MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN MANIFOLDS

Ву

Liu Hui-Li

1. Preliminares.

Let E_q^n be the *n*-dimensional Pseudo-Euclidean space with metric tensor given by

$$g = -\sum_{i=1}^{q} (dx_i)^2 + \sum_{j=q+1}^{n} (dx_j)^2$$

where (x_1, x_2, \dots, x_n) is a rectangular coordinate system of E_q^n . (E_q^n, g) is a flat Pseudo-Riemannian manifold of signature (q, n-q).

Let c be a point in E_q^{n+1} (or E_{q+1}^{n+1}) and r>0. We put

$$S_q^n(c, r) = \{x \in E_q^{n+1} : g(x-c, x-c) = r^2\}$$

$$H_q^n(c, r) = \{x \in E_{q+1}^{n+1} : g(x-c, x-c) = -r^2\}.$$

It is known that $S_q^n(c,r)$ and $H_q^n(c,r)$ are complete Pseudo-Riemannian manifolds of signature (q,n-q) and respective constant sectional curvatures r^{-2} and $-r^{-2}$. $S_q^n(c,r)$ and $H_q^n(c,r)$ are called the Pseudo-Riemannian sphere and the Pseudo-hyperbolic space, respectively. The point c is called the center of $S_q^n(c,r)$ and $H_q^n(c,r)$. In the following, $S_q^n(0,r)$ and $H_q^n(0,r)$ are simply denoted by $S_q^n(r)$ and $H_q^n(r)$, respectively. N_p^n denotes the Pseudo-Riemannian manifold with metric tensor of signature (p,n-p). The Pseudo-Riemannian manifold, the Pseudo-Euclidean space, the Pseudo-Riemannian sphere and the Pseudo-hyperbolic space are simply denoted by the P-R manifold, the P-E space, the P-R sphere and the P-R space. The P-R manifold N_1^n is called the Lorentz manifold and the P-E space E_1^n is called the Minkowski space.

Let $f: M_p^m \to N_q^n$ be an isometric immersion of a P-R manifold M_p^m in another P-R manifold N_q^n . That is $f*\bar{g}=g$, where g and \bar{g} are the indefinite metric tensors of M_p^m and N_q^n , respectively. $T(M_p^m)$ and $T^\perp(M_p^m)$ denote the tangent bundle and the normal bundle of M_p^m . ∇ , $\overline{\nabla}$ and ∇^\perp denote the Riemannian connections and the normal connection on M_p^m , N_q^n and $T^\perp(M_p^m)$, respectively. Then for any vector fields $X, Y \in T(M_p^m)$, $v \in T^\perp(M_p^m)$, we have the Gauss formula

$$\nabla_X Y = \nabla_X Y + B(X, Y)$$
,

Received November 5 1990, Revised May 22, 1991.

The author was supported in part by NNSF of China and SRF of NEUT, when he revised this paper.

the Weingarten formula

$$\nabla_X v = -A^v(X) + \nabla_X v$$

where B is the second fundamental form of the immersion, A^v is the Weingarten map with respect to v, and

$$g(A^{v}(X), Y) = \bar{g}(B(X, Y), v).$$

Let N_q^n be a P-R manifold with the metric tensor \bar{g} . A tangent vector x to N_q^n is said to be space-like, time-like or light-like (null) if $\bar{g}(x, x) > 0$ (or x = 0), $\bar{g}(x, x) < 0$ or $\bar{g}(x, x) = 0$ (and $x \neq 0$), respectively.

Let M_p^m be a submanifold of N_q^n . If the Pseudo-Riemannian metric tensor \bar{g} of N_q^n induces a Pseudo-Riemannian metric tensor, a Riemannian metric tensor or a degenerate metric tensor on M_p^m , then M_p^m is called a P-R submanifold, a Riemannian submanifold or a degenerate submanifold, respectively. For the nondegenerate submanifold, we have the direct sum decomposion

$$T(N_n^n) = T(M_n^m) \oplus T^{\perp}(M_n^m)$$

and $T^{\perp}(M_p^m)$ (the normal bundle) is also nondegenerate. In the following, we assume that the submanifold is nondegenerate.

A normal vector field $v \in T^{\perp}(M_p^m)$ is said to be parallel if $\nabla_X^{\perp}v = 0$ for any vector $X \in T(M_p^m)$.

Let M_p^m be a nondegenerate submanifold in N_q^n and e_1, e_2, \dots, e_m be an orthonormal local basis on M_p^m . The mean curvature vector H of M_p^m in N_q^n is defined by

$$H = \frac{1}{m} \sum_{i=1}^{m} \varepsilon_i B(e_i, e_i), \qquad \varepsilon_i = g(e_i, e_i) = \pm 1.$$

The nondegenerate submanifold M_p^m of N_q^n is said to be minimal if the mean curvature vector H of M_p^m in N_q^n vanishes identically.

For any real function f on M_p^m , the Laplacian Δf of f is defined by

$$\Delta f = -g^{ji}\nabla_{j}\nabla_{i}f = -\sum_{i=1}^{m} \varepsilon_{i}(e_{i}e_{i}f - \nabla_{e_{i}}e_{i}f)$$

(cf. [2]).

LEMMA 1. ([3], [4]) An isometric immersion x of a P-R manifold M_p^m in a P-E space E_q^n satisfies

$$\Delta x = -mH$$

where H is the mean curvature vector of the immersion and Δ is the Laplacian of M_p^m .

LEMMA 2. ([3], [4]) Let M_p^m be isometrically immersed in a P-R sphere

 $S_q^{m+k-1}(c,r)$ or a P-h space $H_{q-1}^{m+k-1}(c,r)$ of the P-E space E_q^{m+k} . Then the mean curvature vector H of M_p^m in E_q^{m+k} and the mean curvature vector H_0 of M_p^m in S_q^{m+k-1} or H_{q-1}^{m+k-1} satisfy

$$H=H_0-\varepsilon(x-c)/r^2$$
.

Where x is the immersion of M_p^m (as the vector field in E_q^{m+k}) and $\varepsilon = \pm 1$, if $x: M_p^m \to S_q^{m+k-1}(c, r)$, then $\varepsilon = 1$, if $x: M_p^m \to H_{q-1}^{m+k-1}(c, r)$, then $\varepsilon = -1$.

2. The minimal immersion in $S_q^{m+k-1}(r)$ or $H_{q-1}^{m+k-1}(r)$.

LEMMA 3. Let M_p^m $(m \ge 2)$ be a nondegenerate submanifold of a P-E space E_q^n and H be the mean curvature vector of M_p^m in E_q^n . x denotes the position vector field of M_p^m in E_q^n . If x=aH for some $a \ne 0$ on M_p^m , then $\bar{g}(H,H)\ne 0$ on M_p^m , where \bar{g} is the metric tensor of E_q^n .

PROOF. Suppose $\bar{g}(H, H)=0$ and x=aH for some $a \neq 0$ on M_p^m . Then $\bar{g}(x, x)=a^2\bar{g}(H, H)=0$. Since $\Delta x=-mH$, so

$$0 = \Delta \bar{g}(x, x) = 2\bar{g}(\Delta x, x) - 2\bar{g}(\nabla x, \nabla x)$$

$$= -2m\bar{g}(H, x) - 2\bar{g}(\nabla x, \nabla x)$$

$$= -2\bar{g}(\nabla x, \nabla x),$$

that is $\bar{g}(\nabla x, \nabla x) = 0$. It is impossible because M_p^m $(m \ge 2)$ is nondegenerate.

Q. E. D.

THEOREM 1. If an isometric immersion $x: M_p^m \to E_q^{m+k}$ of a P-R manifold M_p^m $(m \ge 2)$ in a P-E space E_q^{m+k} satisfies $\Delta x = bx$ for some constant $b \ne 0$

- (1) when b>0, then x realizes a minimal immersion in a P-R sphere $S_q^{m+k-1}(\sqrt{m/b})$ of the sectional curvature b/m in E_q^{m+k} ; conversely if x realizes a minimal immersion in a P-R sphere of the sectional curvature $r^{-2}(r>0)$ in E_q^{m+k} , then x satisfies $\Delta x=bx$ up to a parallel displacement in the P-E space E_q^{m+k} and $b=m/r^2$.
- (2) when b<0, then x realizes a minimal immersion in a P-h space $H_{q+1}^{m+k-1}(\sqrt{m/-b})$ of the sectional curvature b/m in E_q^{m+k} ; conversely if x realizes a minimal immersion in a P-h space of the sectional curvature $-r^2(r>0)$ in E_q^{m+k} , then x satisfies $\Delta x=bx$ up to a parallel displacement in the P-E space E_q^{m+k} and $b=-m/r^2$.

PROOF. Let $\Delta x = bx$, $b \neq 0$, then we have bx = -mH by Lemma 1. Since $X\bar{g}(x, x) = 2\bar{g}(X, x) = 0$, where \bar{g} is the metric of E_q^{m+k} , it yields that $\bar{g}(x, x) = 0$

constant $\neq 0$ by Lemma 3. So x realizes an immersion in $S_q^{m+k-1}(c,r)$ or $H_{q-1}^{m+k-1}(c,r)$. And by Lemma 2 and bx=-mH, we have $H_0=0$. Thus x realizes a minimal immersion in $S_q^{m+k-1}(c,r)$ or $H_{q-1}^{m+k-1}(c,r)$ in E_q^{m+k} and $r=\sqrt{m/\epsilon b}$ $(\epsilon=\pm 1)$.

Conversely, if x realizes a minimal immersion in $S_q^{m+k-1}(c,r)$ or $H_{q-1}^{m+k-1}(c,r)$ in E_q^{m+k} , then by Lemma 2, we have

$$H = -\varepsilon(x-c)/r^2$$
 $(\varepsilon = \pm 1)$

and $\Delta x = -mH$. Thus, we obtain

$$\Delta(x-c) = -m(-\varepsilon(x-c)/r^2) = \varepsilon m(x-c)/r^2$$

$$b = \varepsilon m/r^2 \qquad (\varepsilon = \pm 1).$$
Q. E. D.

COROLLARY 1. An isometric immersion $x: M_p^m \to E_q^{m+k}$ of a P-R manifold M_p^m in a P-E space E_q^{m+k} is minimal if and only if $\Delta x = 0$.

COROLLARY 2. If an isometric immersion $x: M_p^m \to E_p^{m+k}$ of a P-R manifold M_p^m in a P-E space E_p^{m+k} satisfies $\Delta x = bx$ for some constant $b \neq 0$, then b is necessarily positive and x realizes a minimal immersion of a P-R manifold M_p^m in a P-R sphere $S_p^{m+k-1}(\sqrt{m/b})$ in the P-E space E_p^{m+k} .

PROOF. For any isometric immersion $x: M_p^m \to E_p^{m+k}$, the vectors of the normal space of M_p^m in E_p^{m+k} are space-like. Then by Lemma 2, $\varepsilon = +1$.

Q. E. D.

COROLLARY 3. If an isometric immersion $x: M_p^m \to E_{p+k}^{m+k}$ of a P-R manifold M_p^m in a P-E space E_{p+k}^{m+k} satisfies $\Delta x = bx$ for some constant $b \neq 0$, then b is necessarily negative and x realizes a minimal immersion of a P-R manifold M_p^m in a P-h space $H_{p+k-1}^{m+k-1}(\sqrt{m/-b})$ in the P-E space E_{p+k}^{m+k} .

PROOF. By the condition, we know the vectors of the normal space of M_p^m in E_{p+k}^{m+k} are time-like. So in Lemma 2, $\varepsilon = -1$. Q. E. D.

3. The spectrum of $S_p^m(r)$ and $H_{p-1}^m(r)$.

In this section we consider the Laplacians Δ of $S_p^m(r)$ and $H_{p-1}^m(r)$ acting on functions. We obtain the constant b that satisfies $\Delta f = bf$, $f \not\equiv 0$, where Δ is the Laplacian of $S_p^m(r)$ or $H_{p-1}^m(r)$.

Let M_p^m be a P-R manifold. The Laplacian of M_p^m has various expressions

$$\Delta f = -g^{ji} \nabla_j \nabla_i f$$

$$= -\text{trace } (\nabla d f)$$

$$= -\text{trace (Hess } f),$$

where Hess f denotes the Hessian of the function f. Let e_1, e_2, \dots, e_m be an orthonormal local basis on M_p^m , then

$$\Delta f = -\sum_{i=1}^{m} \varepsilon_i$$
 Hess $f(e_i, e_i)$ $(\varepsilon_i = g(e_i, e_i) = \pm 1)$.

For each point $y \in M_p^m$, pick an orthonormal set of geodesics (v_i) parameterized by arc length and passing through $y \in M_p^m$ at s=0 and satisfying $v_i'(0)=e_i$. Then we have

$$\Delta f(y) = -\sum_{i=0}^{m} \varepsilon_i \frac{d^2}{ds^2} (f \circ v_i)(0)$$

(cf. [2] P. 33, P. 86).

For the P-R sphere $S_p^m(1)$ and the P-h space $H_{p-1}^m(1)$ in the P-E space E_p^{m+1} , let $y \in S_p^m(1)$ or $H_{p-1}^m(1)$ be a point. Then y determines a unit vector e_1 in E_p^{m+1} . For $S_p^m(1)$ e_1 is a space-like vector and for $H_{p-1}^m(1)$ e_1 is a time-like vector. Let e_2 , e_3 , \cdots , e_{m+1} be an orthonormal basis of $T_y(S_p^m(1))$ or $T_y(H_{p-1}^m(1))$. Then e_1 , e_2 , \cdots , e_m , e_{m+1} form an orthonormal basis of $T_y(E_p^{m+1})$.

If $\bar{g}(e_i, e_i)\bar{g}(e_i, e_i)=1$ $(i\geq 2)$ on $S_p^m(1)$ or $H_{p-1}^m(1)$, the geodesic v_i $(i\geq 2)$ through y with velocity vector e_i at y is given by

$$v_i(s) = (\cos s)e_1 + (\sin s)e_i$$
 $i=2, 3, \dots, (m+1)$

where s is arc length parameter.

If $\bar{g}(e_1, e_1)\bar{g}(e_i, e_i) = -1$ $(i \ge 2)$ on $S_p^m(1)$ or $H_{p-1}^m(1)$, the geodesic v_i $(i \ge 2)$ through y with velocity vector e_i at y is given by

$$v_i(s) = (\cosh s)e_1 + (\sinh s)e_i$$
 $i=2, 3, \dots, (m+1)$.

Let f be a function on E_p^{m+1} and x^1 , x^2 , \cdots , x^{m+1} be the Euclidean coordinates associated with e_1 , e_2 , \cdots , e_{m+1} . Consider the functions $(f \circ v_i)(s) = f(v_i(s))$. By using the chain rule, we have

$$\frac{d(f \circ v_i)}{ds} = -(\sin s) \frac{\partial f}{\partial x^1} + (\cos s) \frac{\partial f}{\partial x^i}$$

if $\bar{g}(e_1, e_1)\bar{g}(e_i, e_i)=1 \ (i\geq 2)$;

$$\frac{d(f \circ v_i)}{ds} = (\sinh s) \frac{\partial f}{\partial x^1} + (\cosh s) \frac{\partial f}{\partial x^i}$$

if $\bar{g}(e_1, e_1)\bar{g}(e_i, e_i) = -1$ $(i \ge 2)$.

Therefore, for $y=v_i(0)$, we have

$$\frac{d^2(f \cdot v_i)}{ds^2}(0) = -\frac{\partial f}{\partial x^1}(y) + \frac{\partial^2 f}{(\partial x^i)^2}(y)$$

if $\bar{g}(e_1, e_1)\bar{g}(e_i, e_i)=1$ $(i\geq 2)$;

$$\frac{d^2(f \cdot v_i)}{ds^2}(0) = \frac{\partial f}{\partial x^1}(y) + \frac{\partial^2 f}{(\partial x^i)^2}(y)$$

if $\bar{g}(e_1, e_1)\bar{g}(e_i, e_i) = -1$ $(i \ge 2)$.

Let $\varepsilon = -\bar{g}(e_1, e_1)\bar{g}(e_i, e_i)$ $(i \ge 2)$. Then

$$\begin{split} \Delta^{S_{p}^{m}(1)}(f/S_{p}^{m}(1))(y) &= -\sum_{i=2}^{m+1} \varepsilon_{i} \frac{d^{2}(f \circ v_{i})}{ds^{2}}(0) \\ &= -\sum_{i=2}^{m+1} \varepsilon_{i} \Big(\varepsilon \frac{\partial f}{\partial x^{1}}(y) + \frac{\partial^{2} f}{(\partial x^{i})^{2}}(y) \Big) \\ &= -\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{(\partial x^{i})^{2}}(y) - \sum_{i=2}^{m+1} \varepsilon_{i} \varepsilon \frac{\partial f}{\partial x^{1}}(y) \\ &= -\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{(\partial x^{i})^{2}}(y) + m \frac{\partial f}{\partial x^{1}}(y), \\ \Delta^{H_{p-1}^{m}(1)}(f/H_{p-1}^{m}(1))(y) &= -\sum_{i=2}^{m+1} \varepsilon_{i} \frac{d^{2}(f \circ v_{i})}{ds^{2}}(0) \\ &= -\sum_{i=2}^{m+1} \varepsilon_{i} \Big(\varepsilon \frac{\partial f}{\partial x^{1}}(y) + \frac{\partial^{2} f}{(\partial x^{i})^{2}}(y) \Big) \\ &= -\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{(\partial x^{i})^{2}}(y) - m \frac{\partial f}{\partial x^{1}}(y) \end{split}$$

But

$$(\Delta^{E_p^{m+1}}f)(y) = -\sum_{i=2}^{m+1} \varepsilon_i \frac{\partial^2 f}{(\partial x^i)^2}(y) - \varepsilon_1 \frac{\partial^2 f}{(\partial x^1)^2}(y).$$

If we denote by r the "distance" function from a point in E_p^{m+1} to the origin, then we obtain

$$(\Delta^{E_{p}^{m+1}}f)/S_{p}^{m}(1) = \Delta^{S_{p}^{m}(1)}(f/S_{p}^{m}(1)) - \frac{\partial^{2}f}{\partial r^{2}}/S_{p}^{m}(1) - m\frac{\partial f}{\partial r}/S_{p}^{m}(1),$$

$$(\Delta^{E_{p}^{m+1}}f)/H_{p-1}^{m}(1) = \Delta^{H_{p-1}^{m}(1)}(f/H_{p-1}^{m}(1)) + \frac{\partial^{2}f}{\partial r^{2}}/H_{p-1}^{m}(1) + m\frac{\partial f}{\partial r}/H_{p-1}^{m}(1).$$

Consider a homogeneous polynomial \overline{Q} of degree $k \ge 0$ on E_p^{m+1} . Let $Q = \overline{Q}/S_p^m(1)$ or $H_{p-1}^m(1)$. Then $\overline{Q} = r^k Q$. Thus we find

$$\frac{\partial \overline{Q}}{\partial r} = k r^{k-1} Q, \qquad \frac{\partial^2 \overline{Q}}{\partial r^2} = k(k-1) r^{k-2} Q.$$

Therefore,

$$\begin{split} (\Delta^{E_{p}^{m+1}} \overline{Q})/_{S_{p}^{m}(1)} = & \Delta^{S_{p}^{m}(1)} Q - k(k-1)Q - mkQ \\ = & \Delta^{S_{p}^{m}(1)} Q - k(k+m-1)Q \\ (\Delta^{E_{p}^{m+1}} \overline{Q})/_{H_{p-1}^{m}(1)} = & \Delta^{H_{p-1}^{m}(1)} Q + k(k-1)Q + mkQ \\ = & \Delta^{H_{p-1}^{m}(1)} Q + k(k+m-1)Q \,. \end{split}$$

If \overline{Q} satisfies $\Delta^{E_p^{m+1}}\overline{Q}=0$, \overline{Q} is called the harmonic-like homogeneous polynormial. So we have

$$\Delta^{S_{p}^{m}(1)}Q = k(m+k-1)Q,$$

$$\Delta^{H_{p-1}^{m}(1)}Q = -k(m+k-1)Q.$$

Let \mathcal{H}_k be the vector space of harmonic-like homogeneous polynomials of degree k on E_p^{m+1} . With the same method of [5] P.238-P.240, we can prove

$$\dim \mathcal{H}_k = {m+k \choose k} - {m+k-2 \choose k-2}.$$

Here, we give out another proof about dim \mathcal{H}_k .

Assume

$$\Delta = -\sum_{t=1}^{m+1} \frac{\partial^2}{(\partial x^t)^2} \qquad \Delta' = \sum_{t=1}^p \frac{\partial^2}{(\partial x^t)^2} - \sum_{t=p+1}^{m+1} \frac{\partial^2}{(\partial x^t)^2},$$

they are the Laplacians of E^{m+1} and E_p^{m+1} , respectively. \mathcal{A} denotes the vector space of complex coefficient harmonic homogeneous polynomials of degree k about Δ . \mathcal{A} denotes the vector space of complex coefficient harmonic-like homogeneous polynomials of degree k about Δ' . Let $F(x^1, x^2, \dots, x^{m+1}) \in \mathcal{A}$. We have

$$\begin{split} 0 &= \Delta F(x^{1}, x^{2}, \cdots, x^{m+1}) \\ &= \sum_{t=1}^{m+1} \frac{\partial^{2} F}{(\partial x^{t})^{2}} \\ &= \sum_{t=1}^{p} \frac{\partial^{2} F}{(\partial x^{t})^{2}} + \sum_{t=p+1}^{m+1} \frac{\partial^{2} F}{(\partial x^{t})^{2}} \\ &= \sum_{t=1}^{p} \frac{-\partial^{2} F}{(i\partial x^{t})^{2}} + \sum_{t=p+1}^{m+2} \frac{\partial^{2} F}{(\partial x^{t})^{2}} \qquad (i^{2} = -1) \\ &= \Big(-\sum_{t=1}^{p} \frac{\partial^{2}}{(\partial x^{t})^{2}} + \sum_{t=p+1}^{m+1} \frac{\partial^{2}}{(\partial x^{t})^{2}} \Big) F(-ix^{1}, -ix^{2}, \cdots, -ix^{p}, x^{p+1}, x^{p+2}, \cdots, x^{m+1}) \\ &= \Delta' F(-ix^{1}, -ix^{2}, \cdots, -ix^{p}, x^{p+1}, \cdots, x^{m+1}). \end{split}$$

Therefore, $F(-ix^1, -ix^2, \dots, -xi^p, x^{p+1}, \dots, x^{m+1}) \in \mathcal{A}$ and

$$\left|\frac{\partial(y^1, y^2, \cdots, y^{m+1})}{\partial(x^1, x^2, \cdots, x^{m+1})}\right| = i^p \neq 0$$

where, $y^1=ix^1$, $y^2=ix^2$, ..., $y^p=ix^p$, $y^{p+1}=x^{p+1}$, ..., $y^{m+1}=x^{m+1}$. Thus we obtain $\dim \mathcal{A}=\dim \mathcal{A}$. But $\dim \mathcal{A}=\binom{m+k}{k}-\binom{m+k-2}{k-2}$. So

$$\dim \mathcal{A} = \binom{m+k}{k} - \binom{m+k-2}{k-2}.$$

THEOREM 2. The spectrum of the Laplacians of the P-R sphere $S_p^m(1)$ and the P-h space $H_{p-1}^m(1)$ in the P-E space E_{p+1}^{m-1} is given by

 $b_k = k(m+k-1) \qquad (k \ge 0)$

and

$$b_k = -k(m+k-1) \qquad (k \ge 0)$$

respectively. And the multiplicity $j(b_k)$ of b_k is given by

$$\begin{split} j(b_0) &= 1, \qquad j(b_1) = m+1, \\ j(b_k) &= \binom{m+k}{k} - \binom{m+k-2}{k-2} \\ &= \frac{(m+k-2)(m+k-3)\cdots(m+1)m}{k!} (m+2k-1). \qquad (k \ge 2). \end{split}$$

Since $S_p^m(r)$ with $S_p^m(1)$ and $H_{p-1}^m(r)$ with $H_{p-1}^m(1)$ are homothetic, we have

THEOREM 3. The syectrum of the Laplacians of the P-R sphere $S_p^m(r)$ and the P-h space $H_{p-1}^m(r)$ in the P-E space E_p^{m+1} is given by

and

$$b_k = r^{-2}k(m+k-1)$$

 $b_k = -r^{-2}k(m+k-1)$ $(k \ge 0, r > 0),$

respectively. And the multiplicity $j(b_k)$ of b_k is given by

$$j(b_0)=1$$
, $j(b_1)=m+1$,

$$j(b_k) = {m+k \choose k} - {m+k-2 \choose k-2} \qquad (k \ge 2).$$

4. The minimal immersions of the P-R sphere and P-h space.

THEOREM 4. Let $M=S_p^m(r)$ or $H_{p-1}^m(r)$. M is isometrically minimally immersed in $S_q^n(1)$ or $H_{q-1}^n(1)$. Then for $k=0, 1, 2, \cdots$, we have

$$r^{-2} = \frac{m}{k(m+k-1)}, \quad n \leq (m+k2-1)\frac{(m+k-2)!}{k!(m-1)!}.$$

PROOF. By Theorem 1, for the immersion f,

$$\Delta f = bf$$
, $b > 0$; $f: M \longrightarrow S_q^n(\sqrt{m/b}) = S_q^n(1)$
 $b < 0$; $f: M \longrightarrow H_{q-1}^n(\sqrt{m/-b}) = H_{q-1}^n(1)$.

Then, b=m or b=-m for $S_q^n(1)$ or $H_{q-1}^n(1)$, respectively. With Theorem 3, we have

$$b_k = k(m+k-1)r^{-2}$$
 for $S_p^m(r)$
 $b_k = -k(m+k-1)r^{-2}$ for $H_{p-1}^m(r)$.

So

$$m=b=k(m+k-1)r^{-2}$$
 or $m=-b=-(-k)(m+k-1)r^{-2}$.

Therefore

$$r^{-2} = \frac{m}{k(m+k-1)}$$
, $n \le (m+2k-1)\frac{(m+k-2)!}{k!(m-1)!}$. Q. E. D.

REMARK. By Theorem 1 and Theorem 3, we have

- (1) $M_p^m(r)$ (r < 0 is a constant) can not be isometrically minimally immersed in $S_q^n(1)$.
- (2) The Riemannian manifold $M^m(r)$ with the constant sectional curvature r<0 can not be isometrically minimally immersed in the Riemannian sphere $S^n(1)$.

Acknowledgement.

The author would like to express his gratitude to professor Hisao Nakagawa for many helpful suggestions.

References

- [1] Chen, D.Y., Total mean curvature and submanifolds of finite type, Series in Pure Math., Volume 1, World Scientific, 1984.
- [2] O'Neill, B., Semi-Riemannian geometry, Academic Press, New York, 1983.
- [3] Chen B.Y., Finite type submanifolds in Pseudo-Euclidean space and applications, Kodai Math. J. 8 (1985) 358-374.
- [4] Liu Hui-L, Minimal submanifolds and harmonic maps of Pseudo-Riemannian manifold, Master paper, Northeast University of Technology, 1988.
- [5] Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean space, Princeton, New Jersey, Princeton Uni. Press.

Liu Hui-Li Department of Mathematics Northeast University of Technology Shen yang, Liao ning, 110006 P.R.C.