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BALANCED MODULES AND RINGS
OF LEFT COLOCAL TYPE

By

Ryohei MAKINO

Introduction

Let $M$ be a left module over a ring $R$ . Then $M$ can be regarded as a
right C-module, where $C=End(RM)$ is the endomorphism ring of $M$. Denoting
by $BiEnd(RM)$ the endomorphism ring End$(M_{C})$ of the right C-module $M$, the
mapping

$\rho$

$R\ni r\mapsto r_{m}\in BiEnd(RM)$

is a ring homomorphism, where $r_{m}$ is the left multiplication of $r,$ $i.e.,$ $r_{m}(x)=$

$rx$ for all $x\in M$. If $\rho$ is surjective, or equivalently every element of $BiEnd(RM)$

is a left multiplication of an element of $R$ , then $M$ is said to be balanced. If
every finitely generated faithful left R-module is balanced, then $R$ is called a
left QF-l ring. Further, $R$ is said to be a left balanced ring if $R/l$ is left
QF-l for every two sided ideal $I$ of $R$ ; this condition is equivalent to the con-
dition that every finitely generated left module is balanced. The concept of
QF-l rings was introduced by Thrall [18] as a generalization of quasi-Frobenius
rings, and in the same paper he proposed to give an internal characterization
of QF-l rings. At the present time, however, this problem is not solved com-
pletely, though partial answers are given in several cases (Camillo and Fuller
[1], Dlab and Ringel [2], Fuller [7], Makino [8, 9, 10], Morita [11], Ringel [12]

and Tachikawa [17]). On the other hand, the structure of balanced rings was
completely determined by Dlab and Ringel [2, 3, 4, 5, 6]. Indeed they proved

that an indecomposable ring is left balanced if and only if it is a full matrix
ring over either a local uniserial ring or an exceptional ring. We should note
that exceptional rings are characterized as local rings of either left or right

colocal type with the square zero radical (see Section 1 for the precise definition
of rings of left colocal type).

Our aim of this paper is to show that in the case of left serial rings, left
QF-lness, which is much more weaker condition than left balancedness, implies

rings of left colocal type (Theorem). For the case of a finite dimensional
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algebra over a field, Tachikawa [17] has already obtained the same result, but
our proof seems to be different from his proof. Owing to Theorem, we obtain
a solution of Thrall’s problem for the case of left serial rings (Characterization

of left serial QF-l rings), cf. [8] as to the case of left serial algebras. It
should be recognized that there exists an essential difference, caused by problems

concerning division rings, between rings of left colocal type and algebras of
left colocal type.

Throughout this paper $R$ is a left artinian ring with identity, $N$ the Jaco-
bson radical of $R$ and all R-modules are finitely generated unitary left modules.
It is well-known that the balancedness of modules is Morita invariant. So we
assume that $R$ is basic. A module is uniserial when it has a unique composi-
tion series. A ring $R$ is said to be left serial if $RR$ is a direct sum of uniserial
modules. Let $M$ be a left R-module. We denote by $|M|$ the composition
length of $M$ and write $S^{i}(M)$ for the i-th socle of $M,$ $i.e.,$ $S^{i}(M)=\{x\in M|N^{i}x$

$=0\}$ . Especially $S(M)=S^{1}(M)$ is the socle of $M$. Homomorphisms always

act from the opposite side to scalars; in particular the left R-module $M$ defines
a right C-module, where $C$ is the endomorphism ring of $RM$.

1. In this section we explain the definition of rings of left colocal type

and obtain some preliminary results. For a uniserial left R-module $L$ with
$|L|=n$ , let $D(L)=End(RS(L))$ and

$D_{i}(L)=$ { $\theta\in D(L)|\theta$ is extendable to an endomorphism of $S^{i}(L)$ }

for each $i=1,$ $\cdots,$ $n$ . Then we have a descending chain of division rings

$D(L)=D_{1}(L)\supset D_{2}(L)\supset\cdots\supset D_{n}(L)$ .

The following was proved by Tachikawa [15].

(Tachikawa) If every indecomposable left module over a ring $R$ has simple

socle, then the following four conditions are satisfied:
(A) $R$ is left serial.
(B) For uniserial left R-modules $K$ and $L$ with $|K|=|L|\geqq 2$ , if $ S^{2}(K)\cong$

$S^{2}(L)$ , then $K\cong L$ .
(C) $D_{2}(L)=D_{n}(L)$ for any uniserial left R-module $L$ with $|L|=n\geqq 2$ .
(D) $|eN/eN^{2}|\leqq 2$ for any primitive idempotent $e$ of $R$ .
Conversely, every indecomposable left R-module has simple scole if the above

four conditions plus the following condition are satisfied:
(E) $\dim_{D_{2}(L)}D_{1}(L)=\dim D_{1}(L)_{D_{2}(L)}$ for any uniserial left R-module $L$ with

$|L|\geqq 2$ , where $\dim_{D_{2}(L)}D_{1}(L)$ and $\dim D_{1}(L)_{D_{2}(L)}$ are the dimensions of the left
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vector space $D_{1}(L)$ and right vector space $D_{1}(L)$ over $D_{2}(L)$ , respectively.

If a ring $R$ satisfies the above five conditions (A), (B), (C), (D) and (E),

then we shall call $R$ a ring of left colocal type.

For left R-modules $M$ and $P$, let $\sum M^{P}$ (resp. $\cap M^{P}$) denote the sum (resp.

the intersection) of the images (resp. the kernels) of all homomorphisms from
$P$ into $M$ (resp. from $M$ into $P$ ) and all endomorphisms of $M$ that are not
automorphisms, that is,

$\sum M^{P}=\sum$ { ${\rm Im} f|f\in Hom_{R}(P,$ $M)$ or $f\in End(RM)\backslash Aut(RM)$ }
and

$\cap M^{P}=\cap$ { $Kerg|g\in Hom_{R}(M,$ $P)$ or $g\in End(RM)\backslash Aut(RM)$ }.

Now we state the important lemma, which is a slight extension of [10, Lemma
1.4], and the idea of the proof is due to Morita [11].

LEMMA 1.1. Let $M$ be an indecomposable left R-module and $P$ a left R-
module. Let $U$ be a C-submodule of $M$, where $C$ is the endomorphism ring of
$RM$. Suppose that $M\oplus P$ is balanced and that $\sum M^{P}+U\neq M$. Then, for given
elements $x$ in $M\backslash \sum M^{P}+U$ and $y$ in $\cap M^{P}$, we find an element $a$ of $R$ such that
$aP=0,$ $a(\sum M^{P}+U)=0$ and $ax=y$ .

PROOF. Let $G=M\oplus P$ and $\mathcal{D}=End(RG)$ , and let $e:G\rightarrow M$ be the projection
(regarded as an element of $\mathcal{D}$ ). Then $(\sum M^{P}+U)\oplus P$ is a $\mathcal{D}$-submodule of $G$

and $X=G/(\sum M^{P}+U)\oplus P$ is a semi-simple $\mathcal{D}$-module with $X=Xe$ . Also, letting
$i:M\rightarrow G$ be the injection, $Y=i(\cap M^{P})$ is a semi-simple $\mathcal{D}$ -module with $Y=Ye$ .
Since $\overline{(x,O)}=(x, 0)+(\sum M^{P}+U)\oplus P$ is a non-zero element of $X$ by hypothesis, it
follows that there exists a $\mathcal{D}$ -homomorphism $\alpha$ : $X\rightarrow Y$ such that $\alpha\overline{(x,O)}=(y, 0)$ .
By $a:G\rightarrow G$ , we denote the composed $\mathcal{D}$-homomorphism

$G\rightarrow^{\epsilon}X\rightarrow^{\alpha}Y$

$G$’,
where $\epsilon$ is the canonical epimorphism and $\iota$ the inclusion. Since $G$ is balanced,
we may consider $a$ an element of $R$ . Then $a$ is a required element, so the
proof is completed.

For a subset $X$ of an R-module $M$, the annihilator $\{a\in R|aX=0\}$ of $X$ will
be denoted by Ann(X).

COROLLARY 1.2. Let $M$ be an indecomposable left R-module and $P$ a left
R-module. Suppose that $M\oplus P$ is balanced. Then

(a) For any R-submodule $H$ of $M$, either $H\subset\Sigma M^{P}$ or $H\supset\cap M^{P}$ holds.



468 Ryohei MAKINO

(b) Let $X$ be a subset of $M$ such that $Ann(X)\cap Ann(P)=0$ . Suppose that
$M$ is not cogenerated by P. Then

$XC+\Sigma M^{P}=M$ ,
where $C=End(RM)$ .

PROOF. (a) Suppose that neither $H\subset\Sigma M^{P}$ nor $H\supset\cap M^{P}$ . Then we can
take elements $x\in H$ such that $x\in M\backslash \sum M^{P}$ and $y\in\cap M^{P}$ such that $y\not\in H$.
From Lemma 1.1, it follows that there exists an element $a$ of $R$ such that
$ax=y$ , but this contradicts that $H$ is an R-submodule of $M$.

(b) From the hypothesis $H=\cap\{Kerg|g\in Hom_{R}(M, P)\}$ is a non-zero C-

submodule of $M$. Thus we have $\cap M^{P}=S(M_{C})\cap H\neq 0$ . Hence, assuming $XC+$

$\sum M^{P}\neq M$, by Lemma 1.1 we find a non-zero element $a$ of $R$ such that $a$ an-
nihilates both $XC+\sum M^{P}$ and $P$. But this contradicts that $Ann(X)\cap Ann(P)=0$ ,

so (b) holds.

REMARK. Corollary 1.2 (a) has been already shown in [8]. Letting $P=0$ ,

Corollary 1.2 (b) yields [5, Lemma II. 2.1], and from Lemma 1.1 we can im-
mediately obtain a part of Morita’s criterion [11, Theorem 1.1].

2. Throughout this section we assume that $R$ is a left serial ring. Let
$K$ and $L$ be uniserial left R-modules with $|K|,$ $|L|\geqq 2$ . Let $\theta$ : $S^{l}(K)\rightarrow S^{l}(L)$ ,

$1\leqq l<\min\{|K|, |L|\}$ , be an isomorphism satisfying that the isomorphism $\overline{\theta}$ :
$S^{l}(K)/S^{\iota-1}(K)\rightarrow S^{l}(L)/S^{l-1}(L)$ induced by $\theta$ can not be extended to an isomor-
phism from $S^{\iota+1}(K)/S^{l-1}(K)$ into $S^{l+I}(L)/S^{l-1}(L)$ . In this case, we shall call
$\theta$ : $S^{l}(K)\rightarrow S^{l}(L)$ a tightly lacing isomorphism, and say that $l$ is a lacing length

of $K$ and $L$ . It may occur that two different integers are lacing lengths of $K$

and $L$ . We should note the following; For the interlacing module by the
tightly lacing isomorphism $\theta$ : $S^{l}(K)\rightarrow S^{l}(L)$

$l=Int_{\theta}(K, L)=K\oplus L/\{(x, x\theta)|x\in S^{l}(K)\}$ ,

the l-th socle $S^{\iota}(l)$ is uniserial by [15, Lemma 1.3], because $\theta_{i}$ : $S^{l}(K)/S^{i}(K)$

$\rightarrow S^{l}(L)/S^{i}(L)$ induced by $\theta$ is not extendable to a homomorphism from $S^{l+1}(K)/$

$S^{i}(K)$ into $L/S^{i}(L)$ for each $i=0,1,$ $\cdots,$ $l-1$ .
By $\Pi$ let denote the totality of non-isomorphic primitive idempotents and

by $\Lambda$ the subset of $\Pi$ such that $\oplus_{e_{\lambda}\in\Lambda}Re_{\lambda}$ is minimal faithful, that is, $\oplus_{e_{\lambda}\in\Lambda}Re_{\lambda}$

is faithful and the deletion of any direct summand makes it unfaithful. The
meaning of $\Pi$ and $\Lambda$ will be retained throughout. One can easily see that
every primitive left ideal $Re,$ $ e\in\Pi$ , is embedded into $Re_{\lambda}$ for some $ e_{\lambda}\in\Lambda$ .

The following proposition is an extension of [17, Theorem 3.1] to the case
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of artinian rings, and our proof is shorter and seems to be different from that
in [17].

PROPOSITION 2.1. Let $R$ be a left serial ring. Suppose that $R$ is left QF-l.
Then the largest lacing length $l$ of uniserial left R-modules is at most one.

PROOF. Let $\theta$ : $S^{l}(K)\rightarrow S^{\iota}(L)$ be a tightly lacing isomorphism of uniserial
left R-modules $K$ and $L$ . We may assume that $K=Re_{\kappa}$ for some $ e_{\kappa}\in\Lambda$ by the
maximality of $l$ . Construct the interlacing module by $\theta$

$M=Int_{\theta}(Re_{\kappa}, L)=Re_{\kappa}\oplus L/H$ ,

where $H=\{(x, x\theta)|x\in S^{l}(Re_{\kappa})\}$ , and let

$P=(\oplus_{e_{\lambda}\in\Lambda,e_{\lambda}\neq e_{\kappa}}Re_{\lambda})\oplus Re_{\kappa}/S(Re_{\kappa})$ and $G=M\oplus P$ .

Then $G$ is faithful since $Re_{\lambda}$ is embedded into $G$ for any $ e_{\lambda}\in\Lambda$ . It follows
that $G$ is balanced by the hypothesis. Letting $e_{\kappa}u$ be a generator of $Re_{\kappa}$ , it is
easily seen that $\sum M^{P}\not\supset R\overline{(e_{\kappa}u,0).}$ (Here we write $(\overline{x,y)}=(x, y)+H(x\in Re_{\kappa}$ ,
$y\in L)$ for an element of $M.$ ) Also, considering the fact that $S^{l}(M)$ is uniserial,
we see that $\cap M^{P}\supset S^{l}(M)(=S^{l}(R\overline{(e_{\kappa}u,0))})$ .

Now suppose that $l\geqq 2$ . Then we can take an element $y\in\cap M^{P}$ such that
$y\in R\overline{(e_{\kappa}u,0)}\backslash S(R\overline{(e_{\kappa}u,0))}$ . Applying Lemma 1.1, for an element $x\in R\overline{(e_{\kappa}u,0)}$

with $x\not\in\sum M^{P}$ we find an element $a\in R$ such that $ax=y$ and $aP=0$ . Then
$a(R\overline{(e_{\kappa}u,0)}/S(R\overline{(e_{\kappa}u,0)}))\neq 0$ , but the element $a$ annihilates the direct summand
$Re_{\kappa}/S(Re_{K})$ of $P$. This contradicts $Re_{\kappa}/S(Re_{\kappa})\cong R\overline{(e_{\kappa}u,0)}/S(R\overline{(e_{\kappa}u,0)})$ as R-
modules. As a consequence, we have shown that $1<2$ , so the proof of the
proposition is completed.

The largest lacing length has relation to the conditions for rings of left
colocal type as follows (cf. [13, Lemma 3.1]).

LEMMA 2.2. The largest lacing length 1 of uniserial left R-modules is at
most one if and only if $R$ satisfies both the conditions (B) and (C) for rings of
left colocal type.

PROOF. Let $L$ be a uniserial left R-module with $|L|=n\geqq 2$ . Let $\theta_{i}$ : $S(L)$

$\rightarrow S(L),$ $i=1,2$ , be isomorphisms and $\tau_{i}$ ; $S^{k}(L)\rightarrow S^{k}(L)(k\geqq 2)$ extensions of $\theta_{i}$

respectively. Then we remark that $\theta_{1}=\theta_{2}$ if and only if $\overline{\tau}_{1}=\overline{\tau}_{2}$ , where $\overline{\tau}_{i}$ ;

$S^{k}(L)/S^{k-1}(L)\rightarrow S^{k}(L)/S^{k-1}(L)$ is the homomorphism induced by $\tau_{i}$ .
Now assume $l<2$ . Then (B) holds trivially. Let $\theta$ : $S(L)\rightarrow S(L)$ be any

isomorphism belonging to $D_{k}(L)$ and $\tau;S^{k}(L)\rightarrow S^{k}(L)$ an extension of $\theta$ , where
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$k\geqq 2$ (so that $k>l$ ). Then, since $\tau$ is not a tightly lacing isomorphism, there
exists an isomorphism $\overline{\rho}$ : $S^{k+1}(L)/S^{k-1}(L)\rightarrow S^{k+1}(L)/S^{k-1}(L)$ which is an extension
of the isomorphism $\overline{\tau};S^{k}(L)/S^{k-1}(L)\rightarrow S^{k}(L)/S^{k-1}(L)$ induced by $\tau$ . We can
lift $\overline{\rho}$ to $\rho$ : $S^{k+1}(L)\rightarrow S^{k+1}(L)$ . Taking account of the fact remarked above, we
see that the restriction $\rho|S(L):S(L)\rightarrow S(L)$ coincides with $\theta$ . This implies that
$\theta\in D_{k+1}(L)$ , thus $D_{k}(L)=D_{k+1}(L)$ . It follows that $D_{2}(L)=D_{n}(L)$ , so (C) holds.

Conversely, assume that (B) and (C) hold. Let $K$ and $L$ be uniserial mod-
ules, and let $\theta$ : $S^{k}(K)\rightarrow S^{k}(L)$ be an isomorphism, where $2\leqq k<\min\{|K|, |L|\}$ .
We show that $\theta$ is not a tightly lacing isomorphism. Since $k\geqq 2$ , we may
assume that $K=L$ by (B). By (C) we have $D_{k}(L)=D_{k+1}(L)$ , and hence there
exists an isomorphism $\tau:S^{k+1}(K)\rightarrow S^{k+1}(L)$ such that $\theta|S(L)=\tau|S(L)$ for re-
strictions. Then $\overline{\tau};S^{k+1}(L)/S^{k-1}(L)\rightarrow S^{k+I}(L)/S^{k-1}(L)$ induced by $\tau$ is an exten-
sion of $\overline{\theta}:S^{k}(L)/S^{k-1}(L)\rightarrow S^{k}(L)/S^{k-1}(L)$ induced by $\theta$ . This shows that $\theta$ is
not tightly lacing isomorphism, as required.

Combining Proposition 2.1 and Lemma 2.2 we have

PROPOSITION 2.3. Let $R$ be a left serial ring. If $R$ is left QF-l, then $R$

satisfies the conditions (B) and (C) for rings of left colocal type.

3. Our purpose of this section is to prove the following proposition.

PROPOSITION 3.1. Let $R$ be a left serial ring. If $R$ is left QF-l, then $R$

satisfies the condition (D) for rings of left colocal type.

We need the following lemma, which was shown in [15].

LEMMA 3.2. Let $R$ be a left serial ring with $N^{2}=0$ and $e,$ $f$ primitive
idempotents such that $eNf\neq 0$ . Put $L=Rf$. Then

$\dim D_{1}(L)_{D_{2}(L)}=\dim eNf_{fRf/fNf}$ .

PROOF. See [15] and the proof of [13, Lemma 3.2].

From now on throughout this section we shall assume that $R$ is a left
serial ring satisfying the conditions (B) and (C) for rings of left colocal type,

and moreover assume that

$e_{1}R/e_{1}N\oplus e_{2}R/e_{2}N\oplus e_{3}R/e_{3}N$

is embedded into $eN/eN^{2}$ , where $e,$ $e_{1},$ $e_{2},$ $ e_{3}\in\Pi$ (so that $|eN/eN^{2}|\geqq 3$ ). In
order to construct a non-balanced R-module which is faithful we distinguish
three cases; and according as the cases, we choose uniserial left R-modules
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$L_{1},$ $L_{2},$ $L_{3}$ and isomorphisms $\theta$ : $S(L_{1})\rightarrow S(L_{2}),$ $\tau:S(L_{1})\rightarrow S(L_{3})$ as follows.
Case (i) $e_{i}\neq e_{j}(i\neq j)$ for the primitive idempotents $e_{1},$ $e_{2}$ and $e_{3}$ . We take

uniserial modules $L_{i},$ $i=1,2,3$ , with $S^{2}(L_{i})\cong Re_{i}/N^{2}e_{i}$ . Note that $S(L_{i})\cong Re/Ne$ ,
$i=1,2,3$ . Take any isomorphisms $\theta$ : $S(L_{1})\rightarrow S(L_{2})$ and $\tau;S(L_{1})\rightarrow S(L_{3})$ . By
(B), we may assume that $L_{1}$ and $L_{2}$ are projective, and thus that $L_{1}=Re_{\kappa}$ and
$L_{2}=Re_{\mu}$ for some $e_{\kappa},$ $ e_{\mu}\in\Lambda$ .

Case (ii) $e_{1}\cong e_{2}\neq e_{3}$ . Let $L$ be a uniserial R-module such that $ S^{2}(L)\cong$

$Re_{1}/N^{2}e_{1}$ . Then we have $\dim D_{1}(L)_{D_{2}(L)}\geqq 2$ by Lemma 3.2. Since the largest
lacing length $<2$ by Lemma 2.2, it follows that $L$ is projective. Thus we may
assume $L=Re_{\kappa}$ for some $ e_{\kappa}\in\Lambda$ . Let $L_{1}=L_{2}=L$ and $L_{3}$ a uniserial module
such that $S^{2}(L_{3})\cong Re_{3}/N^{2}e_{3}$ . Let $\theta$ : $S(L)\rightarrow S(L)$ be an isomorphism such that 1
and $\theta$ are linearly independent in the right vector space $D_{1}(L)_{D_{2}(L)}$ , and $\tau$ :
$S(L_{1})\rightarrow S(L_{3})$ any isomorphism.

Case (iii) $e_{1}\cong e_{2}\cong e_{3}$ . Similarly as Case (ii), there exists a uniserial R-
module $L$ such that $L=Re_{\kappa}$ for some $ e_{\kappa}\in\Lambda$ and $S^{2}(L)\cong Re_{1}/N^{2}e_{1}$ . Note that
$\dim D_{1}(L)_{D_{2}(L)}\geqq 3$ by Lemma 3.2. We let $L_{1}=L_{2}=L_{3}=L$ , and $\theta$ : $S(L)\rightarrow S(L)$

and $\tau;S(L)\rightarrow S(L)$ isomorphisms such that 1, $\theta$ and $\tau$ are linearly independent
in $D_{1}(L)_{D_{2}(L)}$ .

Now, from $L_{1},$ $L_{2},$ $L_{3},$ $\theta,$
$\tau$ taken above, make the interlacing module

$l=Int_{(\theta.\tau)}(L_{1}, L_{2}, L_{3})=L_{1}\oplus L_{2}\oplus L_{3}/H$ ,

where $H=\{(x, x\theta, x\tau)|x\in S(L_{1})\}$ . We shall write

$[x_{1}]_{1}+[x_{2}]_{2}+[x_{3}]_{3}$

for the coset of $(x_{1}, x_{2}, x_{3})$ modulo $H$, where $x_{i}\in L_{i},$ $i$ . $e.$ ,

$[x_{1}]_{1}+[x_{2}]_{2}+[x_{3}]_{3}=(x_{1}, X_{2}, x_{3})+H$

as an element of 1.

LEMMA 3.3. Any homomorphism $\phi:1\rightarrow 1$ can be lifted to a homomorphism
$\Phi$ : $L_{1}\oplus L_{2}\oplus L_{3}\rightarrow L_{1}\oplus L_{2}\oplus L_{3}$ .

PROOF. Let $f_{i}u_{i},$ $i=1,2,3$ , be generators of $L_{i}$ respectively, where $ f_{i}\in\Pi$ .
Let

$[f_{i}u_{i}]_{i}\phi=[f_{i}x_{i}]_{i}+[f_{i}x_{k}]_{k}+[f_{i}x_{l}]_{l}$ ,

where $\{i, k, l\}=\{1,2,3\}$ . Let $af_{i}$ be an element of $Rf_{i}$ such that $af_{i}u_{i}=0$ .
Then $af_{i}\in N^{|L_{i}|}f_{i}$ , so $af_{i}x_{i}=0$ . Also we have $af_{i}x_{k}=0$ and $af_{i}x_{l}=0$, since
$0=a[f_{i}u_{i}]_{i}=[af_{i}x_{k}]_{k}+[af_{i}x_{l}]_{l}$ and $R[f_{k}u_{k}]_{k}\oplus R[f_{l}u_{l}]_{l}(\subset I)$ . Thus there
exists a homomorphism $\phi_{ij}$ : $L_{i}\rightarrow L_{j}$ such that $f_{i}u_{i}\phi_{ij}=f_{i}x_{j},$ $j=1,2,3$ . If we
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let $\Phi$ : $L_{1}\oplus L_{2}\oplus L_{3}\rightarrow L_{1}\oplus L_{2}\oplus L_{3}$ be the homomorphism given by the matrix
$(\phi_{ij})$ , then the diagram

$L_{1}\oplus L_{I}\oplus L_{3}^{\Phi}\rightarrow L_{1}\oplus L_{I}\oplus L_{3}1_{\underline{\phi}}^{2}\downarrow^{2}$

is commutative. So the lemma is shown.
Let $P$ be the direct sum of all $Re_{\lambda},$ $ e_{\lambda}\in\Lambda$ , which are isomorphic to no $L_{t}$ ,

$i=1,2,3$ , that is,

$P=\oplus_{e_{\lambda}\in\Lambda.Re_{\lambda}\not\equiv L_{1}.L_{2},L_{3}}Re_{\lambda}$

and put $F=l\oplus P$. Proposition 3.1 will be proved if we show the following
proposition.

PROPOSITION 3.4. $F$ is faithful and non-balanced.

PROOF. Obviously $Re_{\lambda}$ is embedded into $F$ for any $ e_{\lambda}\in\Lambda$ . Thus $F$ is
faithful. It was shown by Tachikawa [15] that the module $I$ is indecomposable
in each case, and this fact is essential for proving non-balancedness of $F$.

Now let $\phi$ be any element of the radical $c;\nu$ of the endomorphism ring $C$

of $Rl$ . According to Lemma 3.3, $\phi$ can be lifted to $\Phi$ : $L_{1}\oplus L_{2}\oplus L_{3}\rightarrow L_{1}\oplus L_{2}\oplus L_{3}$ .
We write $\Phi$ as a matrix $(\phi_{ij})$ , where $\phi_{ij}$ : $L_{i}\rightarrow L_{j}$ . We show that if all $\phi_{ij},$ $ 1\leqq$

$i,$ $j\leqq 3$ , are non-isomorphisms, then $F$ is non-balanced. To see this, assume
that $\phi_{ij}$ are non-isomorphisms for any $\phi\in\psi$ . Then

$l^{c}W\subset N[f_{1}u_{1}]_{1}+N[f_{2}u_{2}]_{2}+R[f_{3}u_{3}]_{3}$ ,

where $f_{i}u_{i}$ are generators of $L_{i}$ respectively, and

$S(l_{C})\supset R[ew_{1}]_{1}\oplus R[ew_{2}]_{2}(=R[ew_{2}]_{2}\oplus R[ew_{3}]_{3}$

$=R[ew_{3}]_{3}\oplus R[ew_{1}]_{1})$ ,

where $ew_{i}$ are generators of $S(L_{i})$ respectively. Since $L_{i}$ , $i=1,2$ , are not
generated by $P$, we have

$X=\sum\{{\rm Im} f|f\in Hom_{R}(P, l)\}\subset N[f_{1}u_{1}]_{1}+N[f_{2}u_{2}]_{2}+R[f_{3}u_{3}]_{3}$ .

Also we have

$Y=\cap\{Kerg|g\in Hom_{R}(l, P)\}\supset R[ew_{1}]_{1}\oplus R[ew_{2}]_{2}$ ,

since $L_{i},$ $i=1,2$ , are not embedded into $P$. Therefore we conclude that
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$\sum l^{P}=I\psi+X\subset N[f_{1}u_{1}]_{1}+N[f_{2}u_{2}]_{2}+R[f_{3}u_{3}]_{3}$

and
$\cap l^{P}=S(I_{C})\cap Y\supset R[ew_{1}]_{1}\oplus R[ew_{2}]_{2}$ .

From this, it follows that $R[f_{1}u_{1}]_{1}$ is a submodule of 1 satisfying $ R[f_{1}u_{1}]_{1}\not\subset$

$\sum l^{P}$ and $R[f_{1}u_{1}]_{1}\not\supset\cap I^{P}$ . By Corollary 1.2 (a), this implies that $F$ is not bal-
anced. So we have shown that if the assumption holds, then $F$ is non-balanced.
To complete the proof, we distinguish the above three Cases (i), (ii) and (iii).

Case (i) For $\phi\in\psi$ suppose that $\phi_{11}$ is an isomorphism. Then it can be
easily seen that if $x_{i},$ $i=1,2,3$ , are elements of $L_{i}$ such that $|Rx_{1}|>|Rx_{2}|$ ,
$|Rx_{3}|$ , then the image of $[x_{1}]_{I}+[x_{2}]_{2}+[x_{3}]_{3}$ by $\phi$ is written as

$([x_{1}]_{1}+[x_{2}]_{2}+[x_{3}]_{3})\phi=[y_{1}]_{1}+[y_{2}]_{2}+[y_{3}]_{8}$

with $|Rx_{1}|=|Ry_{1}|>|Ry_{2}|,$ $|Ry_{3}|$ . It follows that $[f_{1}u_{1}]_{1}\phi^{n}\neq 0$ for all $n>0$,

a contradiction of the nilpotency of $\phi$ . Thus $\phi_{11}$ is a non-isomorphism, and
similarly so are $\phi_{22}$ and $\phi_{33}$ . Since $L_{i},$ $i=1,2,3$ , are mutually non-isomorphic,
all $\phi_{ij},$ $1\leqq i,$ $j\leqq 3$ , are non-isomorphisms. Therefore, by what we have shown
above, $F$ is non-balanced.

Case (ii) In this case there are monomorphisms from $L_{3}$ into neither $L_{1}$

nor $L_{2}$ . Thus, for $\phi\in?\nu$, similarly as Case (i) we see that $\phi_{B3}$ is a non-
isomorphism. Hence $\phi_{ij}$ is a non-isomorphism if $i=3$ or $j=3$ . Taking this
into account, we have

$0=([x]_{1}+[x\theta]_{2}+[x\tau]_{3})\phi=[x\phi_{11}+x\theta\phi_{21}]_{1}+[x\phi_{12}+x\theta\phi_{22}]_{2}$

for all $x\in S(L)(L=L_{1}=L_{2})$ since $[x]_{1}+[x\theta]_{2}+[x\tau]_{3}=0$ . Thus

$x\phi_{11}+x\theta\phi_{21}=x\phi_{12}+x\theta\phi_{22}=0$

for all $x\in S(L)$ , and hence

$\phi_{11}^{*}+\theta\phi_{21}^{*}=\phi_{12}^{*}+\theta\phi_{22}^{*}=0$

as elements of $D_{1}(L)$ , where $(\cdot)^{*}$ denotes the element of $D_{1}(L)$ obtained by

the restriction of $(\cdot)$ to $S(L)$ . Since $\phi_{ij^{*}}\in D_{2}(L),$ $i,$ $j=1,2$ , and 1, $\theta$ are linearly
independent in $D_{1}(L)_{D_{2}(L)}$ , it follows that $\phi_{ij}^{*}=0$ so that $\phi_{ij},$ $i,$ $j=1,2$, are
non-isomorphisms. As a consequence, all $\phi_{ij},$ $1\leqq i,$ $j\leqq 3$ , are non-isomorphisms.

From this, we conclude that $F$ is non-balanced.
Case (iii) For the proof in this case we refer to that of [5, Lemma II. 2.2].

Suppose that $F$ is balanced. Then, by the fact shown above, there exists an
element $\phi\in\wp$ such that $\phi_{ij}$ : $L\rightarrow L$ is an isomorphism for some $i,$ $j,$ $1\leqq i,$ $f\leqq 3$ .
Then it is obvious that $[f_{i}u_{i}]_{i}\phi,$ $[f_{k}u_{k}]_{k}$ and $[f_{l}u_{l}]_{l}$ generate $I$ , where $k,$ $l$

are integers such that $\{], k, l\}=\{1,2,3\}$ (in fact $f_{i}=f_{k}=f_{\iota}=e_{\kappa}$). Put $m=$
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$[f_{i}u_{i}]_{i}$ . If $Rm\phi\neq Re_{\kappa}$ , then by a length argument we have that $ Rm\phi$ is a
direct summand of 1, a contradiction. Thus $Rm\phi\cong Re_{\kappa}$ . From this together
with the choice of $P$, we have $Ann(Rm\phi)\cap Ann(P)=0$ . It is easily seen that 1
is not cogenerated by $P$. Considering the assumption that $F$ is balanced, we
have

$Rm\phi C+\sum l^{P}=I$

by Corollary 1.2 (b). Since $\phi\in q\mu$ it follows $\sum l^{P}=I$ . But this does not occur
by the choice of $P$. As a consequence, we get a contradiction. The proof of
the proposition is completed.

4. To fulfill our aim, we have only to show the following proposition.

PROPOSITION 4.1. Let $R$ be a left serial ring. Suppose that $R$ is left QF-l.
Then $R$ satisfies the condition (E) for rings of left colocal type.

PROOF. We refer the proof of [5, Proposition II. 2.4]. By Propositions 2.3
and 3.1, $R$ satisfies the conditions (B), (C) and (D). Let $L$ be any uniserial left
R-module with $|L|=n\geqq 2$ . Put $D=D_{1}(L)$ and $D^{*}=D_{2}(L)$ . Then $\dim D_{D}.\leqq 2$

by (D). We want to show that $\dim D_{D*}=\dim_{D}D$ . This is trivial in case
$\dim D_{D}.=1$ . So assume that $\dim D_{D}.=2$ . Then, by Proposition 2.1, we may
assume that $L=Re_{\kappa}$ for some $ e_{\kappa}\in\Lambda$ .

Now take an element $\theta\in D\backslash D^{*}$ , and make the interlacing module by $\theta$ :
$S(L)\rightarrow S(L)$

$M=Int_{\theta}(L, L)=L\oplus L/H$ ,

where $H=\{(x, x\theta)|x\in S(L)\}$ . Let

$P=\oplus_{e_{\lambda}\in\Pi.e_{\lambda}\neq e_{\kappa}}Re_{\lambda}$

and put $G=M\oplus P$. Then $G$ is faithful, and thus $G$ is balanced by the hy-

pothesis that $R$ is left QF-l. This fact is needed below.
Let $e,u$ be a generator of $L$ , and consider the element $\overline{(0,e_{\kappa}u)}$ of $M$, where

we write $\overline{(x,y)}=(x, y)+H(x, y\in L)$ for an element of $M$. Then $Ann(\overline{(0,e_{\iota}u))}$

$\cap Ann(P)=0$ ; and, as easily seen, $M$ is not cogenerated by $P$. Thus, applying
Corollary 1.2 (b) to the module $G=M\oplus P$, we obtain

$(^{*})$ $\overline{(0,e_{\kappa}u)}C+\sum M^{P}=M$ ,

where $C=End(_{R}M)$ . It should be noted that $N^{n-1}M\psi=0$ where $cW$ is the
radical of $C$ , and thus we have $N^{n-1}\sum M^{P}=0$ by the choice of $P$.

Now let $\xi$ be any element of $D$ . Since $\{1, \theta\}$ is a basis of $D_{D}.$, we have
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$\xi=\rho^{*}+\theta\sigma^{*}$ for some $\rho^{*},$ $\sigma^{*}\in D^{*}$ . We extend $\sigma^{*}$ to a homomorphism $\sigma$ : $L\rightarrow L$ .
For the element $\overline{(0,e_{\kappa}u\sigma}$ ) of $M$, by $(^{*})$ there exist $\phi\in C$ and $w\in\sum M^{P}$ such that

$(\overline{0,e_{\kappa}u\sigma})=\overline{(0,e_{\kappa}u)}\phi+w$ .

Let $x$ be any element of $S(L)$ , and take an element $b\in N^{n-1}$ such that $be_{\kappa}u=$

$x$ . Then we have

$\overline{(0,x\sigma)}=\overline{(0,be_{\kappa}u\sigma)}=b\overline{(0,e_{\kappa}u\sigma)}$

$=b\overline{(0,e_{\kappa}u)}\phi+bw=\overline{(0,x)}\phi+bw$ .
Since $bw=0$ , we have

(:) $\overline{(0,x\sigma)}=\overline{(0,x}$) $\phi$ for any $x\in S(L)$ .
Now we lift $\phi$ to a homomorphism $\Phi$ : $L\oplus L\rightarrow L\oplus L$ , and write $\Phi$ as a matrix
$(\phi_{ij})$ , where $\phi_{ij}$ : $L\rightarrow L$ is a homomorphism. Then, noting (:) we get

$\overline{(0,x\theta\sigma})=\overline{(0,x\theta)}\phi=(\overline{-x,0)}\phi=\overline{(-x\phi_{1I},-x\phi_{12}})$

for $x\in S(L)$ , and thus

$\overline{(x\phi_{11},x\theta\sigma+x\phi_{12})}=0$ .
It follows that

$x\phi_{11}\theta=x\theta\sigma+x\phi_{12}$ for all $x\in S(L)$ ,

and this implies that
$\phi_{11}^{*}\theta=\theta\sigma^{*}+\phi_{12^{*}}$

as elements of $D$ , where $(\cdot)^{*}$ is the restriction of $(\cdot)$ to $S(L)$ . Hence $\xi$ is
expressed as

$\xi=(\rho^{*}-\phi_{12^{*}})+\phi_{11}^{*}\theta$ ,

and this implies that $\{1, \theta\}$ is also a basis of the left vector space $D*D$ . So
$\dim_{D}*D=\dim D_{D}.$ , as required. The proof of Proposition 4.1 is completed.

As a consequence, we have shown

THEOREM. Let $R$ be a left serial ring. If $R$ is left QF-l, then $R$ is a
ring of left colocal type.

It is known that as to the structure of indecomposable left modules, rings of
left colocal type does not differ from algebras of left colocal type (cf. Tachi-
kawa [15] and Sumioka [13]). For example, an indecomposable left module
over a ring of left colocal type is either uniserial or a module written as $K\nabla L$ .
Here, for submodules $K$ and $L$ of a module $M$, we denote the sum $K+L$ by

$KVL$ in case (1) $K$ and $L$ are uniserial modules with $|K|,$ $|L|\geqq 2$ , and (2) $ K\cap$
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$L=S(K+L)$ . It is not difficult to see that the argument in [8] is valid for
artinian rings. So, by Theorem, we know that the characterization of left
serial QF-l algebras stated in the introduction of [8] is true for artinian rings,
that is, we have

(CHARACTERIZATION OF LEFT SERIAL QF-l RINGS) Let $R$ be a left serial
ring. Then, in order that $R$ may be left QF-1, it is necessary and sufficient that
the following conditions are satisfied:

(1) $R$ is a ring of left colocal type (defined in Section 1).

(2) If Ne is projective, then every composition factor of $Re$ is isomorphic to

the socle of $Re_{\lambda}$ for some $ e_{\lambda}\in\Lambda$ , where $ e\in\Pi$ .
(3) For an indecomposable left R-module $K\nabla L$ , every composition factor of

$KVL$ is isomorphic to $Re_{\lambda}/Ne_{\lambda}$ for some $ e_{\lambda}\in\Lambda$ .
(4) For an indecomposable left R-module $K\nabla L$ such that $K$ is projective,

$L/S(L)$ is embedded into $Re_{\lambda}$ for some $ e_{\lambda}\in\Lambda$ .

REMARKS. (1) The module $F$ constructed in Section 3 is minimal faithful.
So, assuming that the largest lacing length $<2$ , in Proposition 3.1 “QF-l” can
be replaced by “weakly QF-l”. Here, weakly QF-l rings are those each of
whose minimal faithful modules is balanced (cf. [8]).

(2) By the condition (C), a ring of left colocal type is necessarily right
artinian. Thus, from Theorem we know that for a left serial ring $R$ if $R$ is
left QF-l, then $R$ is right artinian. Sumioka $[13, 14]$ showed that for a ring
$R$ of left colocal type, every indecomposable right R-module is constructed by

the dual method to the case of left modules. Thus, using the above charac-
terization of left serial QF-l rings and arguing dually to [8], we can show
without difficulty that if a ring of left colocal type is left QF-l, then it is also
right QF-l. So our Theorem yields the result that left QF-lness implies right
QF-lness for left serial rings. In general, the following questions arise.

QUESTIONS: (1) If a left artinian ring is QF-l, then is it also right artinian.$\rho$

(2) For artinian rings, is QF-lness left-right symmetry.$\rho$
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