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1. Introduction and preliminaries.

Let $T(n)$ be the number of topologies on a set with n-element. It is an
old and difficult problem to determine this number. Many authors attacked
this problem and so far determined this number $T(n)$ for small value $n$ . Re-
cently, M. Ern\’e pronounced that he determined this number $T(n)$ for all $n\leqq 13$ ,

by using a new reduction formula [4].

In this paper, we will define a topological invariant which relates to the
determination of $T(n)$ , investigate its property and make some computations in
connection with its invariant rather than intend to determine $T(n)$ .

If $X$ is a finite topological space with n-element, then $X$ is determined by

the minimal open set $U_{x}$ containing each of its point $x$ . If $U_{x}\subseteq U_{y}$ holds, then
we define the relation $\leq$ by $x\leq y$ on $X$. This relation $\leqq$ is reflexive and
transitive and so $(X,$ $\leq)$ is a quasi ordered set.

Conversely, with a given quasi ordered set $(X,$ $\leq)$ , if we define $U_{x}$ by
$U_{x}=\{y|y\leq x\}$ , we can associate the finite topological space with the minimal
base $\{U_{x}|x\in X\}$ . This gives a one to one correspondence between all topologies
on $X$ and all quasi orders on $X$, and also induces a one to one correspondence

between all $T_{0}$ topologies on $X$ and all partial orders on $X[1, p, 28],$ [ $2$ , p. 14],

[7, p. 142]. It is also well known that there is a one to one correspondence

between all topologies on $X$ and all the labeled transitive digraphs with n-
element [5]. Furthermore there is a one to one correspondence between all $T_{0}$

topologies on a set with n-element, all finite distributive lattices $L$ of rank $n$ ,

all the labeled transitive acyclic digraphs with n-element [5], [11]. Let $T_{0}(n)$

denote the number of all $T_{0}$ topologies on a set with n-element. J. W. Evance,
F. Harary and M.S. Lynn proved that

$T(n)=\Sigma_{m=1}^{n}S(n, m)T_{0}(m)$ ,
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where $S(n, m)$ denotes the number of partitions of an n-set into m-disjoint sub-

sets (Stirling number of the second kind) [5].

In this paper, we use the $nXn,$ $(0,1)$ matrix defined as follows. Let $X=$

$\{x_{1}, X_{2}, \cdots , x_{n}\}$ be the finite topological space (X, $T$ ) with the minimal base
$\{U_{1}, U_{2}, \cdots, U_{n}\}$ . We define the $nXn,$ $(0,1)$ matrix $A=[a_{i,j}]$ by

$a_{i.j}=\left\{\begin{array}{l}l x_{j}\in U_{i}\\0 x_{j}\not\in U_{i}.\end{array}\right.$

We denote this matrix $A$ corresponding to the topology $T$ by $M(T)$ . We define
two operations $+,$ $\cdot$ , on $B=\{0,1\}$ as follows, $0+0=0,1+1=0+1=1+0=1$ ,

1 $\cdot 1=1,0\cdot 1=1\cdot 0=0\cdot 0=0$ . A Boolean vector of dimension $n$ is an n-tuple $[a_{1}$ ,

$a_{2},$ $\cdots$ , $a_{n}$ ] over $B$ and a Boolean matrix $A$ is the matrix over $B$ . The i-th

row (column) of $A$ is denoted by $A_{i*}(A_{*i})$ . The matrix multiplication, the

matrix addition, the vector addition and the scalar multiplication are defined as
usual where those involve Boolean arithmetic. A Boolean matrix $A$ is called

reflexive if for all $i,$ $a_{ii}=1$ . H. Sharp proves the next result.

THEOREM [9]. A reflexive, $n\times n$ , Boolean matrix $A$ corresponds to a topo-

logy on $X$ with n-element if and only if $A^{2}=A$ .

2. Definition and properties of a topological invariant.

We will give a definition of a topological invariant which we will study.

DEFINITION 1. Let $A$ be an n-th matrix corresponding to a topology and
$A^{(1)},$ $A^{(2)},$

$\cdots,$
$A^{(k)}$ be all of the matrices corresponding to topologies in the

form of

$[_{b_{n}^{2}}^{b^{1_{1}}}b..$

.

$a_{1}$

$a_{A^{2}}\ldots a_{n}$

We put $a=[a_{1}, a_{2}, \cdots, a_{n}]$ and $b={}^{t}[b_{1}, b_{2}, \cdots, b_{n}]$ .
Let $\alpha_{0}(A),$ $\alpha_{1}(A)$ and $\alpha_{2}(A)$ denote the number of the above matrices satis-

fying the following conditions (i), (ii) and (iii) respectively.
(i) $a=[0,0, \cdots, 0]$ .
(ii) $a$ is equal to some row of $A$ .
(iii) $a$ is not equal to any rows of $A$ and $a\neq[0,0, \cdots , 0]$ .
(iv) Finally, we define $\alpha(A)$ by $\alpha(A)=\alpha_{0}(A)+\alpha_{1}(A)+\alpha_{2}(A)=k$ .
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DEFINITION 2. Let us define the row space of a Boolean matrix by the
span of the set of all rows of the matrix. We define the column space similarly.

DEFINITION 3. Let $A=[a_{ij}],$ $B=[b_{ij}]$ be $m\times n$ Boolean matrices. If $a_{ij}=1$

implies $b_{ij}=1$ for every $i$ and $j$ , we define $A\leq B$ .

Note that the row space and the column space of the matrix are the poset,

even if the matrix does not correspond to any poset.

Let $R(A)(C(A))$ denote the row (column) space of $A$ . Then $R(A)(C(A))$

is a lattice with the join and the meet defined as follows. The join of two

elements is their sum and the meet of two elements is the sum of the elements
of $R(A)(C(A))$ which are less than or equal to both elements. If $A$ is the
matrix corresponding to a topology, then $A_{i*}(A_{*i})$ is the join irreducible element
of $R(A)(C(A))$ for every $i$ .

From the definition of $\alpha(A)$ , it is easy to see that the next lemma is true.

LEMMA 1. Let $T(n+1)$ be the number of topologies on a set with n-element.
Then we have

$T(n+1)=\Sigma_{A}\alpha(A)$

where A runs over all the n-th matrices corresponding to topologies.

DEFINITION 4. The matrices $A$ and $B$ corresponding to topologies respec-
tively are called equivalent if there exists a permutation matrix $P$ such that
$B=^{\iota}PAP$.

Let (X, $T$ ) and (X, $T^{\prime}$ ) be finite topological spaces.

THEOREM 1 [9], [10]. The finite topological spaces (X, $T$ ) and (X, $T^{\prime}$ ) are
homeomorphic if and only if $M(T)$ and $M(T^{\prime})$ are equivalent.

THEOREM 2. If finite topological spaces (X, $T$ ) and (X, $T^{\prime}$ ) are homeomor-
phic, then we have $\alpha(M(T))=\alpha(M(T^{\prime}))$ .

PROOF. It is easy to see that there exists a one to one correspondence

from the set of the matrices $\{[*1$ $M(T)*]\}$ corresponding to topologies to the

set of matrices $\{[*1$ $M(T’)*]\}$ corresponding to topologies.

Now consider an n-th matrix $A=[a_{i,j}]$ corresponding to a topology. By
Theorem 2 [9], 3 [9], we obtain the following result,
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LEMMA 2. $A_{i*}\leq A_{j*}$ holds if and only if $A_{*j}\leq A_{*i}$ holds.

Let $\sim$ be the equivalence relation in $[n]$ defined by $i\sim j$ if $A_{\ell*}=A_{j*}$ , where
$[n]$ denotes $[n]=\{1,2, \cdots, n\}$ . Let $k(1),$ $k(2),$ $\cdots$ , $k(l)$ be the system of re-
presentatives for such equivalence classes. Then we define the new l-th matrix
corresponding to a topology as $\tilde{A}=[a_{i(i),k(j)}],$ $1\leq i,$ $j\leq l$ . We will call $\tilde{A}$ the
reduced matrix of $A$ . The matrix $\tilde{A}$ corresponds to a $T_{0}$ topology.

LEMMA 3. If $\tilde{A}$ is the reduced matrix of a matrix A corresponding to a
topology, then we have

$\alpha(A)=\alpha(\tilde{A})$ .

LEMMA 4. If $A$ is the matrix corresponding to a topology, then we have

$\alpha(A)=\alpha({}^{t}A)$ .
The proof of these Lemmas is omitted.

THEOREM 3 (Direct sum theorem). Let $A_{1},$ $A_{2},$
$\cdots,$

$A_{k}$ be the matrices cor-
responding to topologies respectively and A the matrix corresponding to a topo-
logy with $A=A_{1}\oplus A_{\mathfrak{g}}\oplus\cdots\oplus A_{k}$ , thal is

$A=[^{A_{1}}0^{A_{2}}$ $0_{A_{k}}]$ .

Then we have $\alpha(A)=2(\Pi_{i=1}^{k}\alpha_{0}(A_{l})-\Sigma_{i=1}^{h}\alpha_{0}(A))+\Sigma_{i=1}^{k}\alpha(A_{i})+k-1$ .

PROOF. The proof is carried out by the induction on $k$ . For $k=2$ , since
$\alpha_{0}(A)$ is nothing but the cardinality of $C(A),$ $(|C(A)|)$ , we obtain $\alpha_{0}(A)=|C(A)|$

$=|C(A_{1})||C(A_{\mathfrak{g}})|=\alpha_{0}(A_{1})\alpha_{0}(A_{2})$ .
It is easy to see $\alpha_{1}(A)=\alpha_{1}(A_{1})+\alpha_{1}(A_{2}),$ $\alpha_{2}(A)=(|R(A_{1})|-1)(|R(A_{2})|-1)+$

$\alpha_{2}(A_{1})+\alpha_{2}(A_{2})=\alpha_{0}(A_{1})\alpha_{0}(A_{2})-\alpha_{0}(A_{1})-\alpha_{0}(A_{2})+\alpha_{f}(A_{1})+\alpha_{2}(A_{2})+1$ . Therefore, we
obtain $\alpha(A)=2(\alpha_{0}(A_{1})\alpha_{0}(A_{2})-\alpha_{0}(A_{1})-\alpha_{0}(A_{2}))+\alpha(A_{1})+\alpha(A_{2})+1$ . Assume that
theorem is true for $k=i-1$ . Then $\alpha(A_{1}\oplus A_{2}\oplus\cdots\oplus A_{i})=\alpha((A_{1}\oplus\cdots\oplus A_{i-1})\oplus A_{i})$

$=2(\Pi_{j=1}^{i}\alpha_{0}(A_{j})-\Sigma_{j=1}^{i}\alpha_{0}(A_{f}))+\Sigma_{J=1}^{l}\alpha(A_{j})+k-1$ . This concludes the proof.

COROLLARY. Let $A$ be the matrix corresponding to a finite topological space
$(X, T)$ and $A_{i}$ ($i=1,2$ , –, k) the matrices corresponding to the components $C_{i}$

$(i=1,2, \cdots, k)$ of (X, $T$ ) respectively. Then we get $\alpha(A)=2(\Pi_{i=1}^{k}\alpha_{0}(A_{i})-\Sigma_{i\Leftarrow 1}^{k}\alpha_{0}(A_{i}))$

$+\Sigma_{i=1}^{i}\alpha(A_{i})+k-1$ .
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PROOF. Since $A$ is equivalent to $A_{1}\oplus A_{2}\oplus\cdots\oplus A_{k}[10]$ , we obtain this
corollary from Theorems 1, 2 and 3.

DEFINITION 5. A subset $I$ of a poset $P$ is called an order ideal of $P$ if
$x\in l$ and $y\leq x$ imply $y\in l$ .

The set of order ideals of $P$ is a distributive lattice denoted by $J(P)$ . The
join and the meet on order ideals are just ordinary union and intersection as a
subset of $P$.

LEMMA 5. Let $A$ be an n-th matrix corresponding to a topology. If we
choose two posets $P$ and $Q$ as $P=\{A_{k*}|k\in K\}$ and $Q=\{A_{*k}|k\in K\}$ where $K\subseteq[n]$

respectively, then we have $|J(P)|=|J(Q)|$ .

PROOF. By using Lemma 2, if we denote the dual poset of $Q$ by $Q^{*}$ , we
see that two posets $P$ and $Q^{*}$ are isomorphic. Therefore, we obtain $ J(P)\cong$

$J(Q^{*})=(J(Q))^{*}$ . This shows $|J(P)|=|$ ] $(Q)|$ .

We see immediately that above Lemma is not true in the general Boolean
matrix, but the next result is known.

THEOREM [7, p. 13]. Let $A$ be an $m\times n$ Boolean matrix. Then we get

$|C(A)|=|R(A)|$ .

THEOREM 4. Let $A$ be an n-th matrix corresponding to a topology. For

every $a\in R(A),$ $B=\left\{\begin{array}{ll}1 & a\\b & A\end{array}\right\}$ is the matrix corresponding to a topology if and

only if $b$ is the element of $C(A)$ and the set $\{i|A_{*i}\leq b\}$ is a subset of $I_{a}$ where
$l_{a}=\{i|a\leq A_{i*}\}$ .

PROOF. By Theorem [9], $B$ is the matrix corresponding to a topology if
and only if $B^{2}=B$ holds. Since the arithmetic is Boolean, we get $aA=a$ ,

$Ab=b,$ $ba<_{-}A$ . From the first two equations, we obtain $a\in R(A),$ $b\in C(A)$ . By

the relation $ba\leqq A$ , if one, for example, $a$ is fixed, another, $b$ is restricted as
follows. Let us define the subposet $\Lambda_{a}$ of $C(A)$ by $\Lambda_{a}=\{A_{*i}|i\in l_{a}\}$ . Then we
can see that $b$ is the element of the sublattice of $C(A)$ generated by the ele-
ments of $\Lambda_{a}$ . Therefore, that above equations hold is equivalent to $b\in C(A)$

and $\{i|A_{*i}\leq b\}\subseteq l_{a}$ .

COROLLARY. Let $A$ be an n-th matrix corresponding to a topology and let
the subposet $V_{a}$ of $R(A)$ be $V_{a}=\{A_{i*}|a\leq A_{i*}\}$ for every $a\in R(A)$ . Then we
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have
$\alpha(A)=\Sigma_{a\in R(A)}|J(V_{a})|$ .

PROOF. By above Theorem, for every $a$ , we can see that $b$ is the element
of the sublattice of $C(A)$ generated by elements of $\Lambda_{a}$ if and only if the matrix

$\left\{\begin{array}{ll}1 & a\\b & A\end{array}\right\}$ is the one corresponding to a topology. By the fundamental theorem

for finite distributive lattices, [12, p. 106], the number of such matrices corre-
sponding to topologies is equal to $|J(\Lambda_{a})|$ . By Lemma 5, we get $|J(\Lambda_{a})|=$

$|J(V_{a})|$ . Summing on $a$ , we obtain the desired result.

REMARK. It is easy to see that the function $\alpha$ from the poset of the
matrices corresponding to topologies with before mentioned order to the set of
natural numbers with its usual order is neither monotone increasing nor mono-
tone decreasing.

3. Computation of $\alpha(A)$ .
In this section, we will compute $\alpha(A)$ of several matrices $A$ for later use.

LEMMA 6. Let $A$ be the following n-th triangular matrix corresponding to
topology and $E_{n}$ the n-th identity matrix

$A=\left\{\begin{array}{llll}1 & 1 & \cdots & 1\\ & 1 & \cdots & 1\\ & & & \ldots\cdot\\ & & & .\cdot\cdot\\ 0 & & & 1\end{array}\right\}$

.
Then we have $\alpha(A)=n(n+5)/2+1,$ $\alpha(E_{n})=2^{n+1}+n-1$ .

PROOF. The proof comes from facts that $\alpha_{0}(A)=n+1,$ $\alpha_{1}(A)=n(n+1)/2+n$ ,

$\alpha_{2}(A)=0,$ $\alpha_{0}(E_{n})=2^{n},$ $\alpha_{1}(E_{n})=2n,$ $\alpha_{2}(E_{n})=2^{n}-n-1$ .

LEMMA 7. Let $A$ be an n-th matrix corresponding to a $T_{0}$ topology and $B$

the following matrix corresponding to a topology

$B=\left\{\begin{array}{llll}1 & 1 & \cdots & 1\\* & & & A\end{array}\right\}$

.
If the first row of $B$ equals some other row of $B$ , then we obtain $\alpha(B)=$

$\alpha(A)$ . Otherwise, we obtain $\alpha(B)=\alpha(A)+\alpha_{0}(A)+2$ .
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PROOF. The first case comes from Lemma 3. The second case comes
from the following computations. $\alpha_{0}(B)=\alpha_{0}(A)+1,$ $\alpha_{1}(B)=\alpha_{1}(A)+n+2,$ $\alpha_{2}(B)=$

$\alpha_{2}(A)+\alpha_{0}(A)-n-1$ .

4. On the determination of a type of two matrices.

Firstly, we will define a type of the matrix corresponding to a topology.

DEFINITION 6. Let $A$ be an n-th matrix corresponding to a topology and
$A^{(1)},$ $A^{(2)},$

$\cdots,$
$A^{(k)}$ be all of the $n+1- st$ matrices corresponding to topologies in

the form of

$A^{\prime}=\left\{\begin{array}{ll}1 & a\\b & A\end{array}\right\}$

.
Then we define a type of $A$ by the multiset $\{\alpha(A^{(1)}), \cdots, \alpha(A^{(k)})\}$ .

If the multiset has $k_{i}$ elements each of which is equal to $i$ , then we write
$1^{k_{1}},2^{k_{2}},$ $\cdots$ , where terms with $k_{i}=0$ and the superscript $k_{i}=1$ are omitted.
As a matter of convenience, the notation, for example, $ 2^{3}3^{z}2^{2}=3^{2}2^{6}=32^{6}3=\cdots$

is permitted also.

DEFINITION 7. The weight of a Boolean vector $v$ , denoted by $w(v)$ , is the
number of non-zero elements of $v$ .

(i) Type of the n-th identity matrix $E_{n}$ .

We will classify the set of the $n+1- st$ matrices corresponding to topologies
in the form of

$A^{\prime}=\left\{\begin{array}{ll}1 & a\\b & E_{n}\end{array}\right\}$

into the following three classes.

(1) $a=[0\cdots 0]$ (2) transpose matrix of (1)

(3) $a=[0\cdots 01i0\cdots 0]$ , $b={}^{t}[0\cdots 01i0\cdots 0]$

where $E_{n+1}$ belongs to the class (1). If the $n+1- st$ matrix $A^{\prime}$ belongs to the
class $(k)$ , we denote this matrix by $A^{(k)}$ .

LEMMA 8. If the weight of $b$ of $A^{(1)}$ is $i(0\leq i\leq n)$ , then we get $\alpha(A^{(1)})=$

$2^{n+1}+2^{n- i+1}+2^{t}+n-1$ .

PROOF. By computation, we obtain $\alpha_{0}(A^{(1)})=2^{n}+2^{n-i},$ $\alpha_{1}(A^{(1)})=2^{i}+2n+1$ ,
$\alpha_{2}(A^{(1)})=2^{n}+2^{n-i}-n-2$ . From these results, we get the conclusion.
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LEMMA 9. If the weight of $a$ of $A^{(2)}$ is $i(1\leq i\leq n)$ , then we obtain $\alpha(A^{(2)})$

$=2^{n-i+1}+2^{n+1}+2^{i}+n-1$ and for the matrix $A^{(3)}$ , we get $\alpha(A^{(\$)})=2^{n+1}+n-1$ .

The proof is omitted.

By those Lemmas and considering the number of the matrices belonging to
each class, we can determine the type of $E_{n}$ as follows.

THEOREM 5. The type of $E_{n}$ is given by the next formula.
$\Pi_{i=1}^{n}(2^{t2()_{(2^{n+g}+n)(2^{n+1}+n-1)^{n}}}n$

Let $A(A^{\prime})$ be the $n$ $(n+1)-st$ matrix corresponding to a topology in the
form of

$A=\left\{\begin{array}{lll}1 & & \\ & & 0\\ & 0 & 1\\ & & 11\end{array}\right\}$ , $A^{\prime}=\left\{\begin{array}{ll}1 & a\\b & A\end{array}\right\}$ .

(ii) Type of $A$ .

Let us classify the $n+1- st$ matrices $A$ ‘ into the following 13 classes.

(11) $a=[0\cdots 0]$ , $b=^{t}[b_{1}\cdots b_{n-2}00]$

(12) $a=[0\cdots 0]$ , $b=^{t}[b_{1}\cdots b_{n-2}01]$

(13) $a=[0\cdots 0]$ , $b={}^{t}[b_{1}\cdots b_{n- 2}11]$

(21) $a=[0\cdots 010]$ , $b=^{t}[0\cdots 000]$

(22) $a=[0\cdots 010]$ , $b={}^{t}[0\cdots 001]$

(23) $a=[0\cdots 010]$ , $b=^{t}[0\cdots 011]$

(31) $a=[0\cdots 011]$ , $b={}^{t}[0\cdots 000]$

(32) $a=[0\cdots 011]$ , $b=^{t}[0\cdots 001]$

(41) $a=[0\cdots 01i0\cdots 0]$ , $b=^{t}[0\cdots 0]$ , $1\leq i\leq n-2$

(42) $a=$ [ $0\cdots 0$ l
i

$0\cdots 0$], $b=$ [ $0\cdots 0$ l
i

$0\cdots 0$] $1\leq i\leq n-2$

(51) $a=[a_{1}\cdots a_{n-2}11]$ , $3\leq w(a)$ , $b={}^{t}[0\cdots 0]$

(52) $a=[a_{1}\cdots a_{n-2}00]$ , $2\leq w(a)$ , $b={}^{t}[0\cdots 0]$

(53) $a=[a_{1}\cdots a_{n-2}10]$ , $2\leq w(a)$ , $b=^{t}[0\cdots 0]$ .

We denote the matrix belonging to the class $(kl)$ by $A^{(kl)}$ also.
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LEMMA 10. If the weight of ${}^{t}[b_{1}b_{2}\cdots b_{n-2}]$ is $i$ , then we obtain

$\alpha(A^{(11)})=2^{n}+2^{n-1}+2^{n-i}+2^{n-i-1}+2^{t}+n$

$\alpha(A^{(12)})=2^{n}+2^{n-1}+2^{n-i}+2^{\dot{l}+1}+n+1$

$\alpha(A^{(13)})=2^{n}+2^{n- 1}+2^{n-i-1}+2^{i+1}+2^{i}+n$

PROOF. Firstly, we will compute $\alpha(A^{(11)})$ . By an appropriate permutation
matrix $P$, we obtain $n+1- st$ matrix as follows

${}^{t}PA^{(11)}P=[-----\vee-$

We can compute easily $\alpha_{0}(E_{n-i-2})=2^{n-i-2},$ $\alpha_{0}(B)=2^{i}+1$ ,

$\alpha_{0}(\left\{\begin{array}{ll}1 & 0\\1 & 1\end{array}\right\})=3$ .

By Lemmas 6 and 7, we obtain $\alpha(E_{n- i- 2})=2^{n-i-1}+n-i-3$ ,

$\alpha(B)=2^{i+1}+2^{t}+i+1$ , $\alpha(\left\{\begin{array}{ll}1 & 0\\1 & 1\end{array}\right\})=8$ .

By using Theorems 1, 2 and 3,

$\alpha(A^{(1I)})=\alpha({}^{t}PA^{(11)}P)=\alpha(E_{n-i- 2}\oplus B\oplus\left\{\begin{array}{ll}1 & 0\\1 & 1\end{array}\right\})=2^{n}+2^{n-1}+2^{n-i}+2^{n-i-1}+2^{i}+n$ .

The other cases are computed similarly.

LEMMA 11. The numbers $\alpha(A^{(21)}),$ $\alpha(A^{(22)})$ are determined as follows.
$\alpha(A^{(21)})=2^{n+1}+2^{n-1}+n+3$

$\alpha(A^{(g2)})=2^{n+1}+n+3$ .
The proof of this Lemma is omitted

LEMMA 12. The numbers $\alpha(A^{(23)}),$ $\alpha(A^{(32)}),$ $\alpha(A^{(42)})$ are determined as fol-
lows.

$\alpha(A^{(23)})=\alpha(A^{(32)})=\alpha(A^{(42)})=2^{n}+2^{n- 1}+n$ .

PROOF. Since each of the reduced matrices of $A^{(23)},$ $A^{(S2)},$ $A^{(42)}$ is $A$ , we
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get $\alpha(A^{(23)})=\alpha(A^{(32)})=\alpha(A^{(42)})=2^{n}+2^{n- 1}+n$ from Lemma 3.

LEMMA 13. Let $i$ be the weight of $[a_{1}\cdots a_{n-2}]$ . The results of computations

are
$\alpha(A^{(31)})=2^{n+1}+n+3$

$\alpha(A^{(41)})=2^{n+1}+2^{n-2}+n+2$

$\alpha(A^{(51)})=2^{n}+2^{n-1}+2^{n-i-1}+2^{\ell+1}+2^{i}+n$

$\alpha(A^{(52)})=2^{n}+2^{n-1}+2^{n-i}+2^{n-i- 1}+2^{i}+n$

$\alpha(A^{(53)})=2^{n}+2^{n-1}+2^{n-i}+2^{i+1}+n+1$

The proof is obtained by using the results of $\alpha(A^{(13)}),$ $\alpha(A^{(11)}),$ $\alpha(A^{(13)})$ ,
$\alpha(A^{(11)}),$ $\alpha(A^{(12})$ respectively.

From above results, we can obtain the next Theorem.

THEOREM 6. The type of $A$ is given as follows.
$\Pi_{i0}^{n_{=^{-2}}}(2^{n}+2^{n- 1}+2^{n- i}+2^{n- i- 1}+2^{i}+n)^{k(i)}(2^{n}+2^{n- 1}+2^{n-i}+2^{i+1}+n+1)^{\iota_{(i)}}$

$(2^{n}+2^{n- 1}+2^{n-i- 1}+2^{i+1}+2^{i}+n)^{m(i)}(2^{n}+2^{n-1}+n)^{n}$

where $k(i)=2\left(\begin{array}{l}n-2\\i\end{array}\right)-\delta_{i.0},$ $l(i)=2\left(\begin{array}{l}n-2\\i\end{array}\right),$ $m(i)=2\left(\begin{array}{l}n-2\\i\end{array}\right)+\delta_{i,0},$ $\delta_{i.0}$ is the kronecker

delta.

REMARK. Finally, we will make several remarks. As before mentioned,
if finite topological spaces (X, $T$ ) and (X, $T^{\prime}$ ) are homeomorphic, then we get
$\alpha(M(T))=\alpha(M(T^{\prime})),$ $i.e.$ , topological invariant. But, as the following example
shows, the converse does not hold. Let (X, $T$ ) and (X, $T^{\prime}$ ) be non-homeomor
phic finite topological spaces with

$M(T)=[100$ $011$ $001$ $M(T^{\prime})=[101$ $011$ $001$

In this case, $\alpha(M(T))=\alpha(M(T^{\prime}))=15$ holds, but it is not homotopy type invari-
ant. In spite of this fact the next combinatorial fact seems to hold.

If $\alpha(A)=\alpha(B)$ holds, then the type of $A$ and the type of $B$ are same, that
is, the type of $A$ is determined by $\alpha(A)$ .

If $\alpha(A)$ is small value, this conjecture is checked and the type of each $\alpha(A)$

is as follows.
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$-\alpha(A)1^{8}151_{8}^{4}39|$

$1^{9^{2}}1_{8^{3}}^{4}135_{3}^{2}8_{3}892^{2}6^{3}2^{3_{8}24}22_{6}^{4}2_{8^{4}35^{2}}^{ty_{3}peo_{2}f}19_{3}^{6}222313151518_{4}A_{26^{2}}$

28

$35282624232219$
$|$

$3^{8_{4}^{4}}2_{5^{4}}^{19}26^{4}24_{4^{4}}^{4}2322$ $47^{3}38_{20}^{10}35^{6}34_{6}^{4}32^{6}302639_{3^{4_{10}^{6}}}4^{8_{6^{8}8^{5}}}3_{5^{73^{4_{1}1_{6}^{5}}}}^{37_{3^{5}}^{4}}343732_{6}34_{2}^{4}303242^{4}4135_{6}38_{5}^{3}$ $47^{2}47_{2}^{2}4238$ $5339$

The author wishes to thank the referee for his helpful comments.
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