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ON D-PARACOMRACT 0¢-SPACES

By

Takemi MIZOKAMI

1. Introduction.

Throughout this paper, all spaces are 7, topological spaces and mappings
are continuous and onto. The letter N denotes the set of natural numbers.

By a well-known theorem of Dowker, a Hausdorff space X is paracompact
if and only if for every open cover A of X there exists an -mapping of X
onto a metrizable space. On the other hand, developable spaces are a nice
generalization of metrizable spaces. Pareek called a space X is d-para-
compact if for every open cover . there exists an JA-mapping of X onto a
developable space. Another nice generalization is o-spaces in the sense of [O].
Especially, paracompact g-spaces have important features in generalized metric
spaces and dimension theories. We notice that the following properties of the
class C of paracompact g-spaces: (1) C is closed under any countable product
and any subspace. (2) C is closed under any image under perfect or closed
mappings. (3) C is closed under the domination.

In this paper, we call a space X is a g-space if X has a ¢-locally finite
“closed” network, which is slightly different from the original definition in [O].
For regular spaces, both coincide with each other. The purpose of this paper
is to study the class of d-paracompact o-spaces, comparing with that of para-
compact o-spaces. We show that this class behaves well as to the subspaces
and perfect images, but not as to the others. We show that d-paracompact
spaces and s-paracompact spaces do not coincide, answering the question of
Brandenburg [B,;, Question 2].

2. D-paracompact o-spaces.

DEFINITION 1. A space X is called d-paracompact if for each open cover
U of X, ther exists a U-mapping f X onto a developable space Y, where a U-
mapping [ means that there exists an open cover < of Y such that f (V)
<.
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DEFINITION 2. A family U of open subsets of a space X is called dissectable
in X [B,], if there exists a function D: UX N—{closed subsets of X}, called
the dissection of U in X, satisfying the following :

1) U=U{DWU, n): n=N} for every UsU.

2 For every neN, {DWU, n): UsU} is a closure-preserving family of
closed subsets of X and if p=\U{DU, n): UV}, then

NUevU: peDU, n)}
is a neighborhood of p in X.

DEFINITION 3. A space X is called d-expandable [B,] if for each discrete
family & of closed subsets and for each family U={U(F): F=Z} of open sub-
sets of X such that FCU(F) and UF)N\F'=@ if F+F', F, F'= %, there exists

a dissectable family {V(F): F=F} of X such that FCV(F)CU(F) for every
Feg,

We call the pair <&, U) a d-pair of X.

DEFINITION 4. A space X is called semistratifiable if there exists a func-
tion S: I X N—{closed subsets of X}, where T is the topology of X, such that:

¢)) U=U{S[U, n]: ns N} for every Ueq .
(2) If U, Veg and UCV, then S[U, n]cCS[V, n] for every n.

The function S is called the semistratification of X.

As seen easily, every o-space is semistratifiable. If we use the argument
in [SN], then it is obvious that a space X is a o-space if and only if X has a
o-discrete closed network if and only if X has a og-closure-preserving closed
network. We list up the facts as to d-paracompact spaces and developable
spaces, which are known already and used later in our proofs.

FacTt 1 ([B,]). A space X is developable if and only if X has a o-dissec-
table base.

2 ([G]). A space X is developable if and only if there exists a sequence
{U,: neN} of open covers of X such that if xU for a point x of X and an
open subset U of X, then there exists n= N such that ord (x, U,)=1 and
S(x, U,)U.

3 ([B,, Theorem 1]). A space X is d-paracompact if and only if X is §-
refinable and d-expandable if and only if every open cover of X has a o-dis-
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sectable refinement.

4. Let X be a semistratifiable space and § a closure-preserving family of
closed subsets of X. Then there exists a o-discrete closed cover 4 of X such
that HNF+ @, He 4 and FEF imply HCF. (The construction of 4 is essen-
tially stated in [SN].)

5 ([B;, Theorem 2.3]). Every family of open subsets of a developable space
is dissectable in it.

Before stating Lemma 1, we give definitions of (P;), i=1, ---, 5. For a
space X, let (P;) (:=1, ---, 5) be the following statements:
(P) X is d-paracompact.
(P,) For each d-pair <&, U) of X, there exists a CV-mapping of X onto a
developable space, where
y=vUU{X—-UZ}.

(P,) For each d-pair <&, U) of families of X, there exists a family {V(F): FeZ}
of open subsets of X and a sequence {U,:u<N} of open covers of X such
that for each Fe ¥, FCV(F)cU(F) and such that if p=V(F), then there exists
ne N such that ord (p, U,)=1 and S(p, U,)CV(F).

(P) For each d-pair <&, U) of families of X, there exists a pair collection
P=U{P,: n=N} of X and a family {V(F): F=F} of open subsets of X such
that FCV(F)cCU(F) for each F=g and such that ¢ satisfies the following two
conditions :

(1) For each n, {P,: P=(P,, P,)=®,} is a discrete family of closed subsets of
X and {P,: P=®,} is a family of open subsets of X.

(2) If pV(F), then there exists P=P such that p= PLCP.CV(F).

(P;) X is d-expandable.

For the later use, we give the term to such a sequence of open covers as
in (P). Let {U,:n<N} be a sequence of open covers of a space X and <V a
family of open subsets of X. Then we call {U,} the d-development for <V if
for each point pX and each Ve with peV, there exists n=N such that
ord (p, U,)=1 and S(p, U,)CV. If {U,:neN} is a sequence of families of
open subsets of X with this property for <V, then we call {U,} the d-quasi-
development for V.

LEMMA 1. For a space, (Py)—(P,)—(Ps)—(P,)—(Ps) holds. Moreover, if X
is @-refinable, then all (P;) are equivalent.
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PrROOF. (P,)—(P,) is straightforward from Definition 1. (P,)—(P,) follows
from the Fact 2. (P;)—(P,): Let {U,:n=N} be the sequence of open covers
in (P;). For each n, let

Po={HWU), U):UcsU., HU)* D},
where
HU)=U-u{U'eU,:U+U}.

Then it is easy to see that {?,: n=N} has the required property. (P,)—(Fs):
For each d-pair <&, U), take =U{®P,: n=N} and {V(F): FeF} by (P,). We
define a function D: <Y X N—{closed subsets of X} with cVy={V(F): FEF} by

DV (F), n)=\U{P,: P2, and P,CV(F)}.

Then D is the dissection of <& in X. If X is @#-refinable, then (P;)—(P,) fol-
lows from Fact 3.

We weaken the statement (P;) to the following :
(Py) For each d-pair <F, U) of families of X, there exist a family cvV=
{V(F): FEgF} of open subsets of X and the d-quasidevelopment {U,:neN}
for <V such that FCV(F)CU(F) for every F=&.

LEMMA 2. If X is a perfect space, i.e., every closed subset is G;, then (Py')
implies that X is d-expandable.

PROOF. Suppose we are given <F, U, {V(F): Fe¥4} and {U,:neN} in
(Py). For each n, let
UU=U{E m:meN},

where each E,.. is closed in X. For each n, me N, define
CVnm:qJnU{X_Enm}

Then it is easy to see that {V,n:n, meN} is the d-development for {V(F)}
in X. Therefore, by the above, X is d-expandable.

LEMMA 3. Let X be a semistratifiable space. Then a family U of open
subsets of X is dissectoble in X if and only if there exists a d-development for
U in X.

PrROOF. The only if part: Let D:UXN—{closed subsets of X} be the
dissection of 4J. Since for each n, {DU, n): U= U} is closure-preserving family
of closed subsets of X, by Fact 4, there exists a closed cover F=U{F n: meN}
of X such that each ., is discrete in X and for each F& % and each U=,
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DWU, n)NF+@ implies FCDWU, n). For each F=%,,, n, meN, choose an
open subset V5 of X such that

FcVecnN{UsevU: FCDWU, n)}
and VyNF'=@ for FFecT,, with F-F’. Let
Vom={Vr: FEF  n} IH{ X—=UTFn}, n, meN.
Then ti is easy to see that {V,,: n, m& N} forms the d-development for U in

X. The if part is similar to the proof of (P,)—(P,)—(P;) in Lemma 1.

LEMMA 4. If U is a g-dissectable family of a space X, then U is dissectable
in X.

PROOF. Let U=\U{U,:nsN}, where each ¢, is dissectable in X. Let
D, : UnX N—{closed subsets of X} be the dissection of U, in X. Let ¢: N>N?
be a bijection. As a dissection T of </, we define T as follows:

D, (U, k) if ¢(n)=(m, k) and U= Un
TWU, n)=

%) otherwise.
Obviously T is the dissection of ¢V in X.

LEMMA 5. If U is a dissectable family of a space X, then CV={\UU,: U,CU}
is also dissectable in X.

ProOOF. Let D: UXxN—{closed subsets of X} be the dissection of ¥ in X.

For each V=UY,, U,CU, and each n=N, let
TV, n)=U{DWU, n): UsU,}.
Then T is obviously the dissection of ¢V in X.

LEMMA 6. Let X be a semistratifiable space and U={U,:a<=A} a point-
finite family of open subsets of X. If for each ac A, XV, is a dissectable family
of the subspace U,, then \U{V,:a<= A} is dissectable in X.

PrOOF. Let A be the totality of

op)={asA: pslU,}, pevvvy.
Then A=U{A,: ne N}, where
A,={0=A: |0|=n}, neN.

Let 0=A,, nN. Since by Lemma 4
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VO0)=I{Va:a<0) | "{U,: asd}

is dissectable in N{U,:a<d}) by Lemma 3, there exists the d-development
{Vrn'(0): me N} for &(9) in the subspace N{U,: a=d}. For each n, m, k<N,
let

V(@)=Y n'@) | (X—=S[\U{Uq.: ac A-38}, k]),

where S[@, k]=@, k<N, and let

CVnmk:U{CVnmk(a):BEAn}-
We shall show that {V,m.:n,m, k&N} is the d-quasidevelopment for

U{V.:acs A} in X. Let peVexy,, acA. Since U is point-finite at p,
o(p)=A, for some n. There exists 2= N such that

peSIN{Ua: asd(p)}, k].

Take me N such that ord (p, WV, (0(p)))=1 and S(p, V.n'@(P))CV. Suppose
o=A,. If 0—0(p)+ @D, then p&E\ UV, ,'(0) because \ UV, (0)cU, for each a=
0—0o(p). If o(p)—0d+ @, then

peS[U{Uys: ac=s A—0d}, k].

From these observations, we have

pEU[J{Vrnr(0): 0+0(p) and 0<A,}].
Therefore ord (p, WVame)=1 and S(p, V,n:)CV. This completes the proof.

PROPOSITION 1. Let X be a d-paracompact semistratifiable space and let F
be a locally finite family of closed subsets of X with its open expansion
{U(F): FEZ}. Then there exists a dissectable family {V(F): FeZ} of X such
that FCV(F)CU(F) for each F¥.

Proor. By Fact 4, from the cover F\U{X} of X we can construct a closed
cover £=U{H,:neN} of X such that each 4, is discrete in X and such that
if HF+ @, F=g and He J(, then HCF. Since for each He 4,

F(H)={Feg: HCF}
is finite,
GH)=N{UF): Feg(H)}

is open in X. Since X is d-paracompact, for each n there exists a dissectable
family W,={W(H): H= 4 ,} of X such that HCW(H)C G(H) for each He 4.
For each F=%,. For each F=%, let
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H(F)y={He=4: HCF}.
Then obviously F=\U4(F). For each FEZ, set
V(F)=U{WH): HE I (F)}.
Then {V(F): FEF} is dissectable in X by Lemmas 4 and 5. This completes

the proof.

LEMMA 7. Let U, <V be dissectable families of X, Y, respectively. Then
UXY is dissectable in the product space XXY .

PrROOF. Let D, D’ be the dissections of U, <&V in X, Y, respectively. Let
f: N—N? be a bijection. Define a function T : (UX<V)X N—{closed subsets of
XXY} by
TWUXV, k)y=DWU, n)XD'(V, n)

for UcU, Vecy, k=N, where f(k)=(n, m). Then it is easy to see that T is
the dissection of U X<V in XXY.

Let U, <V be families of subsets of a space. Then we call that U is a
weak refinement of <V if for every U= U there exists Ve such that UCV.

DEFINITION 5. A space X is called a P-space [M,] if for any family
{Glay, -, a):ay, -, ;= A, ieN}
of open subsets of X such that
Glay, -, a;)CGla;, *++, as,y Qiq1)
for each ay, -, a;, a;., €A, i€ N, there exists a family
{Clay, -+, a):ay, -+, ;= A,, i=N}

of closed subsets of X satisfying the following conditions :
) Clay, -, a))CGlay, -, a;) for each ay, -, a;= A, i=N.

2 For each sequence {a;:7=N} such that X=\U,G(a,, -, a),
then X=U:;C(a, -+, a;).

Obviously, every perfect space is a P-space. As for the product theorem
of d-paracompact spaces, we can settle the following theorem.

THEOREM 1. Let X be a d-paracompact P-space and Y a metacompact de-
velopable space. Then XXY is d-paracompact.
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PROOF. Though the procedurc is due to the stereotyped method, we des-
cribe it to see how the properties of Y are used.

Let ={F(a): ac A} be a o-discrete closed network for Y. Since Y is
metacompact, there exists a o-point-finite family {H(a): a= A} of open subsets
of X such that F(a)CH(a) for each acA. Let ¢ be an open cover of XXY.

For each ay, -+, a, €A, kN, let @(ay, -+, a;) be the frmily of open rectangles
U;xV,; such that U; XV ;G for some G=¢& and

N{F(a;y):i=1, -, R}V, CN{H(a:) 1 i=1, -, k}.

Write
Aay, -, ap)={UiXV;: e M ay, -, ar)}.
For each ay, ---, a,=A, EEN, let
U(aly Tty ak):U{UZ : /26/1(&1, ttty ak)}-
Then U(a,, -+, a) is an open subset of X such that

Ula,, -+, ak)CU(ab S, A, Qpsr).

Since X is a P-space, there exists a family

{C(al’ T ak) Ay, e, akeA: kEN}

of closed subsets of X, stated in Definition 5. By the d-paracompactness of X,
there exists a dissectable family 9(a,, -+, a;) of open subsets of X covering
C(ay, -+, a;) such that W(a,, ---, ax) is a weak refinement of {U;: e A(a;,
.+, a3)}. Without loss of generality, we can write W(a;, -, @) as the indexed
family such that

C}V(Cll’ Tty ak):{Wl : Ze-A(CYI, Y ak)}’
where W,cU, for each 2. For each a,, ---, ar= A, REN, set

—@(ab Tt ak):{Wl XVZ : ZEA(al: Ty ak)}7
-@k:U{Q(al: T ak):al) Tty akEA}’
.@:U{Qk:kEN}

Then we can show that @ is a o-dissectable refinement of ¢. To show that
B covers XXY, let (x, y)e XXY.

Let {a;:i=N} be a sequence of A such that {F(a.)N - NF(a:): REN} is
a local network at vy in Y. For this sequence, we easily see that X=
{U(ay, -+, az): keN}. This implies X=U{C(a,, -+, ax): k=N}. Therefore
x=Clay, -, a;) for some k. Since {W;: A A(ay, -+, ax)} covers Clay, -+, ar),
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x&W; for some A= Ala,, ---, a;). Hence we have (x, y)eW XV, 8. Let
k=N be fixed. For each a,, -, a4, Bla,, -+, a,) is dissectable in XxY
because {V;: A= A(ay, -+, a)} is dissectable in ¥ by Fact 5, and we can use

Lemma 7. Observe that

U'@(al; Tty ak)CXX(f—\{H(al): Z.:l: Ty k})
and that

{XX(A{H(a‘L) : izl} Tt k}) &y, e, akEA}
is a o-point-finite in XXY. Hence by Lemma 6, #, is o-dissectable in XXV,
which means that @ is ¢-dissectable in XXY. This completes the proof.

REMARK. The proof assures that the following is true: Let X be a P-

space and Y a metacompact developable space. If X has the property that
every family U of open subsets of X has a dissectable family < of X such

that UU=\UC and <&V is a weak refinement of U, then XXY is d-para-
compact.

The properties of Y used actually in the above proof is just that Y is an
almost expandable space with a ¢-discrete closed network & such that each Fe &
has a dissectable outer base in Y, where a space Y is called almost expandable
if for every locally finite family 4 of closed subsets of Y there exists a point-
finite family {G(H): H= 4} of open subsets of Y such that HCG(H) for every
He s, But these properties give a sufficient condition for Y to be a meta-
compact developable space.

PROPOSITION 2. A space Y is a metacompact developable space if and only
if Y is an almost expandable o-space with the property that every closed subset

of Y has a dissectable outer base in Y.

PrROOF. The if part: Let \U{ZF;:7=N} be a closed network for Y, where
each &, is discrete in Y. For each 7, there exists a point-finite family
{U(F): FEF;} of open subsets of Y such that FCU(F) for each F=%;. Let
U(F) be a dissectable outer base of F' in Y such that \UU(F)CU(F). Then by
Lemma 6, \U{U(F): Fe\U;¥;) is a o-dissectable base for Y. By Fact 1, Y is
developable. Since an almost expandable ¢-space is metacompact, ¥ has the
required properties. The only if part is trivial.

COROLLARY. A space X is metrizable if and only if X is a paracompact o-
space with the property that every closed subset of X has a dissectable outer base

in X.



434 Takemi MizokAMI

We do not know whether a similar characterization is obtained for develop-
able spaces, removing the terms metacompact and almost expandable from Pro-
position 2. That is, we do not know whether every o-space (or even d-para-
compact o-space) with the same outer base property as in Proposition 2 is
developable.

The metacompactness of Y cannot be dropped from Theorem 1. In fact,
there exist a Lasnev space (i.e., a closed image of a metric space) and a non-
metacompact developable space Y such that X XY is not d-paracompact, as seen
in Example 1. It is shown that a space which is dominated by paracompact
o-spaces is also a paracompact o-space [M, and O]. But this is not true for
the case of d-paracompact g-spaces. To state the counterexample, we sketch
the space Y(x). Lst « be a cardinal number and let Y (k) be a set

Y (®)=NUIO0, k),

which is topologized as follows: All points of NV are isolated and basic neigh-
borhoods of a point a<[0, k) are sets of the form:

{a}U(N=F),

where F is a finite subset of N. The space Y(x) is a developable space. In
fact, if {F,: k= N} be the totality of finite subsets of N, then

Up={{n}: neF}V{a}UN—-F,):a<s[0, k)], kN,
is a development for Y (k).

We should remark that this space Y (k) is just T,, but unfortunately not
Hausdorff. This leads that our examples stated here are T'; but not Hausdorff

since they contain Y'(x) as the subspace. To simplify the examples, we prepare
the following proposition :

PROPOSITION 3. Let z be a point of a space Z with the uncountable character
7. If k=7, then the product space Y (k)X Z is not d-paracompact.

PROOF. Assume the contrary to get a contradiction. Let {W,:a<<t) be a
local base at z in Z. It is easily observed that
{(a, 2): a<[0, )}

is a discrete closed subset of Y(x¥)XZ and that for each a<rz, ({a}\UN)XW, is
an open neighborhood of (a, 2z) in Y(x)XZ such that

(', 2)e({a} UN)XW,

if a#a’, a, a’<r. By the assumption that Y (k)X Z is d-paracompact and by
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Lemma 1, there exist a family c&W={V,: a<z} of open subsets of Y (x¥)XZ and
the d-development {U,:neN} for <V such that

(a, 2)€V .C{a} UN)XW ,, a<rt.
Let IT : Y(k)XZ—Z be the projection. We show that
{II(S((n, 2), Us)): n, ke N}

is a local base at z in Z. Suppose a<r. We can take n=N such that (n, 2)
eV, Since {U,} is the d-development for <V, there exists k=N such that
S((n, 2), U,)V,.. This implies

II(S((n, 2), U)W,

which is a contradiction to the uncountability of the character ¢ of z in Z,
This completes the proof.

For each n= N, let S, be the copy of the subspace

of the real line with the usual topology and S,N\S»=@ if n#m. We write
by S, the quotient space obtained frow @H{S,:n=N} by identifying all limit
points with a single point, which we denote by 0 again. Then S, is known
to be a non-metrizable Lasnev space. Obviously 0 has a character ¢ less than
or equal to ¢, where ¢ is the cardinality of the continuum.

ExAMPLE 1. There exist a non-metacompact developable space X and a
Lasnev space Y such that Z=XXY is not d-paracompact.

CONSTRUCTION. We take X=Y{(c¢) and Y=S,. Then by Proposition 3,
XXY is not d-paracompact. X is not metacompact because the open cover

{{a}UN: a<s[0, ¢)}
has no point-finite open refinement.

ExXAMPLE 2. There exists a non-d-paracompact g-space which is dominated
by d-paracompact o-spaces.

CONSTRUCTION. Let p:P{S,.:n=N}—-S, be the natural mapping. For
each neN, let Z,=Y(c)Xp(S.). Since both Y(c¢) and p(S.) are developable
spaces, so is Z,. Let Z be the same space XXY as above. Then Z is a non-
d-paracompact ¢-space, and is easily seen to be dominated by {Z,: n=N}.
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For the proof of next lemma, we introduced the following notations: Let
9 be an open cover of a space X. For each Wew, let

HW)=W—-u{Wew.:W+W'}.
Then it is easy to see that
HW)={HW): Wew}
is a discrete family of closed subsets of X. We define the subset H(%) and

the family < by

HW)=UdIHW)
and

WO={Wew: HW)+D}.

If f is a closed mapping of a space X onto a space Y, for each open subset U
of X we define an open subset f*(U) of ¥ by

HO)=Y —f(X=U).

LEMMA 8. Let f: XY be a perfect mapping. If X is a perfect d-para-
compact space, then so is Y.

PROOF. Obviously Y is perfect. By Fact 3, X is f-refinable. Since it is
well known that @-refinability is preserved by perfect mappings, Y is #-refinable.
By Fact 3 again, it suffices to show that Y is d-expandable. Let <&, U be a
d-pair of families of Y, where

F={F;:4Ac 4}, U={U;: 2 4}.

Since X is d-expanadable, for the d-pair {f %), f~X(U)> there exists a dis-
sectable family cV={V,: 1= 4} of X and the d-development for < in X such
that

T FR)CVcf WU, isd.

By the same method as [Bu,, Lemma 3.1], we can construct a sequence
{W,:nesN} of families of open covers of X such that if CcCV,; with C com-
pact and A= 4, then there exists n< N such that CNH(W.,)+ @ and

CNH@W)cwcV,;

for some finite wcCv,®. For each ¢, sesN7", reN, with t=(¢,, -+, t,), s=
(81, -+, S,), define a family (¢, s) of subsets of X by the following:

CW(t’ S):{W(Wi,, ) CWr’) . ‘W{C‘Wsi“)
and
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|W, | =t; for each /=1, ---, r},
where
Wy, -, W )=U[UWS —U{H W,V j<i};isr]
Then {W(t, s):t, s&€N7", rN} has the following properties :
(1) W(t, s) is a family of open subsets of X.

(2) If CcV,; with C compact and A= 4, then there exist t, sSN7", rEN,
such that C is contained in only one element WoeW(t, s) and W.CV ;.

We show (2). Let s, be the first number such that there exists a finite
minimal subfamily 9," of 9, > such that

@#=CNH W, )TUW,/'CV ;.
Let |w,/|=t, and
CzZC'“Ucwl’ N

Let s, be the first number such that there exists a finite minimal subfamily ¥,

of W,,” such that
D+ CzﬂH(%@QCUWg'CV; .

Let |9.|=t,. Repeating this process and using the compactness of C, we can
obtain two finite systems

S=($1, Tty ST)’ tz(tl’ "'}tT)ENT
for some r= N such that

ccw@, -, w,.)=WcCV,; and WeeW({, s).

Then W, is seen to be the required one by the seme argument as in [Bu,
Lemmas 4.2 and 4.3]. Thus (2) is satisfied. Set

a@t, s)={f*W): Wew, s)}
for each t, s&eNT", r&N. It is easy to see that
{g@, s):t, seN", reN}

forms a d-quasidevelopment for {f*(V;): A4} in Y. Since Y is perfect, Y is
d-expanadable by Lemma 2. This completes the proof.

THEOREM 2. Let f be a perfect mapping of a space X onto a space Y. If
X is a d-paracompact a-space, then so is Y.

But closed mappings do not have this property.
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ExAMPLE 3. There exists a closed mapping of d-paracompact ¢-space X
onto a non-d-paracompact o-space Z.

CONSTRUCTION. We show that the same space Z as in Example 1 is the
image of a d-paracompact o-space X under a closed mapping. For each nEN,
let S, be the same as in the preceding section to Example 1, and let Z,’ be
the set Y(¢)xS,. Set

X=Ul{Z, : neN}UY(c).

Topology of X is defined as follows: For each =, each point p=Z,’ has a
neighborhood V in X if and only if VNZ,’ is a neighborhood of p in Z,’.
Each neNCY(c) is isolated. For each a=[0, ¢) has a neighborhood base

Ha UN—F)\U(J{{a} IN—F)XW,: k=m}):
W, is a neighborhood of 0 in S, for each 2=m,
F is a finite subset of N and meN}.

It is easy to see that Y(c) is a o-discrete closed subset of X and each Z,’ isa
developable clopen subspace of X. Therefore Z,’, n=N, has a o-ciscrete closed
(in X) network F, for Z,’. Thus we have a g-discrete closed network

U{F.:neNU{{p}: psY(c)}.

for X, proving that Xisa o-space. To see that X is d-paracompact, let U be
an open cover of X. For each neN, cv,=vU!|Z,’ is a dissectable (in X) weak
refinement of U because Z,’ is a clopen developable subspace of X. For each
peY(c), we take a basic neighborhood V(p) in X, as defined just above, such
that V(p)cU for some U= U. Since for each »n the family {V(p): pY ()} Z,’
is dissectable in X and since g&V(p) if p#g and p,gsY(c)—N, W,=
{V(p): p=Y(c)} is dissectable in X. Hence

DNV, nEN}
is a o-didissectable refinement of U. Let g: X—Z be a mapping defined by

gl U{Z :neNh=f
and

gp)=(,0) if pe¥(c),

where f is a natural mapping of &{Z,': n=N} onto Z. g is obviously con-
tinuous and onto. We show that g is a closed mapping. For the purpose, it
suffices to show that for each point p=Y(c) and each open set V of X, if
g7 '((p, 0))V, then there exists a neighborhood O of (p,0) in Z such that
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g (0)CV. If p=n<N, then by the definition of the topology of X, we can
easily take neighborhoods W, of 0 in S,, k=N, such that

g7 ((n, M u{{n}XW,: keN}U{n}iCV,
Let
O=f(J{{n}XW,:k=N}).

Then O is a neighborhood of (n, 0) in Z such that g~'(O)cV. Let p=a<[0, ¢).
Then there exist a finite subset F of N and neighborhoods W, of 0 in S,,
k=N, such

g (a, 0)C{a} UWN—F)UJ{({a}UN—F)XW,: keN}HNCV,
Letting
O=7(U{{a}UN—F)XW,: kEN}),

we obtain a neighborhood O of (a, 0) in Z such that g~'(O)cV. This completes
the proof of the closedness of g.

We do not know whether the perfectness of X can be dropped from Lemma
8. That is, it is still open whether perfect mappings preserve d-paracompact-
ness [C, 181p], [B., Question 1]. The next gives a sufficient condition for a
closed image of a d-paracompact g-space to be a d-paracompact o-space.

THEOREM 3. Let f: X—Y be a closed mapping and let Y be a first countable
space. If X is a d-paracompact o-space, then so is Y.

PrROOF. Since Y is obviously a o-space, we show that Y is d-expandable.
Let <F, U) be a d-pair of families of Y. Then for the d-pair {f~}(F), f~(U)>
of families of a d-paracompact space X, by Lemma 1, there exist families

w={V(F): FeF}, J4d={Hs:acsA}, W={W,:acA}

of subsets of X satisfying the following :

(D For each F= &, V(F) is an open subset of X such that
[ cVE)Cf(UFE)).
(2) A=U{A,: neN} and for each n, A,CAnri1,

H.={H,:asA,} is a locally finite family of closed subsets and W,=
{(W.:a<sA,} a family of open subsets of X such that H,CW,, acA,.

(3) For each FJ and each point p= X, if pV(F), then there exists
a< A such that
peH,cCW,CV(F).
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Moreover, since X is a o-space, without loss of generality we can assume that

4) {H,: ac A} satisfies that for each F=Z and each poitn p=V(F), the
family {H,: peH ,CW,.CV(F), ac A} is a local network at p in X.

For each neN, let Y,’ be the set of all points y<Y such that ord (y, f(4,))
is infinite. Then each Y.’ is a o-discrete closed subset of Y because Y is a
first countable space and f(4,) is a hereditarily closure-preserving family of
closed subsets of Y. Set

Yi=U{Y. :neN}, Y, =Y-Y,.

For each »n, let A, be the totality of finite subsets é of A, such that H(J)C
Int W(d), where

H(@)=N{f(Ha): asé},
W©O)=J{f(W,):asd}.
Claim 1: For each point p=Y, and each F=&, if p=f*(V(F)), then there

exists 0=A,, n=N, such that

pEH(O)CInt W(O)CU(F).

Proof of the claim: Let peY, and for each n, let
on={acA.: f P)NH,#@ and W.,CV(F)}.
Then obviously p=H(8,)CW(b,.)CU(F) for each n. First we show the fol-
lowing :
5) peInt W(,) for some n.

Throughout the proof of the theorem, for each y<Y let {O,(y): n=N} be the
decreasing local base of v in Y. Assume the contrary to (5). Then

On(p)—W(d)* D, neEN.

Take a sequence {p.:n=N} of points of ¥ such that
PnEOn(P)-W(an), neN.

Since f is a closed mapping, (f~'p.):n=N} clusters at a point of f~'(p).
Hence by (3) there exists a<d,, n<N such that p=f(H,) and f(W,) contains
infinitely many p.. But this is a contradiction to the fact that p,<EW(d,),
k=n. Thus we have p=Int W(d,) for some n.

Next, we show the following :

(6) H@,)—{p}cCInt W(d,) for some n.
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Assume the contrary. If H(,)—{p}—Int W(d,) is finite for some 7, then by

(4) we easily have
H(0n)—{p}CInt W(dn)

for some m>n. Therefore we can assume that

H(8n)—{p}—Int W(3.)

is infinite for each n. Take a sequence {p,:n=N} of points of Y such that
for each »
ﬁnEH«sn)"‘{p}"‘Int W) —{p1, =+ Pr-1}.

Since Y is a Fréchet space, for each n there exists a convergent sequence Z(n)
to p, in Y such that
ZmNW@0.)=0 .

Since p has the decreasing local base {O,(p):n=N} in Y, by (4) p,—p as
n—oo. Therefore by Fréchet-ness of Y, we can take a sequence ZC\U{Z(n):
neN} such that Z—p. Since p.#p, neN, ZNZ(n)+ @ for infinitely many
n. The closedness of f implies that there exists a<d,, <N, such that f(W,)
contains infinitely many points of Z, but this is a contradiction, proving (6).

We observe by (2) that {H(0.): neN}, {W(d,): neN} are decreasing, in-
creasing, respectively, families of subsets of Y. By (5) and (6), we can con-
clude Claim 1.

Claim 2: There exists a pair collection
_C_Pl’::{(Fﬂ, Uﬁ) : ‘@EBl}
of Y satisfying the following conditions :

@ {Fs: B=B,} is a o-discrete family of closed subsets of ¥ and for each
BEB,, Us is an open subset of ¥ such that FyCUsg.

8) For each p€Y and each Fe4g, if p=f*(V(F)), then there exists f=B,
such that
PEF;CURCU(F).
The proof of the claim: For each n, meN, let ., be the pair collection

of V

Pan={{y}, On(¥)): y<Y,’}
and set
P'=U{Pnm:n, m=N}.

Obviously @’ satisfies (7) and (8) for each point p<Y,. Using the fact that YV
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is semistratifiable, by the method of Fact 4, from the closure-preserving family
{H(@):0=A,} of closed subsets of Y, we can construct a o-discrete closed
cover {K;:A=4,} of Y such that K;\NH(@®)+ @, A=A, and d€A, imply K;C
H ().

Suppose that A= A4, has the property that

An(D={0€A,: K;CH(0)}

is finite. Take an open Subset G; of Y such that

K,cG,c\{IntW(d):0=A,(A)}.
Write
PI{K;, Gy): A= A, with A,(A) finite, n& N}

=@,
={(Fg, Up): B=B,}.

Then by Claim 1, it is easy to see that ,’ satisfies the conditions (7) and (8).
This proves Claim 2.

Now, write B,=\U{B;,: n=N}, where for each n {Fs: = B,,} is discrete
in Y. We apply countably many times the arguments of Claims 1 and 2 to the
countable d-pairs

{Fg: BB}, {Upg: BB}, neN,
of families of Y. Consequently, we get pair collections

P, ={(Fs, Vs): BBy}
and

@,'={(Fp, Up): BBy}
of Y satisfying the following conditions:

9) For each B=B,, V is an open subset of Y such that FgCV zCUjg.

(10) {Fg: B=B,} is a o-discrete family of closed subsets of ¥ and for each
B B,, Ug is an open subset of ¥ such that FpCUy,

(11) For each point p=Y and each B,=B,, if peVy, there exists B.= B,
such that
peFp,cUp,CUsg,.
For each Fe &, let W(F)=f*V(F)). Then W,(F) is an open subset of ¥ such
that
FcW(F)CU(F), Feg.
For each F=4, set
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Wo(F) =W (F)J(J{Vs: BEB,,
FsnW (F)=@ and UgCU(F)}.

Then W,(F) is an open subset of Y such that

FCW (F)CW(F)CU(F), Feg.
Moreover, by (8) and (9), it is obvious that:

(12) For each point p=Y and each F=4&, if pW,(F), then there exists
B< B, such that
pEF‘BCVﬂ(___Wz(F)

From the definition of Wy(F) and (11) it follows that:

(13) For each point p=Y and each Fe&, if peW,(F), then there exists
B< B, such that
;DEF@C:UﬁCU(F) .

Again, we apply countably many times the arguments of Claims 1 and 2 to the
countable d-pairs contained in %,’ and get two pair collections

P,={(Fs, Vp): B&B,}
and
Py ={(Fg, Ug): BE B;}

of Y satisfying the conditions corresponding to (9). (10) and (11) with B,, B,
replaced by B,, B, respectively. For each Fe &, let

W(F)=W(F)J(J{Vs: BB, Fsn\W(F)#+@

and UgcU((F)}).
Then for each FF, W4(F) is an open subset of ¥ sudh that
FCW(F)CW (F)CW{(F)CU(F).

It is easily seen that:
(14) For each point pY and each F= &, if p=W,(F), then there exists

B B, such that
PEFCV sCW(F).

Repeating these processes, we can easily settle the following claim :

Claim 3: For each F= &, there exists a sequence {W,(F):n=N} of open
subsets of Y such that

FCW(F)CW(F)C - CU(F)
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and at the same time there exists a pair collection

Pn={(Fp, Vg): BEBa}
of Y satisfying the following conditions:

(15) For each point p by Y, each FEZ and each n&N, if p=W,(F),
then there exists S B, such that

PEFsCVCWaii(F).
Set

W(F)=U{W(F): neN}, Feg
and
P=U{P,: neN}

={(Fs, Vp): BE B},

where B=\U{B,:n=N}. Then obviously, for each F=Z, W(F) is an open
subset of Y such that FCW(F)CU(F). By the construction, it is true that for
each point p€Y and each Feg, if peW(F), then there exists S B such that

pEF;CV W (F).

The family {Fs: 8= B} is a o-discrete one of closed subsets of Y. Therefore
by Lemma 1, YV is d-expandable. This completes the proof of the theorem.

PROPOSITION 4. Let f: X—Y be a closed mapping and Y a first countable
space. If X is a d-paracompact semistratifiable space having the property that
every closed subset of X has a dissectable outer base in X, then every closed sub-
set of Y has a dissectable outer base in Y.

PrROOF. We proceed referring to the proof just above. Let M be a closed
subset of Y. Then by the assumption f (M) has a dissectable outer base <V
in X. By the proof of Lemma 1, there exist families

H={H,:as A}, W={Waq:asA}
of subsets of Y satisfying the following (3)’ besides (2) in the proof above:

3) For each V=< and point p of X, if p=V, then there exists
as A such that

peH,CcW,CV.

Let YV,’, Y,, Y, are the same as above. For each 2, let A, be the totality of
finit subsets 0 of A, such that H(@)N\Int W(0)=+ @, where
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H@)=N{f(H.): asd},
W@)=U{f(W,): a=d}.
By the same argument as in the proof of (5) above, we can show the following :

4) For each p<Y, and each Ve, if p=f*(V), then there exists
0c=A,, n=N, such that

peHO)NIntW@)Cf(V).
Claim 1: There exists a pair collection
P/ ={(Fp, Up): B= B}
of Y satisfying the following conditions:

(5) {Fg: B=B,} is a o-discrete family of closed subsets of Y and if f=B,,
then U is an open subset of Y such that FsCUsg.

6) For each point p=Y and each Vecy, if p=f*(V), then there exists
B< B, such that

pEFpCUﬁCf(V).

The proof of the claim: Since Y is semistratifiable, for each 6=A,, n=N,
Int W(6) is a countable union of closed subsets F,.(0), m<N. Note that

Hn, m)={HO)NF.(0):0=A,}
is a closure-preserving family of closed subsets of ¥. Therefore by the method
of Fact 4, from X(n, m). n, m= N, we can construct o-discrete closed covers
{(Ky: 2 An), of Y, n, meN. For each A= A,n, n, m=N with the property
that

Ann(D)={0SArn: K;CF,(0)}
is finite, take an open subset G; of ¥ such that

K,cG,cn{Int W) : 0€Ann(A)}.

Let 2’ be the same pair collection of Y as in the proof of Claim 2 above.
Then we can easily see that

P/ =P U{(K;, Gy): A U{Adpm:n, meN}}

is the required pair collection of Y.

Using the d-paracompactness and semistratifiability of Y and applying the
ergument of the proof above, we can get from @,/={(F;3, Up): B<B,} two pair
collections
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P1={(Fp, Vp): B=B,}
and
P, ={(Fs, Up): B=B,}

of V satisfying the same conditions (9), (10) and (11) of the proof above. For
each Ve, set W, (V)=f*V) and
W.(V)=W, (V)U(U{V: BeB, FsnW(V)#=@ and UgCf(V)}),
Then for each Vecy, W, (V), W.(V) are open subsets of ¥ such that
McW,(V)CW. (V)T f(V)
and it is obvious that if p=W,(V), then there exists 8= B, such that
PEFsCVCWW(V).

Repeating these processes, we can get a sequence {W,(F):neN}, Ve, of
open subsets of ¥ such that

McW, (V)CWyV)Z - Cf(V)
for each V=<V and at the same time there exists a pair collection

P.={(Fg, Vp): =B}
of Y such that

) {Fg: B=B,} is a o-discrete family of closed subsets of Y and
if B=B,, V3 is an open subset of Y such that FgC V.

8) For each point p€Y, each V=< and each n=N, if peW,(V),
then there exists = B, such that

pPEFCVsCTWai(V).
For each V&<, set
WWV)=U{W.(V): neN}.

Then it is easy to see that {W(V): V&<V} is an outer base of M in Y. By
(8) and the proof of Lemma 1, it is dissectable in Y. This completes the proof.

The above proof assures the following: Let f: X—Y be a closed mapping
of a d-paracompact semistratifiable space X onto a first countable space Y. If
X has the property that every discrete family F of closed subsets of X has a
dissectable family \U{W(F): F=$} of X such that each W(F), F %, is an outer
base of F in X, then Y has the same property. On the other hand, it is obvious
that a space X is developable if and only if X is a d-paracompact ¢-space with
this property.



On d-paracompact o-spaces 447

From both observations, we can get the following as the corollary to Pro-
position 4:

COROLLARY. Let f:X-=Y be a closed mapping of a developable space X
onto a space Y. Then Y is developable if and only if Y is first countable.

This corresponds to the well known Hanai-Morita-Stone theorem that a
closed image of a metric space is metrizable if and only if it is first countable.

THEOREM 4. If X is a d-paracompact o-space and X, X, then X, is also
a d-paracompact a-space.

PrOOF. Let @ be an open cover of X,. We take a family U’ of open
subsets of X such that | X,=2. Let  be a o-discrete closed network for
X. For each F=Z, we choose U(F)= U’ such that FCU(F), if possible. Since
X is d-paracompact, there exists an open set V(F) of X such that FCV(F)C
U(F) and such that {V(F): FEJ} is o-dissectable in X. Then {V(F): Feg}|X,
is a o-dissectable refinement of €. This proves the d-paracompactness of X,.

In the above, the condition “o-space” cannot be omitted [B,, 23p].

3. The comparison with s-paracompact spaces

A space X is semimetrizable if there exists a distance function d: XX X—R
such that d(x, y)=0, d(x, y)=d(y, x), d(x, y)=0 if and only if x=y for all x,
yeX and A={x=X:d(x, A)=0} for each ACX, where

d(x, A)=inf {d(x, y): y A}.

It is known that a space X is semimetrizable if and only if X is a first count-
able, semistratifiable space [Gr, Theorem 9.8]. Brandenburg called a space s-
paracompact if for every open cover A of X, there exists an A-mapping of X
onto a semimetrizable space. Since every developable space is semimetrizable,
every d-paracompact space is s-paracompact. He proposed the question whether
every semimetrizable space is d-paracompact [B,, Question 2]. If the positive
answer would be given, both of d-paracompact spaces and s-paracompact spaces
coincide. But we can give the negative answer to it. Thus, we can conclude
that both are different.

To state Example 4, we propare the following :

PROPOSITION 5. Let Z be a space such that Z has the weight and cardinality
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=r. If Y(k)XZ is d-paracompact for some k=t, then Z is a developable space.
PROOF. Let Z bas a base 8 with |8|=7. Let {(pa, Os):a<rt,} be the
totality of the pairs (pq, O,) with p,€0,= B, where r,<7z. Note that
{(a, pa): a<mi}

is a discrete closed subset of Y (k)X Z, and that ({a}\UN(XO, is an open neigh-
borhood of (a, p.) in Y (k)X Z such that

(ﬂ) p,@)ai({a}UN)XOa )

if a+B. Since Y(k)XZ is d-paracompact, by Lemma 1 there exist a family
W={W,:a<rt,} of open subsets of Y(x)XZ and the d-development {U,: nE N}
for 9 in Y (k)X Z such that

(*) (a; Pa)eWaC({a}UN)XOa

for each a<r,.
Let =:Y(k)XZ—Z be the projection. For each n, meN, let

Unm=m(Ur|{m} X Z).

By (*), we can easily show that {U.n: n, meN} is a development for Z. This
completes the proof.

COROLLARY. For a space Z, the following are equivalent :
(1) Z is a developable space.
(2) Z XY is d-paracompact for every developable space Y.

PROOF. (1)—(2) is obvious from the facts that the product of two develop-
able and that every developable space is d-paracompact. (2)—(1) follows from
the above proposition and the fact that Y (x) is developable.

EXAMPLE 4. There exists a semimetrizable space which is not d-para-
compact.

CONSTRUCTION. Let X=R? be the space with the bowtie topology. For
each point p=(x, y)eX, {B(p, ¢, 8): ¢, >0} is a neighborhood base of p in X,
where

B(p, &, )={p}U{(x’, y)EX:
0<|x'—x|<e and |(y'—y)/(x'—x)| <4}

Then X is a semimetrizable, non-developable space [Gr, Eemple 9.10]. Let
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Z=Y(¢)XX. Then by Proposition 6, Z is not d-paracompact. But Z is semi-
metrizable because semimetrizable spaces have the countably productive property.
The author should appreciate the referee’s valuable suggestions, especially

for the examples.
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