n}}u_{t_{j}}=0$. But if $k\neq j$, then $t_{j}\notin\Lambda_{k}$. Hence $b_{\Lambda_{k}}u_{t_{j}}$ =0 and therefore we have $c_{j}eb_{\Lambda_{j}}u_{\iota_{j}}=0$ for $1\leq j\leq n$. We now show that $c_{j}e\in$ rad (R) for $1 \leq j \leq n$. Suppose that $c_{j}e\neq\text{rad}(R)$ for some j. Then $Rc_{j}e+\text{rad}(R)$ \neq rad(R) and hence $\overline{R}\overline{e}=(Re+rad(R))/rad(R)\geq(Re_{j}e+rad(R))/rad(R)\neq 0$. Since $\overline{R}\overline{e}$ is simple, $Re+rad(R)=Rc_{j}e+rad(R)$ and therefore we have $eb_{\Lambda_{f}}u_{t_{j}}\in$ $(Re+rad(R))b_{\Lambda_{j}}u_{t_{j}}=(Rc_{j}e+rad(R))b_{\Lambda_{j}}u_{t_{j}}=Rc_{j}eb_{\Lambda_{j}}u_{t_{j}}+rad(R)b_{\Lambda_{j}}u_{t_{j}}=0 ,$ since $c_{j}eb_{\Lambda_{j}}u_{t_{j}}=0$ and $b_{\Lambda_{j}}u_{t_{j}}\in e\cdot \text{soc}(Q)\leq \text{soc}(Q)=\text{sq}(\text{rad}(R))$. However, $eb_{\Lambda_{j}}u_{t_{j}}=b_{\Lambda_{j}}u_{t_{j}}$ $=a_{t_{j}}u_{t_{j}}\neq 0$, a contradiction.

Since Q^{\prime}/K is semisimple, $Q^{\prime}/K\cdot rad(S)\leq rad(Q^{\prime}/K)=0$ and so we have $Q^{\prime}\cdot rad(S) \leq K$, which means that $l_{R}(K)\cdot Q^{\prime}\cdot rad(S)=0$ and $l_{R}(K)\cdot Q^{\prime} \leq l_{Q}(rad(S))=$ $r_{Q}(\text{rad}(R))$ by (1.11). Therefore, rad $(R)\cdot l_{R}(K)\cdot Q^{\prime}=0$ and we have rad $(R)\cdot l_{R}(K)$ $\leq l_{R}(Q^{\prime})$. Since $c_{j}e\in \text{rad}(R)$ and $b_{\Lambda_{j}}\in l_{R}(K)$, $c_{j}eb_{\Lambda_{j}}\in l_{R}(Q^{\prime})$. This shows that $\sum_{\ell \in C}$ (Reb_A+l_R(Q'))/l_R(Q') is a direct sum.

As we have shown above, $rad(R) \cdot l_{R}(K) \leq l_{R}(Q^{\prime})$, from which we see that $l_{R}(K)/l_{R}(Q^{\prime})$ is an \bar{R} -module and is a semisimple R-module. On the other hand, $b_{\Lambda}\in l_{R}(K)$ implies that $(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$ is a submodule of $l_{R}(K)/l_{R}(Q^{\prime})$. Hence it is semisimple and so $\bigoplus_{\Lambda\in C}(Reb_{\Lambda}+l_{R}(Q^{\prime}))/l_{R}(Q^{\prime})$ is also semisimple. Thus, we see that dim $\left(\frac{l_{R}(K)}{l_{R}(Q^{\prime})}\right)\geq|C|>|N|$ (see [4, p. 259] for the definition). A symmetrical argument now gives $\dim(Q^{\prime}/K)>|N|$. But this holds whenever Q^{\prime}/K is a non finitely generated semisimple S-module and in particular when $Q^{\prime}/K=\bigoplus_{i\geq 1}(u_{i}S+K)/K$. However, clearly in this case $\dim(Q^{\prime}/K)$ $=|N|$, a contradiction. Thus, we have established that every semisimple submodule of any factor module of Q_{S} is finitely generated.

Now suppose that, for $k\leq n-1$, every semisimple submodule of any factor module of Q_{S}^{k} is finitely generated. Let $k=n$ and $K\leq Q_{S}^{n}$. Then $(Q^{n-1}+K)/K\leq$

 Q^{n}/K and we have soc $(Q^{n}/K)\cong$ soc $((Q^{n-1}+K)/K)\oplus$ soc $(Q^{n}/K)/s$ oc $((Q^{n-1}+K)/K)$, Since $(Q^{n-1}+K)/K\cong Q^{n-1}/(Q^{n-1}\cap K)$, it follows that by induction hypothesis soc $((Q^{n-1}+K)/K)$ is finitely generated. On the other hand, soc $(Q^{n}/K)/s$ oc $((Q^{n-1}$ $+K)/K)\cong$ soc($Q^{n}/K)/($ soc(Q^{n}/K) \cap ($Q^{n-1}+K)/K$) \cong (soc($Q^{n}/K)+(Q^{n-1}+K)/K$)/ $((Q^{n-1}+K)/K) \leq Q^{n}/(Q^{n-1}+K)$. Let K_{n} denote the submodule of all the n-th coordinates of elements of K. Then $Q^{n}/(Q^{n-1}+K)$ is isomorphic to Q/K_{n} via $\overline{(v_{1},\dots,v_{n})}\rightarrow\overline{v}_{n}$ and hence soc $(Q^{n}/K)/s$ oc $((Q^{n-1}+K)/K)$ can be seen as a semisimple submodule of Q/K_{n} . Hence, it is finitely generated. Therefore, we see that $\operatorname{soc}(Q^{n}/K)$ is also finitely generated.

Finally, for any $K{\leq}Q_{S}^{n}$, we shall show that Q^{n}/K has finite Goldie dimension. Let $0\neq Q_{\alpha}/K\leq Q^{n}/K$ for $\alpha\in A$ and suppose that $(Q_{\alpha}/K)_{\alpha\in A}$ is independent. For each $\alpha\in A$, take $0\neq\bar{x}_{\alpha}=x_{\alpha}+K\in Q_{\alpha}/K$. Then $\bar{x}_{\alpha}\cdot rad(S)\neq\bar{x}_{\alpha}S$ by Nakayama's lemma and hence $\bar{x}_{\alpha}S/\bar{x}_{\alpha}\cdot rad(S)$ is a nonzero semisimple S-module. Using [1, Exercise 6.3] we have $\bigoplus_{A}\overline{x}_{\alpha}S/\bigoplus_{A}\overline{x}_{\alpha}\cdot rad(S)\cong\bigoplus_{A}(\overline{x}_{\alpha}S/\overline{x}_{\alpha}\cdot rad(S))$ and both $\bigoplus_{A}\overline{x}_{\alpha}S$ and $\bigoplus_{A}\overline{x}_{\alpha}\cdot rad(S)$ are submodules of Q^{n}/K . Hence we can see that $\bigoplus_{A}(\overline{x}_{\alpha}S/\overline{x}_{\alpha}\cdot rad(S))$ is a semisimple submodule of Q^{n}/K^{\prime} for some $K^{\prime}\leq Q_{S}^{n}$ and is finitely generated. It follows that A is a finite set, which completes the proof of the proposition.

THEOREM 2.7. Let Q be a dual-bimodule. Then R is a dense subring of $End(Q_{S}).$

In particular, if Q_{S} is finitely generated, then we have

 $R \cong^{\lambda} \text{End} (Q_{S})$.

PROOF. Let $f\in End(Q_{S}), u_{1}, \cdots, u_{n}$ finitely many elements of Q and $Q^{\prime}=\emptyset$ $u_{1}S+\cdots+u_{n}S$. Then the mapping $f|_{Q^{\prime}}$ belongs to $Q^{\prime*}$ and hence by (2.4) there exists an $a \in R$ such that $f|_{Q^{\prime}}=a_{L}|_{Q^{\prime}}$. Thus, $f(u_{i})=a u_{i}$, $1 \leq i \leq n$, and R is dense in $End(Q_{S}).$

If Q_{S} is not finitely generated, the theorem is not always true in general (see Example 4.1). We note that the last part of the theorem also follows from (2.5).

By $\lceil 1 \rceil$, Theorem 24.1, an (R, S) -bimodule Q defines a Morita duality if and only if every factor module of $_R$ R, S_s , $_R$ Q and Q_s is Q-reflexive. However, for a dual-bimodule by (1.4) and (2.7) we have

THEOREM 2.8. Let Q be an (R, S) -bimodule such that both $_RQ$ and Q_{S} are finitely generated. Then the following conditions are equivalent:

 (1) Q is a dual-bimodule.

(2) $_{R}R$ and S_{S} are Q-reflexive and every factor module of $_{R}R$, S_{S} , $_{R}Q$ and Q_{S} is Q-torsionless.

LEMMA 2.9. Let Q be a dual-bimodule with λ surjective. Assume that $\text{rad}\left(_{R}Q\right)\leq_{s}Q_{S}.$ Then every idempotent of R can be lifted modulo $\text{rad}\left(R\right).$

PROOF. Cf. [4, Theorem 3.8].

Thus, we have

THEOREM 2.10. Let Q be a dual-bimodule with Q_{S} finitely generated and $rad(_{R}Q) \leq rad(Q_{S})$. Then R is semiperfect.

As we shall show in Example 4.1, there is a dual-bimodule Q for which R is semiperfect, but Q_{S} is not finitely generated.

3. Dualities.

For a left dual-bimodule Q , it is shown in (1.2) every cyclic R-module is Q-torsionless. The following theorem gives a criterion for every cyclic Rmodule being Q-reflexive. First, we need a lemma.

LEMMA 3.1 (cf. [3, Proposition 1.1]). Let $_{R}Q_{S}$ be an (R, S) -bimodule and N_{S} an S-module such that Q_{S} is N-injective and N_{S} is Q-reflexive. Then for $K \leq N_{S}$, N/K is Q-torsionless if and only if K is Q-reflexive.

Proof. Let $Q_{\mathcal{S}}$ be *N*-injective and $K{\leq}N_{\mathcal{S}}.$ Then we have a commutative diagram with exact rows

$$
0 \longrightarrow K \longrightarrow N \longrightarrow N/K \longrightarrow 0
$$

\n
$$
\sigma_K \downarrow \qquad \qquad \downarrow \sigma_N \qquad \qquad \downarrow \sigma_{N/K}
$$

\n
$$
0 \longrightarrow K^{**} \longrightarrow N^{**} \longrightarrow (N/K)^{**}
$$

where σ_{*} means the evaluation map. Assume that N_{S} is Q-reflexive. Then by [1, Lemma 3.14] we see that $\sigma_{N/K}$ is monic if and only if σ_{K} is epic and this is so if and only if σ_{K} is an isomorphism, since K is Q-torsionless as a submodule of $N_{\rm s}$.

THEOREM 3.2. Let Q be a left dual-bimodule. Then the following conditions are equivalent:

(1) Q_{S} is quasi-injective and λ is surjective.

(2) Every cyclic R-module is Q-reflexive.

(3) Every finitely generated Q-torsionless R-module is Q-reflexive.

Moreover, if each one of these conditions holds, then R is semiperfect and every submodule of Q_{S} is finitely cogenerated Q-reflexive.

PROOF. (1) \Rightarrow (3). Let $_R M$ be a finitely generated Q-torsionless R-module. Then $R^{n}\rightarrow M\rightarrow 0$ is exact for some $n>0$. Since $(R^{n})^{*}\cong Q^{n}$ and Q is Q^{n} -injective, we have a commutative diagram with exact rows

Since λ is surjective, σ_{Rn} is an epimorphism and hence σ_{M} is also an epimorphism. Thus, M is Q-reflexive.

 $(3) \Rightarrow (2)$. This is evident by (1.2) .

(2) \Rightarrow (1). For any $A \leq_R R$ the mapping $\lambda_{A}: R \rightarrow t_{Q}(A)^{*}$ given by $a \rightarrow a_{L}|t_{Q^{(A)}}$ is an R-homomorphism. With the canonical S-isomorphism $h:(R/A)^{*}\rightarrow \iota_{Q}(A), \lambda_{A}$ yields a commutative diagram

$$
R \longrightarrow^{\pi} R/A
$$

\n
$$
\lambda_A \downarrow \qquad \qquad \downarrow \sigma_{R/A}
$$

\n
$$
\iota_0(A)^* \longrightarrow_{h*} (R/A)^{**}
$$

Since $\sigma_{R/A}$ is an epimorphism, so is λ_{A} . Therefore, for every S-homomorphism $f: \tau_{Q}(A) \rightarrow Q$, there exists an $a \in R$ such that $f=a_{L}|\tau_{Q^{(A)}}$. Thus, Q_{S} is quasiinjective. In particular, if we take $A=0$, then we see that λ is surjective.

As was pointed out in [3, p. 120], if Q_{S} is quasi-injective, then End (Q_{S}) is semiperfect if and only if Q_{S} has finite Goldie dimension. Hence, the last part of the theorem follows from (1.3) , (1.7) and (3.1) .

As is seen from (2.4) and (2.7), if Q is a dual-bimodule and Q_{S} is Noetherian, then Q satisfies the equivalent condition of the preceding theorem.

It is also to be noted that the equivalence in the preceding theorem is closely related to the assumption that Q is a left dual-bimodule and without this assumption we can not prove $(3) \Rightarrow (1)$. See Example 4.6.

We shall give another criterion for every cyclic R-module being Q-reflexive. To do this, for an (R, S) -bimodule ${}_{R}Q_{S}$, consider the full subcategory M of Rmod of finitely generated Q-torsionless R-modules and the full subcategory \dot{N}

of mod-S whose objects are all the S-modules N such that there exists an exact sequence of the form $0\rightarrow N\rightarrow Q^{n}\rightarrow Q^{I}$ for some $n>0$ and a set 1.

THEOREM 3.3. For an (R, S) -bimodule Q, consider the following conditions:

(1) Q_{S} is quasi-injective and λ is surjective.

(2) The pair $(H^{\prime}, H^{\prime\prime})$ of functors

$$
H' = \text{Hom}_R(-, Q): \underline{M} \longrightarrow \underline{N} \quad \text{and} \quad H'' = \text{Hom}_S(-, Q): \underline{N} \longrightarrow \underline{M}
$$

defines a duality between $\mathcal M$ and $\mathcal N$.

Then (1) implies (2). If Q is a left dual-bimodule with $_RQ$ finitely generated, then (2) implies (1) and in this case (1) and (2) are equivalent.

PROOF. $(1) \Rightarrow (2)$ (cf. [3, Proposition 1.3]). First, we note that from the proof of (1) \Rightarrow (3) of (3.2) each $\mathbb{R}M\in\mathcal{M}$ is Q-reflexive.

Next we show that $M^{*} {\in}\,N$ for every ${_{R}M}{\in}\,M$. Since M is finitely generated, $R^{n}\rightarrow M\rightarrow 0$ is exact for some $n>0$. Hence $0\rightarrow M^{*}\rightarrow \alpha Q^{n}$ is exact. We may show that $Q^{n}/\alpha(M^{*})$ is Q-torsionless. Since λ is surjective, σ_{R} is an epimorphism and hence R^{*} is Q-reflexive. Therefore, Q is Q-reflexive and so is Q^{n} . Applying (3.1) to Q_{S} and Q_{S}^{n} , we see that $Q^{n}/\alpha(M^{*})$ is Q-torsionless, since M^{*} is Qreflexive.

Now we show that $N_{\mathcal{S}}{\in}\underline{N}$ implies $N^{*}{\in}\underline{M}$. Let $0{\rightarrow} N{\rightarrow} Q^{n}{\rightarrow} Q^{I}$ be exact for some $n>0$ and *I*. Since Q_{S} is Q^{n} -injective, $(Q^{n})^{*}\rightarrow N^{*}\rightarrow 0$ is exact. Furthermore, λ is surjective and hence $R^{n}\rightarrow(Q^{*})^{n}\rightarrow 0$ is exact. Thus, $R^{n}\rightarrow N^{*}\rightarrow 0$ must be exact, from which we see that N^{*} is finitely generated. By [1, Proposition 20.14] N^{*} is Q-torsionless.

Finally we see that N is Q-reflexive for $N_{\mathcal{S}}{\in}\mathcal{N}$, applying (3.1) again.

 $(2) \Rightarrow (1)$. This follows from a similar way as in the proof of [1, Theorem 23.5]. Note that, by the assumption that $_RQ$ is finitely generated, we may use [1, Exercise 20.5].

As is shown above, the quasi-injectivity of Q_{S} implies a duality between \underline{M} and \underline{N} . The converse, however, is not the case without the assumption that Q is a left dual-bimodule. See Example 4.6.

Now let $_RQ_{\mathcal{S}}$ be an (R, S) -bimodule and let M and N be as above. Assume that $Q_{\mathcal{S}}$ is quasi-injective and λ is surjective. Then as is remarked in the proof of (3.3), M is the full subcategory of finitely generated Q-reflexive R-modules. On the other hand, if we assume further that Q_{S} is finitely cogenerated, then \overline{N} becomes the full subcategory of mod-S of finitely cogenerated Q-reflexive S- modules.

PROPOSITION 3.4. Let Q be an (R, S) -bimodule such that Q_{S} is quasi-injective and λ is surjective. Assume further that Q_{S} is finitely cogenerated. Then

 $M=\binom{R}{k}M$ is finitely generated and Q-reflexive},

and

 $N = {N_{S}|N \text{ is finitely cogenerated and Q-reflexive}}.$

PROOF. It is clear that each $N_{\mathcal{S}}\in\mathbb{N}$ is finitely cogenerated and Q-reflexive.

Conversely, suppose that N_{S} is finitely cogenerated Q-reflexive. Then there exists an $n>0$ for which $0\rightarrow N_{S}\rightarrow^{\alpha}Q^{n}$ is exact. By (3.1) $Q^{n}/\alpha(N)$ is Q-torsionless and thus $0\rightarrow N_{S}\rightarrow^{\alpha}Q^{n}\rightarrow Q^{I}$ is exact for some set *I*.

For a dual-bimodule Q , by [6, Proposition 2.8] and [7, Lemma 4], we have

LEMMA 3.5. For a dual-bimodule Q with λ surjective, the following conditions are equivalent:

- (1) Q_{S} is injective.
- (2) Q_{S} is a cogenerator,
- (3) $E(Q_{S})$ is Q-torsionless.

Let $_RFG$ and $_RFC$ be the full subcategory of finitely generated and finitely cogenerated left R-modules, respectively. We shall use similar notations for right S-modules.

THEOREM 3.6. For a dual-bimodule Q with RQ finitely generated, the following conidtions are equivalent:

- (1) Q_{S} is injective and λ is surjective.
- (2) (H', H") defines a duality between \underline{M} and FC_{S} .

PROOF. (1) \Rightarrow (2) follows from [1, Excersise 10.3], (3.3), (3.4) and (3.5).

(2) \Rightarrow (1). As is seen from the proof of (3.3) each ${}_{R}M\in\mathcal{M}$ is Q-reflexive and hence by (3.2) λ is surjective. On the other hand, since $Q_{\mathcal{S}}\in FC_{\mathcal{S}}$, $E(Q_{\mathcal{S}})\in FC_{\mathcal{S}}$. Therefore, $E(Q_{S})\cong M^{*}$ for some $M\in\mathcal{M}$ and thus $E(Q_{S})$ is Q-torsionless. This shows that Q_{S} is injective by (3.5).

Let $_RQ_{s}$ be an (R, S) -bimodule. Then by [1, Theorem 24.1] Q defines a Morita duality if and only if Q is a balanced bimodule such that $R_{R}Q$ and Q_{S} are injective cogenerators. Hence, as a consequence of (3.6), we obtain

THEOREM 3.7. Let Q be a dual-bimodule with RQ and Q_{S} finitely generated. Then the following conditions are equivalent:

 (1) Q defines a Morita duality.

(2) Q is a balanced bimodule such that RQ and Q_{S} are injective.

(3) $(H^{\prime}, H^{\prime\prime})$ defines a duality between $_RFG$ and FC_s and one between $_RFC$ and $_{\rm FGs.}$

THEOREM 3.8. Let R and S be rings. Then the following conditions are equivalent:

(1) There exists a duality between $_{R}FG$ and FG_{S} .

(2) There exists a dual-bimodule ${}_{R}Q_{S}$ such that ${}_{R}R$ is Artinian and ${}_{R}Q$ is finitely generated.

(3) There exists a dual-bimodule ${}_{R}Q_{S}$ such that S_{S} is Artinian and Q_{S} is finitely generated.

Moreover, if this is the case, a left R -(right S-)module is Q-reflexive if and only if it is finitely generated if and only if it is finitely cogenerated.

PROOF. $(1) \Rightarrow (2)$ follows from [1, Theorem 24.8].

 $(2) \Rightarrow (1)$. Assume (2). Then $Q_{\mathcal{S}}$ is Noetherian and is finitely generated. Hence, by (1.14) and its right-hand version, both $_RQ$ and Q_{S} are injective and, by (2.7) and its right-hand version, Q is a balanced bimodule. Therefore, Q defines a Morita duality by (3.7). Thus, again by [1, Theorem 24.8] there exists a duality between $_RFG$ and FC_{S} .

Similarly we can prove the equivalence of (1) and (3). The rest of the theorem also follows from [1, Theorem 24.8].

4. Examples.

EXAMPLE 4.1. Let p be a prime number and $R=Z_{(p)}=\{a/b\in\mathcal{Q}|(a, b)=1\}$ and $p \nmid b$, where $\mathcal Q$ is the field of rational numbers. Then R is a commutative local ring with the unique maximal ideal Rp and nonzero proper ideals of R are exhausted by Rp^{n} , $n>0$. The quotient field of R is Q.

Now let $Q=Q/R$. Then Q is an (R, R) -bimodule and the only nonzero proper submodules of Q_R are those of the form $p^{-n}R/R$ for some $n>0$. Furthermore we have

(1) ${}_{R}Q_{R}$ is a dual-bimodule, since for each $n>0$, $r_{Q}(Rp^{n})=p^{-n}R/R$ and $l_{R}(p^{-n}R/R)=Rp^{n}$.

(2) Q_R is an injective cogenerator. However, it is not finitely generated.

(3) $_RQ_{R}$ can not define a Morita duality. Indeed, as was pointed out in [4,

Example 6.1], λ is not surjective and hence $_RR$ is not Q-reflexive. However, by (2.5), each R/Rp^{n} is Q-reflexive. The class of Q-reflexive R-modules is closed under extensions. Hence each Rp^{n} can not be Q-reflexive. This shows that every factor module $(\neq R)$ of $_R R$ is Q-reflexive, but there is no nonzero left ideal of R which is Q -reflexive.

(4) Q_R is not Q-reflexive. Indeed, if Q_R is Q-reflexive, then so is Q^{*} . Hence, the exactness of the sequence $0\rightarrow R\rightarrow^{2}Q^{*}$ implies that ${}_{R}R$ must be Qreflexive, a contradiction.

EXAMPLE 4.2. Using the same notations as above, let $Q^{\prime} = p^{-n}R/R$ and $\overline{R}=R/Rp^{n}$. Then ${}_{\overline{R}}Q_{R}^{\prime}$ is a left dual-bimodule by (1.15), but not a right dualbimodule. Indeed there is no lattice isomorphism between the submodule lattices of R_{R} and $_{R}Q^{\prime}$.

EXAMPLE 4.3. Using the same notations as above, $_{R}Q_{R}^{\prime}$ can be regarded as a dual-bimodule again by (1.15). $_{R}^{Q'}{}_{R}$ defines a Morita duality, since \overline{R} is an Artinian ring.

EXAMPLE 4.4. Let $Q = Q/\mathcal{Z}$, where $\mathcal Z$ is the ring of integers. Then Q is a (\mathcal{Z} , \mathcal{Z})-bimodule and every factor module of ${}_{\mathcal{Z}}\mathcal{Z}$ and $Q_{\mathcal{Z}}$ is Q-torsionless, since Q is a cogenerator over Z. However, λ is not surjective and Q is not a left dual-bimodule by (1.10).

EXAMPLE 4.5. Let R be a simple Artinian ring and take ${}_{R}Q=R^{N}$, where N denotes the set of positive integers. Then $_RQ$ is not finitely cogenerated and hence by (1.16) $_{R}Q_{s}$ with $S=End(_{R}Q)$ is a left dual-bimodule but not a right dual-bimodule by (1.8).

EXAMPLE 4.6. Let R be the ring of 2×2 upper triangular matrices over a field and let $Q=_{R}R_{R}$. Then

(1) Q is not a left dual-bimodule, since $\operatorname{soc}(RQ)\neq \operatorname{soc}(Q_{R})$.

(2) Every finitely generated Q-torsionless left R-module is Q-reflexive, since R is left and right Artinian and hereditary and every Q -torsionless left R-module is projective.

- (3) Q_R is not (quasi-)injective.
- (4) $M=\binom{R}{M}M$ is finitely generated projective}.
- (5) $N = {N_{R}|N}$ is finitely generated projective}.

It is clear that each $N_{R}\in\mathbb{N}$ is finitely generated projective. Conversely, let N_{R} be a finitely generated projective R-module. Then $R^{m}\rightarrow N_{R}\rightarrow 0$ is split exact for some $m>0$. Hence $0\rightarrow N_{R}\rightarrow^{\alpha}R^{m}$ is also split exact. Thus, $R^{m}/\alpha(N)$ is finitely generated projective and is finitely cogenerated Q-reflexive. There exists an $k>0$ such that $0\rightarrow N_{R}\rightarrow^{\alpha}R^{m}\rightarrow R^{k}$ is exact.

(6) Though Q_R is not quasi-injective, the pair $(H^{\prime}, H^{\prime\prime})$ defines a duality between M and N , as is well-known.

Acknowledgement

The authors wish to thank to the referee for his valuable advices.

References

- [1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York Heidelberg Berlin. 1973.
- [2] G. Azumaya, A duality theory for injective modules, Amer. J. Math. 81 (1959), 249-278.
- [3] J. L. Garcia Hernandez and J. L. Gomez Pardo, Closed submodules of free modules over the endomorphism ring of a quasi-injective module, Comm. Algebra 18 (1988), 115-137.
- [4] C.R. Hajarnavis and N.C. Norton, On dual rings and their modules, J. Algebra 93 (1985), 253-266.
- [5] Y. Kurata, Some remarks on quasi-Frobenius modules, Osaka Math. J. ¹⁰ (1958), 213-220.
- [6] Y. Kurata and H. Katayama, On ^a generalization of QF-3' rings, Osaka J. Math. 13 (1976). 407-418.
- [7] T. Onodera, Koendlich erzeugte Moduln and Kogeneratoren, Hokkaido Math. J. 2 (1973), 69-83.

Department of Mathematics Yamaguchi University Yoshida, Yamaguchi 753