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ON D-PARACOMRACT $\sigma$-SPACES

By

Takemi MIZOKAMI

1. Introduction.

Throughout this paper, all spaces are $T_{1}$ topological spaces and mappings
are continuous and onto. The letter $N$ denotes the set of natural numbers.

By a well-known theorem of Dowker, a Hausdorff space $X$ is paracompact

if and only if for every open cover a of $X$ there exists an a-mapping of $X$

onto a metrizable space. On the other hand, developable spaces are a nice
generalization of metrizable spaces. Pareek [P] called a space $X$ is d-para-
compact if for every open cover $d$ . there exists an $A$-mapping of $X$ onto a
developable space. Another nice generalization is $\sigma$ -spaces in the sense of $[0]$ .
Especially, paracompact $\sigma$ -spaces have important features in generalized metric
spaces and dimension theories. We notice that the following properties of the
class $C$ of paracompact $\sigma$ -spaces: (1) $C$ is closed under any countable product

and any subspace. (2) $C$ is closed under any image under perfect or closed
mappings. (3) $C$ is closed under the domination.

In this paper, we call a space $X$ is a $\sigma$ -space if $X$ has a $\sigma$ -locally finite
”closed” network, which is slightly different from the original definition in $[0]$ .
For regular spaces, both coincide with each other. The purpose of this paper
is to study the class of d-paracompact $\sigma$ -spaces, comparing with that of para-
compact $\sigma$ -spaces. We show that this class behaves well as to the subspaces
and perfect images, but not as to the others. We show that d-paracompact
spaces and s-paracompact spaces do not coincide, answering the question of
Brandenburg [ $B_{1}$ , Question 2].

2. D-paracompact $\sigma$-spaces.

DEFINITION 1. A space $X$ is called d-paracompact if for each open cover
$cU$ of $X$, ther exists a $cU$-mapping $fX$ onto a developable space $Y$ , where a V-
mapping $f$ means that there exists an open cover $\mathcal{V}$ of $Y$ such that $f^{-1}(\mathcal{V})$

$<q\int$ .
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DEFINITION 2. A family $cU$ of open subsets of a space $X$ is called dissectable
in $X[B_{1}]$ , if there exists a function $ D:V\times N\rightarrow$ { $closed$ subsets of $X$ }, called
the dissection of $V$ in $X$, satisfying the following:

(1) $U=\cup\{D(U, n):n\in N\}$ for every $U\in q;$ .
(2) For every $n\in N,$ $\{D(U, n):U\in v\}$ is a closure-preserving family of

closed subsets of $X$ and if $p\in\cup\{D(U, n):U\in cU\}$ , then

$\cap\{U\in V;p\in D(U, n)\}$

is a neighborhood of $p$ in $X$.

DEFINITION 3. A space $X$ is called d-expandable $[B_{2}]$ if for each discrete
family $\mathcal{F}$ of closed subsets and for each family $cU=\{U(F):F\in \mathcal{F}\}$ of open sub-
sets of $X$ such that $F\subset U(F)$ and $ U(F)\cap F^{\prime}=\emptyset$ if $F\neq F^{\prime},$ $F,$ $F^{\prime}\in \mathcal{F}$ , there exists
a dissectable family $\{V(F):F\in \mathcal{F}\}$ of $X$ such that $F\subset V(F)\subset U(F)$ for every
$F\in \mathcal{F}$ .

We call the pair $\langle \mathcal{F}, qj\rangle$ a d-pair of $X$.

DEFINITION 4. A space $X$ is called semistrati.fiable if there exists a func-
tion $ S:g\times N\rightarrow$ { $closed$ subsets of $X$ }, where $\mathcal{F}$ is the topology of $X$, such that:

(1) $U=\cup\{S[U, n]:n\in N\}$ for every $ U\in\sigma\tau$ .
(2) If $U,$ $V\in \mathcal{F}$ and $U\subset V$ , then $S[U, n]\subset S[V, n]$ for every $n$ .
The function $S$ is called the semistratification of $X$.

As seen easily, every $\sigma$ -space is semistratifiable. If we use the argument
in [SN], then it is obvious that a space $X$ is a $\sigma$ -space if and only if $X$ has a
$\sigma$ -discrete closed network if and only if $X$ has a $\sigma$ -closure-preserving closed
network. We list up the facts as to d-paracompact spaces and developable
spaces, which are known already and used later in our proofs.

FACT 1 $([B_{1}])$ . A space $X$ is developable if and only if $X$ has a $\sigma$ -dissec-
table base.

2 ([G]). A space $X$ is developable if and only if there exists a sequence
$\{^{c}U_{n} : n\in N\}$ of open covers of $X$ such that if $x\in U$ for a point $x$ of $X$ and an
open subset $U$ of $X$, then there exists $n\in N$ such that ord $(x, q]_{n}$ ) $=1$ and
$S(x, qJ_{n})\subset U$ .

3 ( $[B_{2}$ , Theorem 1]). A space $X$ is d-paracompact if and only if $X$ is $\theta-$

refinable and d-expandable if and only if every open cover of $X$ has a $\sigma$ -dis-
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sectable refinement.
4. Let $X$ be a semistratifiable space and $\mathcal{F}$ a closure-preserving family of

closed subsets of $X$. Then there exists a $\sigma$ -discrete closed cover $\mathcal{H}$ of $X$ such
that $H\cap F\neq\emptyset,$ $H\in \mathcal{H}$ and $F\in \mathcal{F}$ imply $H\subset F$. (The construction of $\mathcal{H}$ is essen-
tially stated in [SN].)

5 ( $[B_{1}$ , Theorem 2.3]). Every family of open subsets of a developable space
is dissectable in it.

Before stating Lemma 1, we give definitions of $(P_{i}),$ $i=1,$ $\cdots,$
$5$ . For a

space $X$, let $(P_{i})(i=1, \cdots, 5)$ be the following statements:
$(P_{1})$ $X$ is d-paracompact.
$(P_{2})$ For each d-pair $\langle \mathcal{F}, cU\rangle$ of $X$, there exists a $\mathcal{V}$-mapping of $X$ onto a
developable space, where

$\mathcal{V}=V\cup\{X-\cup \mathcal{F}\}$ .
$(P_{3})$ For each d-pair $\langle \mathcal{F}, \epsilon U\rangle$ of families of $X$, there exists a family $\{V(F):F\in \mathcal{F}\}$

of open subsets of $X$ and a sequence $\{^{c}U_{n} : u\in N\}$ of open covers of $X$ such
that for each $F\in \mathcal{F},$ $F\subset V(F)\subset U(F)$ and such that if $p\in V(F)$ , then there exists
$n\in N$ such that ord $(p, cU_{n})=1$ and $S(p, q]_{n}$ ) $\subset V(F)$ .
$(P_{4})$ For each d-pair $\langle \mathcal{F}, q]\rangle$ of families of $X$, there exists a pair collection
$\mathcal{P}=\cup\{\mathcal{P}_{n} ; n\in N\}$ of $X$ and a family $\{V(F):F\in \mathcal{F}\}$ of open subsets of $X$ such

that $F\subset V(F)\subset U(F)$ for each $F\in \mathcal{F}$ and such that $\mathcal{P}$ satisfies the following two
conditions:
(1) For each $n,$ $\{P_{1} : P=(P_{1}, P_{2})\in \mathcal{P}_{n}\}$ is a discrete family of closed subsets of
$X$ and $\{P_{2} : P\in \mathcal{P}_{n}\}$ is a family of open subsets of $X$.
(2) If $p\in V(F)$ , then there exists $P\in \mathcal{P}$ such that $p\in P_{1}\subset P_{2}\subset V(F)$ .
$(P_{5})$ $X$ is d-expandable.

For the later use, we give the term to such a sequence of open covers as
in $(P_{3})$ . Let $\{^{c}U_{n} : n\in N\}$ be a sequence of open covers of a space $X$ and $\mathcal{V}$ a
family of open subsets of $X$. Then we call $\{^{c}U_{n}\}$ the d-development for $\mathcal{V}$ if
for each point $p\in X$ and each $V\in \mathcal{V}$ with $p\in v$ , there exists $n\in N$ such that
ord $(p, tl_{n})=1$ and $S(p, cU_{n})\subset V$ . If $\{^{c}U_{n} : n\in N\}$ is a sequence of families of
open subsets of $X$ with this property for $\mathcal{V}$ , then we call \dagger $U_{n}$ } the d-quasi-
development for $\mathcal{V}$ .

LEMMA 1. For a space, $(P_{1})\rightarrow(P_{2})\rightarrow(P_{3})\rightarrow(P_{4})\rightarrow(P_{5})$ holds. Moreover, if $X$

is $\theta$ -refinable, then all $(P_{i})$ are equivalent.
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PROOF. $(P_{1})\rightarrow(P_{2})$ is straightforward from Definition 1. $(P_{2})\rightarrow(P_{3})$ follows
from the Fact 2. $(P_{3})\rightarrow(P_{4})$ : Let $\{qJ_{n} : n\in N\}$ be the sequence of open covers
in $(P_{3})$ . For each $n$ , let

$\mathcal{P}_{n}=\{(H(U), U):U\in cU_{n}, H(U)\neq\emptyset\}$ ,

where
$H(U)=U-\cup\{U^{\prime}\in q!_{n} : U^{\prime}\neq U\}$ .

Then it is easy to see that $\{\mathcal{P}_{n} ; n\in N\}$ has the required property. $(P_{4})\rightarrow(P_{5})$ :
For each d-pair $\langle \mathcal{F}, \eta\rangle$ , take $\mathcal{P}=\cup\{\mathcal{P}_{n} : n\in N\}$ and $\{V(F):F\in \mathcal{F}\}$ by $(P_{4})$ . We
define a function $ D;\mathcal{V}\times N\rightarrow$ { $closed$ subsets of $X$ } with $\mathcal{V}=\{V(F):F\in \mathcal{F}\}$ by

$ D(V(F), n)=\cup$ { $P_{1}$ : $P\in \mathcal{P}_{n}$ and $P_{2}\subset V(F)$ }.

Then $D$ is the dissection of $\mathcal{V}$ in $X$. If $X$ is $\theta$ -refinable, then $(P_{5})\rightarrow(P_{1})$ fol-
lows from Fact 3.

We weaken the statement $(P_{3})$ to the following:
$(P_{3}^{\prime})$ For each d-pair $\langle \mathcal{F}, qj\rangle$ of families of $X$, there exist a family $\mathcal{V}=$

$\{V(F):F\in \mathcal{F}\}$ of open subsets of $X$ and the d-quasidevelopment $\{^{c}U_{n} ; n\in N\}$

for $\mathcal{V}$ such that $F\subset V(F)\subset U(F)$ for every $F\in \mathcal{F}$ .

LEMMA 2. If $X$ is a perfect space, $i.e.$ , every closed subset is $G_{\delta}$ , then $(P_{3}^{\prime})$

implies that $X$ is d-expandable.

PROOF. Suppose we are given $\langle \mathcal{F}, V\rangle,$ $\{V(F):F\in \mathcal{F}\}$ and $\{^{c}U_{n} : n\in N\}$ in
$(P_{3}^{\prime})$ . For each $n$ , let

$\cup q]_{n}=\cup\{E_{nm} : m\in N\}$ ,

where each $E_{nm}$ is closed in $X$. For each $n,$ $m\in N$, define

$\mathcal{V}_{nm}=v_{n}\cup\{X-E_{nm}\}$ .

Then it is easy to see that $\{\mathcal{V}_{nm} ; n, m\in N\}$ is the d-development for $\{V(F)\}$

in $X$. Therefore, by the above, $X$ is d-expandable.

LEMMA 3. Let $X$ be a semistratifiable space. Then a family $cU$ of open
subsets of $X$ is dissectoble in $X$ if and only if there exists a d-development for
$cU$ in $X$.

PROOF. The only if part: Let $ D:^{c}U\times N\rightarrow$ { $closed$ subsets of $X$ } be the
dissection of $qj$ . Since for each $n,$ $\{D(U, n):U\in V\}$ is closure-preserving family

of closed subsets of $X$, by Fact 4, there exists a closed cover $\mathcal{F}=\cup\{\mathcal{F}_{nm} ; m\in N\}$

of $X$ such that each $\mathcal{F}_{nm}$ is discrete in $X$ and for each $F\in \mathcal{F}$ and each $U\in V$ ,
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$ D(U, n)\cap F\neq\emptyset$ implies $F\subset D(U, n)$ . For each $F\in \mathcal{F}_{nm}$ , $n,$ $m\in N$, choose an
open subset $V_{F}$ of $X$ such that

$F\subset V_{F}\subset\cap\{U\in V:F\subset D(U, n)\}$

and $ V_{F}\cap F^{\prime}=\emptyset$ for $F^{\prime}\in \mathcal{F}_{nm}$ with $F\neq F^{\prime}$ . Let

$\mathcal{V}_{nm}=\{V_{F} : F\in \mathcal{F}_{nm}\}\cup\{X-\cup \mathcal{F}_{nm}\},$ $n,$ $m\in N$ .
Then ti is easy to see that $\{\mathcal{V}_{nm} ; n, m\in N\}$ forms the d-development for $cU$ in
X. The if part is similar to the proof of $(P_{3})\rightarrow(P_{4})\rightarrow(P_{5})$ in Lemma 1.

LEMMA 4. If $cU$ is a $\sigma$ -dissectable family of a space $X$, then $cU$ is dissectable
in $X$.

PROOF. Let $\subset U=\cup\{^{c}U_{n} : n\in N\}$ , where each $\subset U_{n}$ is dissectable in $X$. Let
$D_{n}$ ; $ U_{n}\times N\rightarrow$ { $closed$ subsets of $X$ } be the dissection of $cU_{n}$ in $X$. Let $\phi:N\rightarrow N^{2}$

be a bijection. As a dissection $T$ of $\mathcal{V}$ , we define $T$ as follows:

$T(U, n)=\{D_{m}(U,k)if\phi(n)=(m\emptyset otherwise.k)$
and $U\in cU_{m}$

Obviously $T$ is the dissection of $\mathcal{V}$ in $X$.

LEMMA 5. If $cU$ is a dissectable family of a space $X$, then $\mathcal{V}=\{\cup V_{0} ; V_{0}\subset V\}$

is also dissectable in $X$.

PROOF. Let $ D;^{c}U\times N\rightarrow$ { $closed$ subsets of $X$ } be the dissection of $cU$ in $X$.
For each $V=\cup qJ_{0},$ $V_{0}\subset V$ , and each $n\in N$, let

$T(V, n)=\cup\{D(U, n):U\in V_{0}\}$ .

Then $T$ is obviously the dissection of $\mathcal{V}$ in $X$.

LEMMA 6. Let $X$ be a semistratifiable space and $cU=\{U_{\alpha} : \alpha\in A\}$ a point-

finite family of open subsets of X. If for each $\alpha\in A,$ $\mathcal{V}_{a}$ is a dissectable family

of the subspace $U_{\alpha}$ , then $\cup\{\mathcal{V}_{\alpha} : \alpha\in A\}$ is dissectable in $X$.

PROOF. Let $\Delta$ be the totality of

$\delta(p)=\{\alpha\in A:p\in U_{\alpha}\}$ , $p\in\cup v$ .
Then $\Delta=\cup\{\Delta_{n} : n\in N\}$ , where

$\Delta_{n}=\{\delta\in\Delta:|\delta|=n\}$ , $n\in N$ .
Let $\delta\in\Delta_{n},$ $n\in N$. Since by Lemma 4
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$\mathcal{V}(\delta)=\cup\{\mathcal{V}_{\alpha}$ : $\alpha\in\delta$ ) $|\cap\{U_{\alpha} : \alpha\in\delta\}$

is dissectable in $\cap\{U_{\alpha} : \alpha\in\delta\}$ ) by Lemma 3, there exists the d-development
$\{\mathcal{V}_{nm}^{\prime}(\delta):m\in N\}$ for $\mathcal{V}(\delta)$ in the $subspace\cap\{U_{a} : \alpha\in\delta\}$ . For each $n,$ $m,$ $k\in N$,

let
$\mathcal{V}_{nmk}(\delta)=\mathcal{V}_{nm}^{\prime}(\delta)|(X-S[\cup\{U_{\alpha} : \alpha\in A-\delta\}, k])$ ,

where $S[\phi, k]=\emptyset,$ $k\in N$, and let

$\mathcal{V}_{nmk}=\cup\{\mathcal{V}_{nmk}(\delta):\delta\in\Delta_{n}\}$ .
We shall show that $\{\mathcal{V}_{nmk} : n, m, k\in N\}$ is the d-quasidevelopment for
$\cup\{\mathcal{V}_{\alpha};\alpha\in A\}$ in $X$. Let $p\in V\in \mathcal{V}_{\alpha},$ $\alpha\in A$ . Since $cU$ is point-finite at $p$ ,
$\delta(p)\in\Delta_{n}$ for some $n$ . There exists $k\in N$ such that

$p\in S[\cap\{U_{\alpha} : \alpha\in\delta(p)\}, k]$ .

Take $m\in N$ such that ord $(p, \mathcal{V}_{nm}^{\prime}(\delta(p)))=1$ and $S(p, \mathcal{V}_{nm}^{\prime}(\delta(p)))\subset V$ . Suppose
$\delta\in\Delta_{n}$ . If $\delta-\delta(p)\neq\emptyset$ , then $p\not\in\cup \mathcal{V}_{nm}^{\prime}(\delta)$ because $\cup \mathcal{V}_{nm}^{\prime}(\delta)\subset U_{\alpha}$ for each $\alpha\in$

$\delta-\delta(p)$ . If $\delta(p)-\delta\neq\emptyset$ , then

$p\in S[\cup\{U_{\alpha} ; \alpha\in A-\delta\}, k]$ .

From these observations, we have

$ p\not\in\cup$ [ $\cup\{\mathcal{V}_{nmk}(\delta):\delta\neq\delta(p)$ and $\delta\in\Delta_{n}\}$ ].

Therefore ord $(p, \mathcal{V}_{nmk})=1$ and $s(p, \mathcal{V}_{nmk})\subset V$ . This completes the proof.

PROPOSITION 1. Let $X$ be a d-paracompact semistratifiable space and let $\mathcal{F}$

be a locally finite family of closed subsets of $X$ with its open expansion
$\{U(F):F\in \mathcal{F}\}$ . Then there exists a dissectable family $\{V(F):F\in \mathcal{F}\}$ of $X$ such
that $F\subset V(F)\subset U(F)$ for each $F\in \mathcal{F}$ .

PROOF. By Fact 4, from the cover $\mathcal{F}\cup\{X\}$ of $X$ we can construct a closed
cover $\mathcal{H}=\cup\{\mathcal{H}_{n} ; n\in N\}$ of $X$ such that each $\mathcal{H}_{n}$ is discrete in $X$ and such that
if $H\cap F\neq\emptyset,$ $F\in \mathcal{F}$ and $H\in \mathcal{H}$ , then $H\subset F$. Since for each $H\in \mathcal{H}$ ,

$\mathcal{F}(H)=\{F\in \mathcal{F} ; H\subset F\}$

is finite,
$G(H)=\cap\{U(F):F\in \mathcal{F}(H)\}$

is open in $X$. Since $X$ is d-paracompact, for each $n$ there exists a dissectable
family $cW_{n}=\{W(H):H\in \mathcal{H}_{n}\}$ of $X$ such that $H\subset W(H)\subset G(H)$ for each $H\in \mathcal{H}_{n}$ .
For each $F\in \mathcal{F}_{n}$ . For each $F\in \mathcal{F}$ , let
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$\mathcal{H}(F)=\{H\in \mathcal{H} ; H\subset F\}$ .

Then obviously $F=\cup \mathcal{H}(F)$ . For each $F\in \mathcal{F}$ , set

$V(F)=\cup\{W(H):H\in \mathcal{H}(F)\}$ .

Then $\{V(F):F\in \mathcal{F}\}$ is dissectable in $X$ by Lemmas 4 and 5. This completes
the proof.

LEMMA 7. Let $cU,$ $\mathcal{V}$ be dissectable families of $X,$ $Y$ , respectively. Then
$cU\times \mathcal{V}$ is dissectable in the product space $X\times Y$ .

PROOF. Let $D,$ $D^{\prime}$ be the dissections of $cU,$ $\mathcal{V}$ in $X,$ $Y$ , respectively. Let
$f:N\rightarrow N^{2}$ be a bijection. Define a function $T:(q]\times \mathcal{V})\times N\rightarrow\{closed$ subsets of
$X\times Y\}$ by

$T(U\times V, k)=D(U, n)\times D^{\prime}(V, n)$

for $U\in V,$ $V\in \mathcal{V},$ $k\in N$, where $f(k)=(n, m)$ . Then it is easy to see that $T$ is
the dissection of $cU\times \mathcal{V}$ in $X\times Y$ .

Let $cU,$ $\mathcal{V}$ be families of subsets of a space. Then we call that $cU$ is a
weak refinement of $\mathcal{V}$ if for every $U\in v$ there exists $V\in \mathcal{V}$ such that $U\subset V$ .

DEFINITION 5. $A$ space $X$ is called a P-space $[M_{1}]$ if for any family

$\{G(\alpha_{1}, \cdots, \alpha_{i}):\alpha_{1}, \cdots, \alpha_{i}\in A, i\in N\}$

of open subsets of $X$ such that

$G(\alpha_{1}, \cdots, \alpha_{i})\subset G(\alpha_{i}, \cdots, \alpha_{i}, \alpha_{i+1})$

for each $\alpha_{1},$
$\cdots$ , $\alpha_{i},$ $\alpha_{i+1}\in A,$ $i\in N$, there exists a family

$\{C(\alpha_{1}, \cdots, \alpha_{i});\alpha_{1}, \cdots, \alpha_{i}\in A,, i\in N\}$

of closed subsets of $X$ satisfying the following conditions:
(1) $C(\alpha_{1}, \cdots, \alpha_{i})\subset G(\alpha_{1}, \cdots, \alpha_{i})$ for each $\alpha_{1},$ $\cdots,$

$\alpha_{i}\in A,$ $i\in N$.

(2) For each sequence $\{\alpha_{i} : i\in N\}$ such that $X=\bigcup_{i}G(\alpha_{1}, \cdots, \alpha_{i})$ ,
then $X=\bigcup_{i}C(\alpha_{1}, \cdots, \alpha_{i})$ .

Obviously, every perfect space is a P-space. As for the product theorem
of d-paracompact spaces, we can settle the following theorem.

THEOREM 1. Let $X$ be a d-paracompact P-space and $Y$ a metacompact de-
velopable space. Then $X\times Y$ is d-paracompact.
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PROOF. Though the procedurc is due to the stereotyped method, we des-
cribe it to see how the properties of $Y$ are used.

Let $\mathcal{F}=\{F(\alpha):\alpha\in A\}$ be a $\sigma$ -discrete closed network for $Y$ . Since $Y$ is
metacompact, there exists a $\sigma- point- finite$ family $\{H(\alpha);\alpha\in A\}$ of open subsets

-of $X$ such that $F(\alpha)\subset H(\alpha)$ for each $\alpha\in A$ . Let $\mathcal{G}$ be an open cover of $X\times Y$ .
For each $\alpha_{1},$ $\cdots,$

$\alpha_{k}\in A,$ $k\in N$, let $\mathcal{G}(\alpha_{1}, \cdots , \alpha_{k})$ be the frmily of open rectangles
$U_{\lambda}\times V_{\lambda}$ such that $U_{\lambda}\times V_{\lambda}\subset G$ for some $G\in \mathcal{G}$ and

$\cap\{F(\alpha_{i}):i=1, \cdots , k\}\subset V_{\lambda}\subset\cap\{H(\alpha_{i}):i=1, \cdots, k\}$ .
Write

$\mathcal{G}(\alpha_{1}, \cdots, \alpha_{k})=\{U_{\lambda}\times V_{\lambda} : \lambda\in\Lambda(\alpha_{1}, \cdots, \alpha_{k})\}$ .
For each $\alpha_{1},$

$\cdots$ , $\alpha_{k}\in A,$ $k\in N$, let

$U(\alpha_{1}, \cdots, \alpha_{k})=\cup\{U_{\lambda} : \lambda\in\Lambda(\alpha_{1}, \cdots, \alpha_{k})\}$ .

Then $U(\alpha_{1}, \cdots, \alpha_{k})$ is an open subset of $X$ such that

$U(\alpha_{1}, \cdots, \alpha_{k})\subset U(\alpha_{1}, \cdots, \alpha_{k}, \alpha_{k+1})$ .

Since $X$ is a P-space, there exists a family

$\{C(\alpha_{1}, \cdots, \alpha_{k});\alpha_{1}, \cdots, \alpha_{k}\in A, k\in N\}$

of closed subsets of $X$, stated in Definition 5. By the d-paracompactness of $X$,

there exists a dissectable family $W(\alpha_{1}, \cdots, \alpha_{k})$ of open subsets of $X$ covering
$C(\alpha_{1}, \cdots, \alpha_{k})$ such that $W(\alpha_{1}, \cdots, \alpha_{k})$ is a weak refinement of { $U_{\lambda}$ : $\lambda\in\Lambda(\alpha_{1}$ ,

... , $\alpha_{k}$ )}. Without loss of generality, we can write $q\nu(\alpha_{1}, \cdots, \alpha_{k})$ as the indexed
family such that

$\subset W(\alpha_{1}$ , $\cdot$ .. $\alpha_{k})=\{W_{\lambda} : \lambda\in\Lambda(\alpha_{1}, \cdots, \alpha_{k})\}$ ,

where $W_{\lambda}\subset U_{\lambda}$ for each $\lambda$ . For each $\alpha_{1},$ $\cdots,$
$\alpha_{k}\in A,$ $k\in N$, set

$\mathscr{Q}(\alpha_{1}, \cdots, \alpha_{k})=\{W_{\lambda}\times V_{\lambda} : \lambda\in\Lambda(\alpha_{1}, \cdots, \alpha_{k})\}$ ,

$B_{k}=\cup\{\mathscr{Q}(\alpha_{1}, \cdots, \alpha_{k});\alpha_{1}, \cdots, \alpha_{k}\in A\}$ ,

$\mathscr{Q}=\cup\{\mathscr{Q}_{k} ; k\in N\}$ .

Then we can show that $B$ is a $\sigma$ -dissectable refinement of $\mathcal{G}$ . To show that
$\mathscr{Q}$ covers $X\times Y$ , let $(x, y)\in X\times Y$ .

Let $\{\alpha_{i} : i\in N\}$ be a sequence of $A$ such that $\{F(\alpha_{1})\cap\cdots\cap F(\alpha_{k}):k\in N\}$ is
a local network at $y$ in $Y$ . For this sequence, we easily see that $X=$

$\cup\{U(\alpha_{1}, \cdots , \alpha_{k}):k\in N\}$ . This implies $X=\cup\{C(\alpha_{1}, \cdots , \alpha_{k}):k\in N\}$ . Therefore
$x\in C(\alpha_{1}, \cdots, \alpha_{k})$ for some $k$ . Since $\{W_{\lambda} : \lambda\in\overline{\Lambda}(\alpha_{1}, \cdots, \alpha_{k})\}$ covers $C(\alpha_{1}, \cdots, \alpha_{k})$ ,
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$x\in W_{\lambda}$ for some $\lambda\in\Lambda(\alpha_{1}, \cdots , \alpha_{k})$ . Hence we have $(x, y)\in W_{\lambda}\times V_{\lambda}\in B$ . Let
$k\in N$ be fixed. For each $\alpha_{1},$ $\cdots$ $\alpha_{k}\in A,$ $\mathscr{Q}(\alpha_{1}, \cdots, \alpha_{k})$ is dissectable in $X\times Y$

because $\{V_{\lambda} : \lambda\in\Lambda(\alpha_{1}, \cdots, \alpha_{k})\}$ is dissectable in $Y$ by Fact 5, and we can use
Lemma 7. Observe that

$\cup \mathscr{Q}(\alpha_{1}, \cdots, \alpha_{k})\subset X\times(\cap\{H(\alpha_{i}):i=1, \cdots, k\})$

and that
$\{X\times(\cap\{H(\alpha_{i}):i=1, \cdots, k\}):\alpha_{1}, \cdots , \alpha_{k}\in A\}$

is a $\sigma- point- finite$ in $X\times Y$ . Hence by Lemma 6, $\mathscr{Q}_{k}$ is $\sigma$ -dissectable in $X\times Y$ ,

which means that $B$ is $\sigma$ -dissectable in $X\times Y$ . This completes the proof.

REMARK. The proof assures that the following is true: Let $X$ be a P-
space and $Y$ a metacompact developable space. If $X$ has the property that
every family $cU$ of open subsets of $X$ has a dissectable family $\mathcal{V}$ of $X$ such
that $\cup^{c}U=\cup \mathcal{V}$ and $\mathcal{V}$ is a weak refinement of $cU$ , then $X\times Y$ is d-para-
compact.

The properties of $Y$ used actually in the above proof is just that $Y$ is an
almost expandable space with a $\sigma$ -discrete closed network $\mathcal{F}$ such that each $F\in \mathcal{F}$

has a dissectable outer base in $Y$ , where a space $Y$ is called almost expandable
if for every locally finite family $\mathcal{H}$ of closed subsets of $Y$ there exists a point-
finite family $\{G(H):H\in \mathcal{H}\}$ of open subsets of $Y$ such that $H\subset G(H)$ for every
$H\in \mathcal{H}$ . But these properties give a sufficient condition for $Y$ to be a meta-
compact developable space.

PROPOSITION 2. A space $Y$ is a metacompact developable space if and only

if $Y$ is an almost expandable $\sigma$ -space with the property that every closed subset

of $Y$ has a dissectable outer base in $Y$ .

PROOF. The if part: Let $\cup\{\mathcal{F}_{i} ; i\in N\}$ be a closed network for $Y$ , where
each $\mathcal{F}_{i}$ is discrete in $Y$ . For each $i$ , there exists a point-finite family
$\{U(F):F\in \mathcal{F}_{i}\}$ of open subsets of $Y$ such that $F\subset U(F)$ for each $F\in \mathcal{F}_{i}$ . Let
$q](F)$ be a dissectable outer base of $F$ in $Y$ such that $\cup q$] $(F)\subset U(F)$ . Then by

Lemma 6, $\cup\{q/(F):F\in\bigcup_{i}\mathcal{F}_{i})$ is a $\sigma$ -dissectable base for $Y$ . By Fact 1, $Y$ is
developable. Since an almost expandable $\sigma$ -space is metacompact, $Y$ has the
required properties. The only if part is trivial.

COROLLARY. A space $X$ is metrizable if and only if $X$ is a paracompact $\sigma-$

space with the property that every closed subset of $X$ has a dissectable outer base
in $X$.
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We do not know whether a similar characterization is obtained for develop-
able spaces, removing the terms metacompact and almost expandable from Pro-
position 2. That is, we do not know whether every $\sigma$ -space (or even d-para-
compact $\sigma$ -space) with the same outer base property as in Proposition 2 is
developable.

The metacompactness of $Y$ cannot be dropped from Theorem 1. In fact,
there exist a La\v{s}nev space ( $i.e.$ , a closed image of a metric space) and a non-
metacompact developable space $Y$ such that $X\times Y$ is not d-paracompact, as seen
in Example 1. It is shown that a space which is dominated by paracompact
$\sigma$ -spaces is also a paracompact $\sigma$ -space [ $M_{2}$ and $0$]. But this is not true for
the case of d-paracompact $\sigma$ -spaces. To state the counterexample, we sketch
the space $Y(\kappa)$ . Lat $\kappa$ be a cardinal number and let $Y(\kappa)$ be a set

$Y(\kappa)=N\cup[0, \kappa)$ ,

which is topologized as follows: All points of $N$ are isolated and basic neigh-
borhoods of a point $\alpha\in[0, \kappa$) are sets of the form:

$\{\alpha\}\cup(N-F)$ ,

where $F$ is a finite subset of $N$. The space $Y(\kappa)$ is a developable space. In
fact, if $\{F_{k} : k\in N\}$ be the totality of finite subsets of $N$, then

$(u_{k}=\{\{n\} : n\in F_{k}\}\cup[\{\alpha\}\cup(N-F_{k});\alpha\in[0, \kappa)]$ , $k\in N$ ,

is a development for $Y(\kappa)$ .
We should remark that this space $Y(\kappa)$ is just $T_{1}$ , but unfortunately not

Hausdorff. This leads that our examples stated here are $T_{1}$ but not Hausdorff
since they contain $Y(\kappa)$ as the subspace. To simplify the examples, we prepare
the following proposition:

PROPOSITION 3. Let $z$ be a point of a space $Z$ with the uncountable character
$\tau$ . If $\kappa\geqq\tau$ , then the product space $Y(\kappa)\times Z$ is not d-paracompact.

PROOF. Assume the contrary to get a contradiction. Let { $W_{\alpha}$ : $\alpha<\tau$) be a
local base at $z$ in $Z$ . It is easily observed that

$\{(\alpha, z):\alpha\in[0, \kappa)\}$

is a discrete closed subset of $Y(\kappa)\times Z$ and that for each $\alpha<\tau,$ $(\{\alpha\}\cup N)\times W_{\alpha}$ is
an open neighborhood of $(\alpha, z)$ in $Y(\kappa)\times Z$ such that

$(\alpha^{\prime}, z)\not\in(\{\alpha\}\cup N)\times W(\chi$

if $\alpha\neq\alpha^{\prime},$
$\alpha,$

$\alpha^{\prime}<\tau$ . By the assumption that $Y(\kappa)\times Z$ is d-paracompact and by
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Lemma 1, there exist a family $\mathcal{V}=\{V_{\alpha} : \alpha<\tau\}$ of open subsets of $Y(\kappa)\times Z$ and
the d-development $\{^{c}U_{n} ; n\in N\}$ for $\mathcal{V}$ such that

$(\alpha, z)\in V_{\alpha}\subset(\{\alpha\}\cup N)\times W_{\alpha}$ , $\alpha<\tau$ .

Let $\Pi;Y(\kappa)\times Z\rightarrow Z$ be the projection. We show that

$\{\Pi(S((n, z), cU_{k})):n, k\in N\}$

is a local base at $z$ in $Z$ . Suppose $\alpha<\tau$ . We can take $n\in N$ such that ( $n,$
$ z\rangle$

$\in V_{\alpha}$ . Since $\{^{c}U_{n}\}$ is the d-development for $\mathcal{V}$ , there exists $k\in N$ such that
$S((n, z),$ $cU_{k}$ ) $\subset V_{\alpha}$ . This implies

$\Pi(S((n, z),$ $q]_{k}$ )) $\subset W_{\alpha}$ ,

which is a contradiction to the uncountability of the character $\tau$ of $z$ in $Z$ ,

This completes the proof.

For each $n\in N$, let $S_{n}$ be the copy of the subspace

$S=\{0\}\cup\{1,1/2,1/3, \cdots\}$

of the real line with the usual topology and $ S_{n}\cap S_{m}=\emptyset$ if $n\neq m$ . We write
by $S_{\omega}$ the quotient space obtained frour $\oplus\{S_{n} : n\in N\}$ by identifying all limit
points with a single point, which we denote by $0$ again. Then $S_{\omega}$ is known
to be a non-metrizable La\v{s}nev space. Obviously $0$ has a character $c$ less than
or equal to $c$ , where $c$ is the cardinality of the continuum.

EXAMPLE 1. There exist a non-metacompact developable space $X$ and a
La\v{s}nev space $Y$ such that $Z=X\times Y$ is not d-paracompact.

CONSTRUCTION. We take $X=Y(c)$ and $Y=S_{\omega}$ . Then by Proposition 3,
$X\times Y$ is not d-paracompact. $X$ is not metacompact because the open cover

$\{\{\alpha\}\cup N;\alpha\in[0, c)\}$

has no point-finite open refinement.

EXAMPLE 2. There exists a non-d-paracompact $\sigma$ -space which is dominated
by d-paracompact $\sigma$ -spaces.

CONSTRUCTION. Let $\rho$
$:\oplus\{S_{n} : n\in N\}\rightarrow S_{\omega}$ be the natural mapping. For

each $n\in N$, let $Z_{n}=Y(c)\times\rho(S_{n})$ . Since both $Y(c)$ and $\rho(S_{n})$ are developable
spaces, so is $Z_{n}$ . Let $Z$ be the same space $X\times Y$ as above. Then $Z$ is a non-
d-paracompact $\sigma$ -space, and is easily seen to be dominated by $\{Z_{n} : n\in N\}$ .
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For the proof of next lemma, we introduced the following notations: Let
$\zeta W$ be an open cover of a space $X$. For each $W\in w$ , let

$H(W)=W-\cup\{W^{\prime}\in\psi;W\neq W^{\prime}\}$ .
Then it is easy to see that

$\mathcal{H}(\mathfrak{N}^{l})=\{H(W):W\in q\mu\}$

is a discrete family of closed subsets of $X$. We define the subset $H(W)$ and
the family $q\mu^{(1)}$ by

$H(W)=\cup \mathcal{H}(W)$

and
’IV(1) $=\{W\in\psi;H(W)\neq\emptyset\}$ .

If $f$ is a closed mapping of a space $X$ onto a space $Y$ , for each open subset $U$

of $X$ we define an open subset $f^{*}(U)$ of $Y$ by

$f^{*}(U)=Y-f(X-U)$ .

LEMMA 8. Let $f:X\rightarrow Y$ be a perfect mapping. If $X$ is a perfect d-para-
compact space, then so is $Y$.

PROOF. Obviously $Y$ is perfect. By Fact 3, $X$ is $\theta$ -refinable. Since it is
well known that $\theta$ -refinability is preserved by perfect mappings, $Y$ is $\theta$ -refinable.
By Fact 3 again, it suffices to show that $Y$ is d-expandable. Let $\langle \mathcal{F}, q]\rangle$ be a
d-pair of families of $Y$ , where

$\mathcal{F}=\{F_{\lambda} : \lambda\in\Lambda\}$ , $v=\{U_{\lambda} : \lambda\in\Lambda\}$ .
Since $X$ is d-expanadable, for the d-pair $\langle f^{-1}(\mathcal{F}), f^{-1}(V)\rangle$ there exists a dis-
sectable family $\mathcal{V}=\{V_{\lambda} : \lambda\in\Lambda\}$ of $X$ and the d-development for $\mathcal{V}$ in $X$ such
that

$f^{-1}(F_{\lambda})\subset V_{\lambda}\subset f^{-1}(U_{\lambda})$ , $\lambda\in\Lambda$ .
By the same method as [$Bu_{2}$ , Lemma 3.1], we can construct a sequence
$\{W_{n} : n\in N\}$ of families of open covers of $X$ such that if $C\subset V_{\lambda}$ with $C$ com-
pact and $\lambda\in\Lambda$ , then there exists $n\in N$ such that $ C\cap H(q\mu_{n})\neq\emptyset$ and

$C\cap H(\psi_{n})\subset\psi\subset V_{\lambda}$

for some finite $W\subset \mathcal{V}_{n}^{(1)}$ . For each $t,$ $s\in N^{r},$ $r\in N$, with $t=(t_{1}, \cdots , t_{r}),$ $s=$

\langle $s_{1},$ $\cdots,$ $s_{r}$ ), define a family $W(t, s)$ of subsets of $X$ by the following:

$7\mu(t, s)=\{W(7\nu_{i}^{\prime\ldots}W_{r}^{\prime}):^{c}W_{i}^{\prime}\subset w_{s_{t}}^{(1)}$

and
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$|^{c}W_{i}^{\prime}|=t_{i}$ for each $i=1,$ $\cdots,$ $r$ },

where

$W(\wp_{1}^{\prime\ldots}W_{r}^{\prime})=\cup[\cup q\nu_{i}^{\prime}-\cup\{H(W_{s}^{(1)}j : j<i\};i\leqq r]$

Then $\{7\mu(t, s);t, s\in N^{r}, r\in N\}$ has the following properties:

(1) $W(t, s)$ is a family of open subsets of $X$.
(2) If $C\subset V_{\lambda}$ with $C$ compact and $\lambda\in\Lambda$ , then there exist $t,$ $s\in N^{r},$ $r\in N$,

such that $C$ is contained in only one element $W_{C}\in q\nu(t, s)$ and $W_{C}\subset V_{\lambda}$ .
We show (2). Let $s_{1}$ be the first number such that there exists a finite

minimal subfamily $\eta$’ of $\psi_{s_{1}}^{(1)}$ such that

$\emptyset\neq C\cap H(7V_{s_{i}})\subset\cup w_{1}^{\prime}\subset V_{\lambda}$ .
Let $|W_{1}^{\prime}|=t_{1}$ and

$C_{2}=C-\cup\psi_{1}^{\prime}$

Let $s_{2}$ be the first number such that there exists a finite minimal subfamily $7t^{l_{2}^{\prime}}$

of $7\nu_{s_{2}}^{(1)}$ such that
$\emptyset\neq C_{2}\cap H(\mathfrak{N}^{1_{s_{2}}})\subset\cup 9\nu_{2}^{\prime}\subset V_{\lambda}$ .

Let $|?V_{2}|=r_{2}$ . Repeating this process and using the compactness of $C$ , we can
obtain two finite systems

$s=(s_{1}, \cdots, s_{r})$ , $t=(t_{1}, \cdots, t_{r})\in N^{r}$

for some $r\in N$ such that

$C\subset W(\psi_{1}^{\prime}, \cdots, \psi_{r}^{l})=W_{C}\subset V_{\lambda}$ and $W_{C}\in?\nu(t, s)$ .
Then $W_{C}$ is seen to be the required one by the seme argument as in [Bu,

Lemmas 4.2 and 4.3]. Thus (2) is satisfied. Set

$\mathcal{G}(t, s)=\{f^{*}(W):W\in W(t, s)\}$

for each $t,$ $s\in N^{r},$ $r\in N$. It is easy to see that

$\{\mathcal{G}(t, s);t, s\in N^{r}, r\in N\}$

forms a d-quasidevelopment for $\{f^{*}(V_{\lambda});\lambda\in\Lambda\}$ in $Y$ . Since $Y$ is perfect, $Y$ is
d-expanadable by Lemma 2. This completes the proof.

THEOREM 2. Let $f$ be a perfect mapping of a space $X$ onto a space Y. If
$X$ is a d-paracompact $\sigma$ -space, then so is $Y$.

But closed mappings do not have this property.
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EXAMPLE 3. There exists $a^{-}{}_{\iota}Closed$ mapping of d-paracompact $\sigma$ -space $\hat{X}$

onto a non-d-paracompact $\sigma$ -space $Z$ .

CONSTRUCTION. We show that the same space $Z$ as in Example 1 is the
image of a d-paracompact $\sigma$ -space $\hat{X}$ under a closed mapping. For each $n\in N$,

let $S_{n}$ be the same as in the preceding section to Example 1, and let $Z_{n}^{\prime}$ be
the set $Y(c)\times S_{n}$ . Set

$\hat{X}=\cup\{Z_{n}^{\prime} : n\in N\}\cup Y(c)$ .
Topology of $\hat{X}$ is defined as follows: For each $n$ , each point $p\in Z_{n}^{\prime}$ has a
neighborhood $V$ in $\hat{X}$ if and only if $V\cap Z_{n}^{\prime}$ is a neighborhood of $p$ in $Z_{n}^{\prime}$ .
Each $n\in N\subset Y(c)$ is isolated. For each $\alpha\in[0, c$ ) has a neighborhood base

{ $\{\alpha\}\cup(N-F)\cup(\cup\{(\{\alpha\}\cup(N-F))\times W_{k} : k\geqq m\})$ :

$W_{k}$ is a neighborhood of $0$ in $S_{k}$ for each $k\geqq m$ ,

$F$ is a finite subset of $N$ and $m\in N$ }.

It is easy to see that $Y(c)$ is a $\sigma$ -discrete closed subset of $\hat{X}$ and each $Z_{n}^{\prime}$ is a
developable clopen subspace of $\hat{X}$. Therefore $Z_{n}^{\prime},$ $n\in N$, has a $\sigma$ -ciscrete closed
(in $\hat{X}$ ) network $\mathcal{F}_{n}$ for $Z_{n}^{\prime}$ . Thus we have a $\sigma$ -discrete closed network

$\cup\{\mathcal{F}_{n} ; n\in N\}\cup\{\{p\}:p\in Y(c)\}$ .

for $\hat{X}$, proving that $\hat{X}$ is a $\sigma$ -space. To see that $\hat{X}$ is d-paracompact, let $q$] be
an open cover of $X$. For each $n\in N,$ $\mathcal{V}_{n}=V|Z_{n}^{\prime}$ is a dissectable (in $X$ ) weak
refinement of $cU$ because $Z_{n}^{\prime}$ is a clopen developable subspace of $\hat{X}$. For each
$p\in Y(c)$ , we take a basic neighborhood $V(p)$ in $\hat{X}$, as defined just above, such
that $V(p)\subset U$ for some UE $qf$ . Since for each $n$ the family $\{V(p):p\in Y(c)\}|Z_{n}^{\prime}$

is dissectable in $\hat{X}$ and since $q\not\in V(p)$ if $p\neq q$ and $p,$ $q\in Y(c)-N,$ $\mathcal{V}_{0}=$

$\{V(p):p\in Y(c)\}$ is dissectable in $\hat{X}$. Hence

$\mathcal{V}_{0}\cup\cup\{\mathcal{V}_{n} ; n\in N\}$

is a $\sigma$ -didissectable refinement of $qj$ . Let $g:\hat{X}\rightarrow Z$ be a mapping defined by

$g|(\cup\{Z_{n}^{\prime} : n\in N\})=f$

and
$g(p)=(p, 0)$ if $p\in Y(c)$ ,

where $f$ is a natural mapping of $\oplus\{Z_{n}^{\prime} : n\in N\}$ onto Z. $g$ is obviously con-
tinuous and onto. We show that $g$ is a closed mapping. For the purpose, it
suffices to show that for each point $p\in Y(c)$ and each open set $V$ of $\hat{X}$, if
$g^{-1}((p, O))\subset V$ , then there exists a neighborhood $0$ of $(p, 0)$ in $Z$ such that
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$g^{-1}(O)\subset V$ . If $p=n\in N$, then by the definition of the topology of $\hat{X}$, we can
easily take neighborhoods $W_{k}$ of $0$ in $S_{k},$ $k\in N$, such that

$g^{-1}((n, 0))\subset\cup\{\{n\}\times W_{k} : k\in N\}\cup\{n\}\subset V$ ,

Let
$O=f(\cup\{\{n\}\times W_{k} : k\in N\})$ .

Then $0$ is a neighborhood of $(n, 0)$ in $Z$ such that $g^{-1}(O)\subset V$ . Let $p=\alpha\in[0, c$ ).

Then there exist a finite subset $F$ of $N$ and neighborhoods $W_{k}$ of $0$ in $S_{k}$ ,

$k\in N$, such

$g^{-1}((\alpha, 0))\subset\{\alpha\}\cup(N-F)\cup(\cup\{(\{\alpha\}\cup(N-F))\times W_{k} : k\in N\})\subset V$ ,

Letting
$O=f(\cup\{(\{\alpha\}\cup(N-F))\times W_{k} : k\in N\})$ ,

we obtain a neighborhood $O$ of $(\alpha, 0)$ in $Z$ such that $g^{-1}(O)\subset V$ . This completes

the proof of the closedness of $g$ .
We do not know whether the perfectness of $X$ can be dropped from Lemma

8. That is, it is still open whether perfect mappings preserve d-paracompact-
ness $[C, 181p]$ , [ $B_{2}$ , Question 1]. The next gives a sufficient condition for a
closed image of a d-paracompact $\sigma$ -space to be a d-paracompact $\sigma$ -space.

THEOREM 3. Let $f:X\rightarrow Y$ be a closed mapping and let $Y$ be a first countable
space. If $X$ is a d-paracompact $\sigma$ -space, then so is $Y$.

PROOF. Since $Y$ is obviously a $\sigma$ -space, we show that $Y$ is d-expandable.

Let $\langle \mathcal{F}, cU\rangle$ be a d-pair of families of $Y$ . Then for the d-pair $\langle f^{-1}(\mathcal{F}), f^{-1}(q])\rangle$

of families of a d-paracompact space $X$, by Lemma 1, there exist families

$\mathcal{V}=$ { $V(F)$ : FE $\mathcal{F}$ }, $\mathcal{H}=\{H_{\alpha} : \alpha\in A\}$ , $w=\{W_{\alpha} : \alpha\in A\}$

of subsets of $X$ satisfying the following:

(1) For each $F\in \mathcal{F},$ $V(F)$ is an open subset of $X$ such that

$f^{-1}(F)\subset V(F)\subset f^{-1}(U(F))$ .

(2) $A=\cup\{A_{n} : n\in N\}$ and for each $n,$ $A_{n}\subset A_{n+1}$ ,

$\mathcal{H}_{n}=\{H_{\alpha} : \alpha\in A_{n}\}$ is a locally finite family of closed subsets and $cW_{n}=$

$\{W_{\alpha} : \alpha\in A_{n}\}$ a family of open subsets of $X$ such that $H_{\alpha}\subset W_{\alpha},$ $\alpha\in A_{n}$ .

(3) For each $F\in \mathcal{F}$ and each point $p\in X$, if $p\in V(F)$ , then there exists
$\alpha\in A$ such that

$p\in H_{\alpha}\subset W_{\alpha}\subset V(F)$ .
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Moreover, since $X$ is a $\sigma$ -space, without loss of generality we can assume that

(4) $\{H_{\alpha} : \alpha\in A\}$ satisfies that for each $F\in \mathcal{F}$ and each poitn $p\in V(F)$ , the
family $\{H_{\alpha} : p\in H_{\alpha}\subset W_{\alpha}\subset V(F), \alpha\in A\}$ is a local network at $p$ in $X$.

For each $n\in N$, let $Y_{n}^{\prime}$ be the set of all points $y\in Y$ such that ord $(y, f(\mathcal{H}_{n}))$

is infinite. Then each $Y_{n}^{\prime}$ is a $\sigma$ -discrete closed subset of $Y$ because $Y$ is a
first countable space and $f(\mathcal{H}_{n})$ is a hereditarily closure-preserving family of
closed subsets of $Y$ . Set

$Y_{1}=\cup\{Y_{n}^{\prime} : n\in N\}$ , $Y_{0}=Y-Y_{1}$ .

For each $n$ , let $\Delta_{n}$ be the totality of finite subsets $\delta$ of $A_{n}$ such that $ H(\delta)\subset$

Int $W(\delta)$ , where
$H(\delta)=\cap\{f(H_{a}):\alpha\in\delta\}$ ,

$W(\delta)=c_{j^{t}}\{f(W_{\alpha}):\alpha\in\delta\}$ .

Claim 1: For each point $p\in Y_{0}$ and each $F\in \mathcal{F}$ , if $p\in f^{*}(V(F))$ , then there
exists $\delta\in\Delta_{n},$ $n\in N$, such that

$p\in H(\delta)\subset IntW(\delta)\subset U(F)$ .

Proof of the claim: Let $p\in Y_{0}$ and for each $n$ , let

$\delta_{n}=$ { $\alpha\in A_{n}$ : $ f^{-1}(p)\cap H_{a}\neq\emptyset$ and $W_{\alpha}\subset V(F)$ }.

Then obviously $p\in H(\delta_{n})\subset W(\delta_{n})\subset U(F)$ for each $n$ . First we show the fol-
lowing :

(5) $p\in IntW(\delta_{n})$ for some $n$ .

Throughout the proof of the theorem, for each $y\in Y$ let $\{O_{n}(y):n\in N\}$ be the
decreasing local base of $y$ in $Y$ . Assume the contrary to (5). Then

$ O_{n}(p)-W(\delta_{n})\neq\emptyset$ , $n\in N$ .
Take a sequence $\{p_{n} ; n\in N\}$ of points of $Y$ such that

$p_{n}\in O_{n}(p)-W(\delta_{n})$ , $n\in N$ .
Since $f$ is a closed mapping, ($f^{-1}(p_{n}):n\in N$ } clusters at a point of $f^{-1}(p)$ .
Hence by (3) there exists $\alpha\in\delta_{n},$ $n\in N$ such that $p\in f(H_{a})$ and $f(W_{\alpha})$ contains
infinitely many $p_{n}$ . But this is a contradiction to the fact that $p_{k}\not\in W(\delta_{n})$ ,
$k\geqq n$ . Thus we have $ p\in$ Int $W(\delta_{n})$ for some $n$ .

Next, we show the following:

(6) $H(\delta_{n})-\{p\}\subset IntW(\delta_{n})$ for some $n$ .
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Assume the contrary. If $H(\delta_{n})-\{p\}$ –Int $W(\delta_{n})$ is finite for some $n$ , then by

(4) we easily have
$H(\delta_{m})-\{p\}\subset 1ntW(\delta_{m})$

for some $m>n$ . Therefore we can assume that

$H(\delta_{n})-\{p\}$ –Int $W(\delta_{n})$

is infinite for each $n$ . Take a sequence $\{p_{n} : n\in N\}$ of points of $Y$ such that
for each $n$

$p_{n}\in H(\delta_{n})-\{p\}$ –Int $W(\delta_{n})-\{p_{1}, \cdots, p_{n-1}\}$ .
Since $Y$ is a Fr\’echet space, for each $n$ there exists a convergent sequence $Z(n)$,

to $p_{n}$ in $Y$ such that
$ Z(n)\cap W(\delta_{n})=\emptyset$ .

Since $p$ has the decreasing local base $\{O_{n}(p):n\in N\}$ in $Y$ , by (4) $p_{n}\rightarrow p$ as
$ n\rightarrow\infty$ . Therefore by Fr\’echet-ness of $Y$ , we can take a sequence $Z\subset\cup\{Z(n)$ :
$n\in N\}$ such that $z\rightarrow p$ . Since $p_{n}\neq p,$ $n\in N,$ $ Z\cap Z(n)\neq\emptyset$ for infinitely many
$n$ . The closedness of $f$ implies that there exists $\alpha\in\delta_{n},$ $n\in N$, such that $f(W_{\alpha})$

contains infinitely many points of $Z$ , but this is a contradiction, proving (6).

We observe by (2) that $\{H(\delta_{n}):n\in N\},$ $\{W(\delta_{n}):n\in N\}$ are decreasing, in-
creasing, respectively, families of subsets of $Y$ . By (5) and (6), we can con-
clude Claim 1.

Claim 2: There exists a pair collection

$\mathcal{P}_{1^{\prime}}=\{(F_{\beta}, U_{\beta}):\beta\in B_{1}\}$

of $Y$ satisfying the following conditions:

(7) $\{F_{\beta} : \beta\in B_{1}\}$ is a $\sigma$ -discrete family of closed subsets of $Y$ and for each
$\beta\in B_{1},$ $U_{\beta}$ is an open subset of $Y$ such that $F_{\beta}\subset U_{\beta}$ .

(8) For each $p\in Y$ and each $F\in \mathcal{F}_{f}$ if $p\in f^{*}(V(F))$ , then there exists $\beta\in B_{1}$

such that
$p\in F_{\beta}\subset U_{\beta}\subset U(F)$ .

The proof of the claim: For each $n,$ $m\in N$, let $\mathcal{P}_{nm}$ be the pair collection
of $Y$

$\mathcal{P}_{nm}=\{(\{y\}, O_{m}(y)):y\in Y_{n}^{\prime}\}$

and set
$\mathcal{P}^{\prime}=\cup\{\mathcal{P}_{nm} ; n, m\in N\}$ .

Obviously $\mathcal{P}^{\prime}$ satisfies (7) and (8) for each point $p\in Y_{1}$ . Using the fact that $Y$
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is semistratifiable, by the method of Fact 4, from the closure-preserving family
$\{H(\delta):\delta\in\Delta_{n}\}$ of closed subsets of $Y$ , we can construct a $\sigma$ -discrete closed
cover $\{K_{\lambda} : \lambda\in\Lambda_{n}\}$ of $Y$ such that $K_{\lambda}\cap H(\delta)\neq\emptyset,$ $\lambda\in\Lambda_{n}$ and $\delta\in\Delta_{n}$ imply $ K_{\lambda}\subset$

$H(\delta)$ .
Suppose that $\lambda\in\Lambda_{n}$ has the property that

$\Delta_{n}(\lambda)=\{\delta\in\Delta_{n} : K_{\lambda}\subset H(\delta)\}$

is finite. Take an open subset $G_{\lambda}$ of $Y$ such that

$K_{\lambda}\subset G_{\lambda}\subset\cap\{IntW(\delta):\delta\in\Delta_{n}(\lambda)\}$ .
Write

$\mathcal{P}^{\prime}\cup$ { $(K_{\lambda},$ $G_{\lambda}):\lambda\in\Lambda_{n}$ with $\Delta_{n}(\lambda)$ finite, $n\in N$ }

$=\mathcal{P}_{1}^{\prime}$

$=\{(F_{\beta}, U_{\beta}):\beta\in B_{1}\}$ .

Then by Claim 1, it is easy to see that $\mathcal{P}_{1}^{\prime}$ satisfies the conditions (7) and (8).

This proves Claim 2.
Now, write $B_{1}=\cup\{B_{1n} : n\in N\}$ , where for each $n\{F_{\beta} : \beta\in B_{1n}\}$ is discrete

in $Y$ . We apply countably many times the arguments of Claims 1 and 2 to the
countable d-pairs

$\langle\{F_{\beta} : \beta\in B_{1n}\}, \{U_{\beta} : \beta\in B_{1n}\}\rangle$ , $n\in N$ ,

of families of $Y$ . Consequently, we get pair collections

$\mathcal{P}_{1}=\{(F_{\beta}, V_{\beta}):\beta\in B_{1}\}$

and
$\mathcal{P}_{2}^{\prime}=\{(F_{\beta}, U_{\beta}):\beta\in B_{2}\}$

of $Y$ satisfying the following conditions:

(9) For each $\beta\in B_{1},$ $V_{\beta}$ is an open subset of $Y$ such that $F_{\beta}\subset V_{\beta}\subset U_{\beta}$ .
(10) $\{F_{\beta} : \beta\in B_{2}\}$ is a $\sigma$ -discrete family of closed subsets of $Y$ and for each

$\beta\in B_{2},$ $U_{\beta}$ is an open subset of $Y$ such that $F_{\beta}\subset U_{\beta}$ ,

(11) For each point $p\in Y$ and each $\beta_{1}\in B_{1}$ , if $p\in V_{\beta 1}$ , there exists $\beta_{2}\in B_{2}$

such that
$p\in F_{\beta_{2}}\subset U_{\beta_{2}}\subset U_{\beta_{1}}$ .

For each $F\in \mathcal{F}$ , let $W_{1}(F)=f^{*}(V(F))$ . Then $W_{1}(F)$ is an open subset of $Y$ such
that

$F\subset W_{1}(F)\subset U(F)$ , $F\in \mathcal{F}$ .
For each $F\in \mathcal{F}$ , set
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$W_{2}(F)=W_{1}(F)\cup(\cup\{V_{\beta}$ : $\beta\in B_{1}$ ,

$ F_{\beta}\cap W_{1}(F)\neq\emptyset$ and $U_{\beta}\subset U(F)$ }.

Then $W_{2}(F)$ is an open subset of $Y$ such that

$F\subset W_{1}(F)\subset W_{2}(F)\subset U(F)$ , $F\in \mathcal{F}$ .
Moreover, by (8) and (9), it is obvious that:

(12) For each point $p\in Y$ and each $F\in \mathcal{F}$ , if $p\in W_{1}(F)$ , then there exists
$\beta\in B_{1}$ such that

$p\in F_{\beta}\subset V_{\beta}\subset W_{2}(F)$ .

From the definition of $W_{2}(F)$ and (11) it follows that:

(13) For each point $p\in Y$ and each $F\in \mathcal{F}$ , if $p\in W_{2}(F)$, then there exists
$\beta\in B_{2}$ such that

$p\in F_{\beta}\subset U_{\beta}\subset U(F)$ .
Again, we apply countably many times the arguments of Claims 1 and 2 to the
countable d-pairs contained in $\mathcal{P}_{2}^{\prime}$ and get two pair collections

$\mathcal{P}_{2}=\{(F_{\beta}, V_{\beta}):\beta\in B_{2}\}$

and
$\mathcal{P}_{3}^{\prime}=\{(F_{\beta}, U_{\beta}):\beta\in B_{3}\}$

of $Y$ satisfying the conditions corresponding to (9). (10) and (11) with $B_{1},$ $B_{2}$

replaced by $B_{2},$ $B_{3}$ , respectively. For each $F\in \mathcal{F}$ , let

$W_{3}(F)=W_{2}(F)\cup(\cup\{V_{\beta}$ : $\beta\in B_{2},$ $ F_{\beta}\cap W_{2}(F)\neq\emptyset$

and $U_{\beta}\subset U(F)$ }).

Then for each FE $\mathcal{F},$ $W_{3}(F)$ is an open subset of $Y$ suoh that

$F\subset W_{1}(F)\subset W_{2}(F)\subset W_{3}(F)\subset U(F)$ .
It is easily seen that:
(14) For each point $p\in Y$ and each $F\in \mathcal{F}$ , if $p\in W_{2}(F)$ , then there exists

$\beta\in B_{2}$ such that
$p\in F_{\beta}\subset V_{\beta}\subset W_{3}(F)$ .

Repeating these processes, we can easily settle the following claim:

Claim 3: For each $F\in \mathcal{F}$ , there exists a sequence $\{W_{n}(F):n\in N\}$ of open
subsets of $Y$ such that

$F\subset W_{1}(F)\subset W_{2}(F)\subset\cdots\subset U(F)$
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and at the same time there exists a pair collection

$\mathcal{P}_{n}=\{(F_{\beta}, V_{\beta}):\beta\in B_{n}\}$

of $Y$ satisfying the following conditions:

(15) For each point $p$ by $Y$ , each $F\in \mathcal{F}$ and each $n\in N$, if $p\in W_{n}(F)$ ,

then there exists $\beta\in B_{n}$ such that

$p\in F_{\beta}\subset V_{\beta}\subset W_{n+1}(F)$ .
Set

$W(F)=\cup\{W_{n}(F):n\in N\}$ , $F\in \mathcal{F}$

and
$\mathcal{P}=\cup\{\mathcal{P}_{n} ; n\in N\}$

$=\{(F_{\beta}, V_{\beta}):\beta\in B\}$ ,

where $B=\cup\{B_{n} : n\in N\}$ . Then obviously, for each $F\in \mathcal{F},$ $W(F)$ is an open
subset of $Y$ such that $F\subset W(F)\subset U(F)$ . By the construction, it is true that for
each point $p\in Y$ and each $F\in \mathcal{F}$ , if $p\in W(F)$ , then there exists $\beta\in B$ such that

$p\in F_{\beta}\subset V_{\beta}\subset W(F)$ .
The family $\{F_{\beta} : \beta\in B\}$ is a $\sigma$ -discrete one of closed subsets of $Y$ . Therefore
by Lemma 1, $Y$ is d-expandable. This completes the proof of the theorem.

PROPOSITION 4. Let $f:X\rightarrow Y$ be a closed mapping and $Y$ a first countable
space. If $X$ is a d-paracompact semistratifiable space having the property that
every closed subset of $X$ has a dissectable outer base in $X$, then every closed sub-
set of $Y$ has a dissectable outer base in $Y$.

PROOF. We proceed referring to the proof just above. Let $M$ be a closed
subset of Y. Then by the assumption $f^{-1}(M)$ has a dissectable outer base $\mathcal{V}$

in $X$. By the proof of Lemma 1, there exist families

$\mathcal{H}=\{H_{\alpha} : \alpha\in A\}$ , $w=\{W_{\alpha} : \alpha\in A\}$

of subsets of $Y$ satisfying the following (3) besides (2) in the proof above:

(3) For each $V\in \mathcal{V}$ and point $p$ of $X$, if $p\in V$ , then there exists
$\alpha\in A$ such that

$p\in H_{\alpha}\subset W_{a}\subset V$ .
Let $Y_{n}^{\prime},$ $Y_{1},$ $Y_{0}$ are the same as above. For each $n$ , let $\Delta_{n}$ be the totality of
finit subsets $\delta$ of $A_{n}$ such that $ H(\delta)\cap IntW(\delta)\neq\emptyset$ , where
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$H(\delta)=\cap\{f(H_{\alpha}):\alpha\in\delta\}$ ,

$W(\delta)=\cup\{f(W_{\alpha}):\alpha\in\delta\}$ .

By the same argument as in the proof of (5) above, we can show the following:

(4) For each $p\in Y_{0}$ and each $V\in \mathcal{V}$ , if $p\in f^{*}(V)$ , then there exists
$\delta\in\Delta_{n},$ $n\in N$, such that

$p\in H(\delta)\cap IntW(\delta)\subset f(V)$ .
Claim 1: There exists a pair collection

$\mathcal{P}_{1}^{\prime}=\{(F_{\beta}, U_{\beta}):\beta\in B_{1}\}$

of $Y$ satisfying the following conditions:

(5) $\{F_{\beta} : \beta\in B_{1}\}$ is a $\sigma$ -discrete family of closed subsets of $Y$ and if $\beta\in B_{1}$ ,

then $U_{\beta}$ is an open subset of $Y$ such that $F_{\beta}\subset U_{\beta}$ .
(6) For each point $p\in Y$ and each $V\in \mathcal{V}$ , if $p\in f^{*}(V)$ , then there exists

$\beta\in B_{1}$ such that

$p\in F_{\beta}\subset U_{\beta}\subset f(V)$ .

The proof of the claim: Since $Y$ is semistratifiable, for each $\delta\in\Delta_{n},$ $n\in N$,

Int $W(\delta)$ is a countable union of closed subsets $F_{m}(\delta),$ $m\in N$. Note that

$\mathcal{H}(n, m)=\{H(\delta)\cap F_{m}(\delta):\delta\in\Delta_{n}\}$

is a closure-preserving family of closed subsets of $Y$ . Therefore by the method
of Fact 4, from $\mathcal{H}(n, m)$ . $n,$ $m\in N$, we can construct $\sigma$ -discrete closed covers
$\{K_{\lambda} : \lambda\in\Lambda_{nm}\}$ , of $Y,$ $n,$ $m\in N$. For each $\lambda\in\Lambda_{nm},$ $n,$ $m\in N$ with the property

that
$\Delta_{nm}(\lambda)=\{\delta\in\Delta_{nm} : K_{\lambda}\subset F_{m}(\delta)\}$

is finite, take an open subset $G_{\lambda}$ of $Y$ such that

$K_{\lambda}\subset G_{\lambda}\subset\cap\{IntW(\delta):\delta\in\Delta_{nm}(\lambda)\}$ .

Let $\mathcal{P}^{\prime}$ be the same pair collection of $Y$ as in the proof of Claim 2 above.
Then we can easily see that

$\mathcal{P}_{1}^{\prime}=\mathcal{P}^{\prime}\cup\{(K_{\lambda}, G_{\lambda}):\lambda\in\cup\{\Lambda_{nm} : n, m\in N\}\}$

is the required pair collection of $Y$ .
Using the d-paracompactness and semistratifiability of $Y$ and applying the

ergument of the proof above, we can get from $\mathcal{P}_{1}^{\prime}=\{(F_{\beta}, U_{\beta}):\beta\in B_{1}\}$ two pair
collections
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$\mathcal{P}_{I}=\{(F_{\beta}, V_{\beta}):\beta\in B_{1}\}$

and
$\mathcal{P}_{2}^{\prime}=\{(F_{\beta}, U_{\beta}):\beta\in B_{2}\}$

of $V$ satisfying the same conditions (9), (10) and (11) of the proof above. For
each $V\in \mathcal{V}$ , set $W_{1}(V)=f^{*}(V)$ and

$ W_{2}(V)=W_{1}(V)\cup$ ( $\cup\{V_{\beta}:\beta\in B_{1},$ $ F_{\beta}\cap W_{1}(V)\neq\emptyset$ and $U_{\beta}\subset f(V)\}$ ),

Then for each $V\in \mathcal{V},$ $W_{1}(V),$ $W_{2}(V)$ are open subsets of $Y$ such that

$M\subset W_{1}(V)\subset W_{2}(V)\subset f(V)$

and it is obvious that if $p\in W_{1}(V)$ , then there exists $\beta\in B_{1}$ such that

$p\in F_{\beta}\subset V_{\beta}\subset W_{2}(V)$ .
Repeating these processes, we can get a sequence $\{W_{n}(F):n\in N\},$ $V\in \mathcal{V}$ , of
open subsets of $Y$ such that

$M\subset W_{1}(V)\subset W_{2}(V)\subset\cdots\subset f(V)$

for each $V\in \mathcal{V}$ and at the same time there exists a pair collection

$\mathcal{P}_{n}=\{(F_{\beta}, V_{\beta}):\beta\in B_{n}\}$

of $]^{r}$ such that

(7) $\{F_{\beta} : \beta\in B_{n}\}$ is a $\sigma$ -discrete family of closed subsets of $Y$ and
if $\beta\in B_{n},$ $V_{\beta}$ is an open subset of $Y$ such that $F_{\beta}\subset V_{\beta}$ .

(8) For each point $p\in Y$ , each $V\in \mathcal{V}$ and each $n\in N$, if $p\in W_{n}(V)$ ,

then there exists $\beta\in B_{n}$ such that

$p\in F_{\beta}\subset V_{\beta}\subset W_{n+1}(V)$ .
For each $V\in \mathcal{V}$ , set

$W(V)=\cup\{W_{n}(V):n\in N\}$ .

Then it is easy to see that $\{W(V):V\in \mathcal{V}\}$ is an outer base of $M$ in $Y$ . By
(8) and the proof of Lemma 1, it is dissectable in $Y$ . This completes the proof.

The above proof assures the following: Let $f:X\rightarrow Y$ be a closed mapping
of a d-paracompact semistratifiable space $X$ onto a first countable space $Y$ . If
$X$ has the property that every discrete family $\mathcal{F}$ of closed subsets of $X$ has a
dissectable family $\cup\{W(F):F\in \mathcal{F}\}$ of $X$ such that each $W(F)$ , FE $\mathcal{F}$ , is an outer
base of $F$ in $X$, then $Y$ has the same property. On the other hand, it is obvious
that a space $X$ is developable if and only if $X$ is a d-paracompact $\sigma$ -space with
this property.
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From both observations, we can get the following as the corollary to Pro-
position 4:

COROLLARY. Let $f:X\rightarrow Y$ be a closed mapping of a developable space $X$

onto a space Y. Then $Y$ is developable if and only if $Y$ is first countable.

This corresponds to the well known Hanai-Morita-Stone theorem that a
closed image of a metric space is metrizable if and only if it is first countable.

THEOREM 4. If $X$ is a d-paracompact $\sigma$ -space and $X_{0}\subset X$, then $X_{0}$ is also
a d-paracompact $\sigma$ -space.

PROOF. Let $cU$ be an open cover of $X_{0}$ . We take a family $cU^{\prime}$ of open
subsets of $X$ such that $cU|X_{0}=cU$ . Let $\mathcal{F}$ be a $\sigma$ -discrete closed network for
X. For each $F\in \mathcal{F}$ , we choose $U(F)\in qj^{\prime}$ such that $F\subset U(F)$ , if possible. Since
$X$ is d-paracompact, there exists an open set $V(F)$ of $X$ such that $ F\subset V(F)\subset$

$U(F)$ and such that $\{V(F):F\in \mathcal{F}\}$ is $\sigma$ -dissectable in $X$. Then $\{V(F):F\in \mathcal{F}\}|X_{0}$

is a $\sigma$ -dissectable refinement of $cU$ . This proves the d-paracompactness of $X_{0}$ .

In the above, the condition “a-space” cannot be omitted $[B_{2},23p]$ .

3. The comparison with s-paracompact spaces

A space $X$ is semimetrizable if there exists a distance function $d:X\times X\rightarrow R$

such that $d(x, y)\geqq 0,$ $d(x, y)=d(y, x),$ $d(x, y)=0$ if and only if $x=y$ for all $x$ ,
$y\in X$ and $\overline{A}=\{x\in X:d(x, A)=0\}$ for each $A\subset X$, where

$d(x, A)=\inf\{d(x, y):y\in A\}$ .
It is known that a space $X$ is semimetrizable if and only if $X$ is a first count-
able, semistratifiable space [Gr, Theorem 9.8]. Brandenburg called a space s-
paracompact if for every open cover $\mathcal{A}$ of $X$, there exists an uZ-mapping of $X$

onto a semimetrizable space. Since every developable space is semimetrizable,
every d-paracompact space is s-paracompact. He proposed the question whether
every semimetrizable space is d-paracompact [ $B_{2}$ , Question 2]. If the positive
answer would be given, both of d-paracompact spaces and s-paracompact spaces
coincide. But we can give the negative answer to it. Thus, we can conclude
that both are different.

To state Example 4, we propare the following:

PROPOSITION 5. Let $Z$ be a space such that $Z$ has the weight and cardinality
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$\leqq\tau$ . If $Y(\kappa)\times Z$ is d-paracompact for some $\kappa\geqq\tau$, then $Z$ is a developable space.

PROOF. Let $Z$ bas a base $\mathscr{Q}$ with $|B|\leqq\tau$ . Let $\{(p_{\alpha}, O_{\alpha}):\alpha<\tau_{1}\}$ be the
totality of the pairs $(p_{\alpha}, 0_{\alpha})$ with $p_{\alpha}\in O_{\alpha}\in B$ , where $\tau_{1}\leqq\tau$ . Note that

$\{(\alpha, p_{\alpha}):\alpha<\tau_{1}\}$

is a discrete closed subset of $Y(\kappa)\times Z$ , and that ( $\{\alpha\}\cup N(\times O_{\alpha}$ is an open neigh-
borhood of $(\alpha, p_{\alpha})$ in $Y(\kappa)\times Z$ such that

$(\beta, p_{\beta})\not\in(\{\alpha\}\cup N)\times O_{\alpha}$ ,

if $\alpha\neq\beta$ . Since $Y(\kappa)\times Z$ is d-paracompact, by Lemma 1 there exist a family
$\subseteq\nu=\{W_{\alpha} : \alpha<\tau_{1}\}$ of open subsets of $Y(\kappa)\times Z$ and the d-development $\{V_{n} : n\in N\}$

for $cW$ in $Y(\kappa)\times Z$ such that

$(^{*})$ $(\alpha, p_{a})\in W_{\alpha}\subset(\{\alpha\}\cup N)\times O_{\alpha}$

for each $\alpha<\tau_{1}$ .
Let $\pi;Y(\kappa)\times Z\rightarrow Z$ be the projection. For each $n,$ $m\in N$, let

$cu_{nm}=\pi(cU_{n}|\{m\}\times Z)$ .

By $(^{*})$ , we can easily show that $\{^{c}U_{nm} ; n, m\in N\}$ is a development for $Z$ . This
completes the proof.

COROLLARY. For a space $Z$ , the following are equivalent:
(1) $Z$ is a developable space.
(2) $Z\times Y$ is d-paracompact for every developable space $Y$.

PROOF. (1) $\rightarrow(2)$ is obvious from the facts that the product of two develop-

able and that every developable space is d-paracompact. (2) $\rightarrow(1)$ follows from
the above proposition and the fact that $Y(\kappa)$ is developable.

EXAMPLE 4. There exists a semimetrizable space which is not d-para-

compact.

CONSTRUCTION. Let $X=R^{2}$ be the space with the bowtie topology. For
each point $p=(x, y)\in X,$ $\{B(p, \epsilon, \delta):\epsilon, \delta>0\}$ is a neighborhood base of $p$ in $X$,

where
$B(p, \epsilon, \delta)=\{p\}\cup\{(x^{\prime}, y^{\prime})\in X$ :

$ 0<|x^{\prime}-x|<\epsilon$ and $|(y^{\prime}-y)/(x^{\prime}-x)|<\delta$ }.

Then $X$ is a semimetrizable, non-developable space [Gr, Eemple 9.10]. Let
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$Z=Y(c)\times X$. Then by Proposition 6, $\dot{\Delta}^{\nabla}$ is not d-paracompact. But $Z$ is semi-
metrizable because semimetrizable spaces have the countably productive property.

The author should appreciate the referee’s valuable suggestions, especially
for the examples.
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