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MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN MANIFOLDS

By
Liu Hui-L1

1. Preliminares.

Let E7 be the n-dimensional Pseudo-Euclidean space with metric tensor
given by

g=— SUdx*+ 3 (dx,)
i=1 J=q+1

where (xi, xs, -+, x,) is a rectangular coordinate system of E?. (EZ, g)is a flat
Pseudo-Riemannian manifold of signature (g, n—q).
Let ¢ be a point in E?** (or EX4) and r>0. We put

Sie, )={xsE}*': g(x—c¢, x—c)=r?

Hy(c, r)={x=E}: g(x—c¢, x—c)=—r%.
It is known that S7(c, ) and H?(c, r) are complete Pseudo-Riemannian manifolds
of signature (¢, n—q) and respective constant sectional curvatures » 2 and —r~2
S#(c, r) and H}(c, r) are called the Pseudo-Riemannian sphere and the Pseudo-
hyperbolic space, respectively. The point ¢ is called the center of S}(c, ») and
Hg(c, 7). In the following, S0, ) and HZ(0, ) are simply denoted by SZ(r)
and Hg(r), respectively. N7 denotes the Pseudo-Riemannian manifold with
metric tensor of signature (p, n—p). The Pseudo-Riemannian manifold, the
Pseudo-Euclidean space, the Pseudo-Riemannian sphere and the Pseudo-hyperbolic
space are simply denoted by the P—R manifold, the P—FE space, the P—R
sphere and the P—h space. The P—R manifold N7 is called the Lorentz mani-
fold and the P—FE space E? is called the Minkowski space.

Let f: M»—N? be an isometric immersion of a P—R manifold M2 in
another P— R manifold N7. That is f*g=g, where g and § are the indefinite
metric tensors of M} and N7, respectively. T(MZ%) and T+(M7) denote the
tangent bundle and the normal bundle of M. V¥, ¥ and V* denote the Rieman-
nian connections and the normal connection on M7, N7 and T+(M%), respectively.
Then for any vector fields X, Y eT(My), veT+(M%7), we have the Gauss formula

VXY':VXY+B(X, Y),
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the Weingarten formula
Vxv=—AY(X)+V3v,

where B is the second fundamental form of the immersion, A® is the Weingarten
map with respect to v, and

g(AYX), Y)=g(B(X, Y), v).

Let N} be a P— R manifold with the metric tensor 2. A tangent vector x to
N7 is said to be space-like, time-like or light-like (null) if g(x, x)>0 (or x=0),
2(x, x)<0 or g(x, x)=0 (and x+0), respectively.’

Let M be a submanifold of N7. If the Pseudo-Riemannian metric tensor
Z of NP induces a Pseudo-Riemannian metric tensor, a Riemannian metric tensor
or a degenerate metric tensor on M7, then M7 is called a P— R submanifold, a
Riemannian submanifold or a degenerate submanifold, respectively. For the
nondegenerate submanifold, we have the direct sum decomposion

T(NH)=T(Mp)DT*(M7)
and T*(MD) (the normal bundle) is also nondegenerate. In the following, we
assume that the submanifold is nondegenerate.

A normal vector field veT*(Mp) is said to be parallel if V=0 for any
vector XeT(M7).

Let Mp be a nondegenerate submanifold in N7 and e, e, -, en be an
orthonormal local basis on MZ. The mean curvature vector H of My in N7 is
defined by

H=—71;~_"§L}ei3(ei, e), ei=g(e;, e)=+1.
The nondegenerate submanifold M3 of N7 is said to be minimal if the mean

curvature vector H of M7 in N} vanishes identically.
For any real function f on MZ, the Laplacian Af of f is defined by

Af=—g" V. f=— Seee/ —Voeif)
(cf. [2]).

LEMMA 1. ([3], [4]) An isometric immersion x of a P—R manifold MT in
a P—E space E7 satisfies
Ax=—mH

where H is the mean curvature vector of the immersion and A is the Laplacian
of My

LEMMA 2. ([3], [4]) Let My be isometrically immersed in a P—R sphere
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Sg¥¥Yec,v) or a P—h space HPM{*~'(c, r) of the P—E space EJ***. Then the
mean curvature vector H of MZ in EJ** and the mean curvature vector H, of
M3 in SPHE-Y or HPYE-! satisfy

H=H,—¢e(x—c)/7?.

Where x is the immersion of M% (as the vector field in EJ**) and e==x1, if
x: MP—SPe=Y(c, v), then e=1, if x: Mp—HZ{*"'(c, r), then e=—1.

2. The minimal immersion in S7***~!(») or H{*~'(r).

LEMMA 3. Let MP (m=2) be a nondegenerate submanifold of a P—E space
EZ and H be the mean curvature vector of M3 in E}. x denotes the position
vector field of My in E?. If x=aH for some a+0 on My, then g(H, H)+0 on
M7, where g is the metric tensor of EF.

PROOF. Suppose Z(H, H)=0 and x=aH for some a+0 on MJ. Then
g(x, x)=a*3(H, H)=0. Since Ax=—mH, so

0=Ag(x, x)=2g(Ax, x)—28(Vx, Vx)
=—2mg(H, x)—2g(Nx, Vx)
=—28(Vx, Vx),

that is g(Vx, Vx)=0. It is impossible because M} (m=2) is nondegenerate.
Q.E.D.

THEOREM 1. If an isometric immersion x: MF—E>** of a P—R manifold
M7 (m=2) in a P—E space EI'** satisfies Ax=bx for some constant b+0

(1) when b>0, them x realizes a minimal immersion in a P—R sphere
Sm+E-Y(+/m/b) of the sectional curvature b/m in EJ**; conversely if x realizes a
minimal immersion in a P— R sphere of the sectional curvature r~*(r>0) in EJ'**,
then x satisfies Ax=bx up to a parallel displacement in the P—E space EI"** and
b=m/r>

(2) when b<0, then x realizes a minimal immersion in a P—h space
HI' =Y (vm/—b) of the sectional curvature b/m in EI**; conversely if x realizes
a minimal immersion in a P—h space of the sectional curvature —r*(r>0) in
ET*®, then x satisfies Ax=bx up to a parallel displacement in the P—E space

EM* and b=—m/r"

PROOF. Let Ax=bx, b+#0, then we have bx=—mH by Lemma 1. Since
Xg(x, x)=2g(X, x)=0, where g is the metric of EJ**%, it yields that g(x, x)=
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constant#0 by Lemma 3. So x realizes an immersion in S***-'(¢c, ») or
HM*'(c,r). And by and bx=—mH, we have H,=0. Thus x realizes
a minimal immersion in S}***-'(c, r) or HI%{*"'(c,r) in EIM* and r=+'m/eb
(e==x1).

Conversely, if x realizes a minimal immersion in SJ***~!(¢c, ») or H*{*~!(c, 7)
in Ep+*, then by Lemma 2, we have '

H=—¢(x—c)/7? (e==*1)

and Ax=—mH. Thus, we obtain
Alx—c)=—m(—e(x—c)/r)=em(x—c)/r*

b=em/r? (e=x1). Q.E.D.

COROLLARY 1. An isometric immersion x: My—EZX** of a P—R manifold
M3 in a P—E space EJ** is minimal if and only if Ax=0.

COROLLARY 2. [f an isometric immersion x: My—E%T** of a P— R manifold
M7 in a P—E space En** satisfies Ax=bx for some constant b+0, then b is
necessarily positive and x realizes a minimal immersion of a P—R manifold M7
in @ P—R sphere ST+*-'(v'm/b) in the P—E space ET+k,

PrROOF. For any isometric immersion x: Myp—Ep**, the vectors of the
normal space of MZ in El** are space-like. Then by Lemma 2, e=+1.
Q.E.D.

COROLLARY 3. If an isometric immersion x: My—E}4k of a P— R manifold
M7 in a P—E space EG} satisfies Ax=bx for some constant b+#0, then b is
necessarily negative and x realizes a minimal immersion of a P— R manifold M}
in a P—h space HPH-(~'m/—b) in the P—E space EplE

Ptk

PrROOF. By the condition, we know the vectors of the normal space of M7
in Epft are time-like. So in Lemma 2, e=—1. Q.E.D.

3. The spectrum of S7(») and H ,(»).

In this section we consider the Laplacians A of S7(») and Hj(») acting on
functions. We obtain the constant b that satisfies Af=bf, f=%0, where A is
the Laplacian of S7(r) or Hy(»).

Let M7 be a P—R manifold. The Laplacian of M} has various expressions
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Af=—g"VN.f
=—trace (Vdf)
= —trace (Hess f),

where Hess f denotes the Hessian of the function f. Let ey, e, ---, ¢n be an
orthonormal local basis on My, then

Afz—ési Hess f(es, ) (ei=g(es, e)==1).

For each point ye= M7, pick an orthonormal set of geodesics (v;) parameterized
by arc length and passing through y=M3 at s=0 and satisfying vj(0)=e;.
Then we have

Af()=— Beits (f+v)X0)

(cf. P. 33, P. 86).

For the P—R sphere S7(1) and the P—#h space Hj (1) in the P—FE space
Ep+, let yeSp(1) or H? (1) be a point. Then y determines a unit vector e,
in EZ*. For S3(1) e, is a space-like vector and for HJ (1) e, is a time-like
vector. Let e, e;, -+, eny1 be an orthonormal basis of T ,(S7(1)) or T ,(Hp-,(1)).
Then ey, @, -, en, ¢nyy form an orthonormal basis of T ,(ER*).

If g(ey, e1)g(e:, e))=1 (1=2) on SP(1) or H7-,(1), the geodesic v; (=2) through
y with velocity vector e; at v is given by

vi(8)=(cos s)e,+(sin s)e; i=2,3, -, (m+1)

where s is arc length parameter.
If g(ey, e,)@(ei, e)=—1 (¢=2) on Sp(1) or HP (1), the geodesic v; (1=2)
through vy with velocity vector e; at y is given by

vi(s)=(cosh s)e;+(sinh s)e; i=2,3, -, (m+1).

Let f be a function on EZ*' and x', x?, ---, x™*! be the Euclidean coordinates

associated with e, ¢,, ---, eny:. Consider the functions (fe-v;)(s)=f(vi(s)). By
using the chain rule, we have

d(fevs) _ . ~Of af
s = —(sins) i +(cos )5

if g(e., er)g(es, e)=1 (1=2);
d—((];—;gi)—z(sinh s) g}{ _ +(cosh s)—%[;

if g(es, e1)g(es, e)=—1 (122).
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Therefore, for y=v,(0), we have

d (f Ut) azf

f
(0)= e @x")? A ()
if g(e,, e))g(es, e))=1 (1=2);
d*(f+vy) f o°f
dst (0)= ==+ (@x%)? (»)

if g(ely el)g(eh ei)z_l (2_2_2)-
Let e=—g(ei, e)g(es, e;) (122). Then

d’ (f vf)

Aszlm(f/sg‘(l))(y):—’1:::3 0)
m+1 af
=5 e 5 )+ 5w (a w L)
. m+1 2f f
_——Eei(a 1)2( ) 2618 (y)
m+1 62f af
- g €17 (a i)z (y)
ATEAO(f/ g (1)()= = g“%f_&“))
m+1 af a’f
= — tgz 51(575;1‘(3’)"{" (a {)2 (y))
m+1 02
2 s‘l (a {)2 (y)_m ail (y)
But
(AEzHlf)( )=— % €i @ {)2 (¥)— (aax{)z ().

If we denote by » the “distance” function from a point in EZ*' to the origin,
then we obtain

m+1 ma azf af
@5 1) spy=AF U sy 3/ spay ™ %r / sz

m+1 _ 171._1 1 a?f ﬁi
A%z ) Hp ((1y=A"P O (1)) F "3;2/ Ho )T, / Hr (1)

Consider a homogeneous polynomial { of degree =0 on Ep*. Let Q=
G/S"‘(l) or Hm (1) Then Q=7*Q. Thus we find

(*)

aQ ., .., °Q _ e
W_krk Q, 57 k(k—1)r*-2Q.

Therefore,
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(AF5 Q) gm1y=ASF PQ—k(k—1)Q—mkQ
=AS?DQ—k(k+m—1)Q
(AEZ‘“@)/Hm (H=AFP-1DQ+ k(k—1)Q+mkQ
=A"r-1OQ+k(k+m—1)Q.

If § satisfies A¥2"'Q=0, J is called the harmonic-like homogeneous poly-
normial. So we have
ASFDQ=k(m+k—1)Q,
AFP-1DQ=— h(m+k—1)Q.

Let 4, be the vector space of harmonic-like homogeneous polynomials of
degree k£ on EZ*'. With the same method of P.238-P. 240, we can prove

‘ (m+ k) (m+k—-2)
dim I = - .
k b—2

Here, we give out another proof about dim .4 ,.

Assume
m+1 g% ,_ & 02 m+1 0
A=— z}:"ﬂ (0x)? a _t=21 (0x)  t=Fh (@x)?°’

they are the Laplacians of E™*! and EJ*!, respectively. i denotes the vector
space of complex coefficient harmonic homogeneous polynomials of degree &
about A. A denotes the vector space of complex coefficient harmonic-like homo-

geneous polynomials of degree k2 about A’. Let F(x!, x%, ---, x™*)eA. We have

OZAF(xl’ xz, e, xm-}-l)
m+1 QF

= t§1 (0x")?
. 0°F mi1 g*F
‘g (0x?)? +t=p+1 (0x*)?

» —g*F m+2 QX F

_or o _
zz (10x*)? :§+1 (@x%)? (2 1)
— p 0° m+l Q2 , e
_( ST T2 (ax,)z)F( ix® e —ix?,
XPHL xPHE L. gme
:A’F(—"ixl’ _z'xQ’ TN _..z'xp’ xp+1, . xm+1).

Therefore, F(—ix!, —ix?, ---, —xi?, x?*!, ..., x™*e 4 and
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a(x%, xz, o, xm

‘—-z”¢0

where, y'=ix!, y*=gx?, .-, yP=ixP, yPH=xP*, ... gymti=x"*  Thus we obtain

dim A=dim 4. But dim A= m+k) m+k 2) So

m+k m+k—2
dim A= )—( )
k k—2
THEOREM 2. The spectrum of the Laplacians of the P— R sphere Sp(1) and
the P—h space Hy (1) in the P—E space E7,' is given by

br=k(m+k—1) (k20)
bi=—k(m+k—1) (£20)

and

respectively. And the multiplicity j(be) of br is given by
J(bo)=1, J(b)=m+1,

j(bk)z( )-( )
b h—2
— (mtk=Dont k=D lmtDm 1), ).

Since Sp(r) with S7(1) and HZ ,(») with H} (1) are homothetic, we have
THEOREM 3. The syectrum of the Laplacians of the P—R sphere ST(r) and
the P—h space H} ((r) in the P—E space E}*' is given by
=r2k(m+Lk—1)
and (=0, r>0),
br=—rk(m+k—1)
respectively. And the multiplicity j(bx) of by is given by
jbe)=1,  jb)=m+1,

m-+k mt+k—2
J'(bk)-——( )-—( ) (k=2).
k k—2

4. The minimal immersions of the P— R sphere and P—h space.

THEOREM 4. Let M=Sp(r) or Hy-\(r). M is isometrically minimally im-
mersed in SF(1) or H? (1). Then for k=0,1, 2, ---, we have
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(m+k—2)!
Pl m—1)! °

_ m
T R(m+k—1)"

-2

4 n<(m+k2—1)

ProoF. By [Theorem 1, for the immersion f,
Af=bf, b>0; f: M—> SH~Vm/b)=Si(1)
b<0; f: M—> Hr (Vm/—B)y=Hz (D).
Then, b=m or b=—m for SZ(1) or H? (1), respectively. With [Theorem 3, we

have
br=k(m+k—1)r2 for ST(r)

br=—k(m+k—1r% for H ,(r).

So
m=b=k(m+k—1r"? or m=—b=—(—k)m+k—1r2,
Therefore
o m - oy (m+k—2)!
r HmtE=1) n=(m+2k Dw/e m—1)1 Q.E.D.
REMARK. By and we have
(1) M3p(r) (r<0 is a constant) can not be isometrically minimally immersed
in S7(1).

(2) The Riemannian manifold M™(») with the constant sectional curvature
r<0 can not be isometrically minimally immersed in the Riemannian sphere

S™(D.

Acknowledgement.

The author would like to express his gratitude to professor Hisao Nakagawa
for many helpful suggestions.

References

[1] Chen, D.Y., Total mean curvature and submanifolds of finite type, Series in Pure
Math., Volume 1, World Scientific, 1984. _

[27] O’Neill, B.,, Semi-Riemannian geometry, Academic Press, New York, 1983.

[3] Chen B.Y., Finite type submanifolds in Pseudo-Euclidean space and applications,
Kodai Math. J. 8 (1985) 358-374.

[47] Liu Hui-L, Minimal submanifolds and harmonic maps of Pseudo-Riemannian manifold,
Master paper, Northeast University of Technology, 1988.

[5] Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean space,
Princeton, New Jersey, Princeton Uni. Press.



10

Liu Hui-L1

Liu Hui-Li
Department of Mathematics
Northeast University of Technology

Shen yang, Liao ning, 110006
P.R.C.



	MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN ...
	1. Preliminares.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	4. The minimal immersions ...
	THEOREM 4. ...

	References


