TSUKUBA J. MATH.
Vol. 15 Nol 2 (1991), 413—423

HYPERELLIPTIC MODULAR CURVES

By

N. Isuir and F. MoMOSE

Let N=1 be an integer, and A be a subgroup of (Z/NZ)*. Let X,=
X,(N) be the modular curve defined over Q associating to the modular group
I',=I,N):

b
I’A(N)z{(a d)ESLg(Z) | ¢=0 mod N, (a mod N)EA} .
¢

Since X,=X(..,,, [2], we always assume that —1 belongs to A. For A={=+1}
(resp. A=(Z/NZ)*), we denote X,(N) by Xi(N) (resp. Xo(N)). Ogg deter-
mined all the hyperelliptic modular curves of type Xo(N). This work aids the
determination of the rational points on the modular curves X;,:::(V) etc. [15,
16, 17] and that of the automorphism groups of X,(N) [8], [19]. In this paper,
we determine all the hyperelliptic modular curves of type X,(N). There are
nineteen hyperelliptic modular curves X (N) for N=22, 23, 26, 28, 29, 30, 31,
33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59 and 71 [18]. The modular curves
X,(N) are subcoverings of X,(N)—X,(N). Therefore it suffices to discuss the
cases for the above nineteen integers N and for the integers N with genus of
Xo(N) are 0 or 1 (i.e. N=17, 19, 20, 24, 27, 32, 36, 49; 13, 16, 18 and 25). Our
result is as follows.

THEOREM. The hyperelliptic modular curves of type X,(N) are the curves
XoN) for the above nineteen integers N, and X,(13), X,(16) and X,(18).

By the above result and [18], we see that the hyperelliptic involutions of
X,(N) as above are represented by matrices belonging to GL{(®), except for
Xo(37) (see also [12]). Our result is used to determine the torsion points on
elliptic curves defined over quadratic fields [17].

The automorphism groups Aut X,(N) are determined for X,(N), [3], [8],
[19], and for all A with square free integers N [13]. Except for N=37 and 63
the automorphisms of X,(N) with genera =2 are represented by matrices be-
longing to GL3(@) loc. cit.. In the final section, we determine the automorphism
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groups of the hyperelliptic modular curves as above.

NOTATION. Let Q%" denote the maximal unramified extension of @,. For
a positive integer n, {, is a primitive n-th root of unity, and g, is the group
consisting of all the n-th roots of unity.

§1. Preliminaries

In this section, we give a review on modular curves and add the list of the
hyperelliptic modular curves of type X (/N) [18]. Let N=1 be an integer, and
A be a subgroup of (Z/NZ)* containing —1. Let X,=X,(N) be the modular
curve defined over @ associating to the modular group I",(N):

b
{(a d)ESLz(Z) | ¢=0 mod N, (a mod N)EA}

c

Then X,(N) is the coarse moduli space (over @) of the isomorphism classes of
the generalized elliptic curves E with a point P mod A. We have the Galois
covering

Xi(N) — X, ,(N) — X(N),
(E, £P)—> (E, AP) — (E, {(P))

where (P> is the cyclic subgroup generated by P. Let g,(N), g.&N) and g.N)
denote the genera of X,(N), Xi(N)and X,(N), respectively, Let Y, (N), Yi(N)
and Y(N) be the open affine subschemes X,(N)\{cusps} X(N)\{cusps}, and
Xo(N)~{cusps}, respectively VI (6.5). Then the covering Y,(N)—Y (N)
ramifies at the points represented by the pairs (E, <P)) with Aut(FE, {P>)+
{+1} and Aut(E, =P)={=1}. The modular invariants of the remification
points on Y (N) are 0 or 1728.

(1.1) Let 0:(2) and oo:((l)) be the Q-rational cusps on X,(NN) which are
represented by the pairs (GnXZ/NZ, Z/NZ) and {Gnx, px}, respectively [2] IL
For a positive divisor d of N and for an integer ; prime to d, let (;,) denote
the cusp on X, N) which is represented by (G.XZ/(N/d)Z, {L%, 1>). Then
(;) is defined over Q(Z,) for n=G.C.D. of d and N/d, and (;):(2) if and
only if /=; modn. The ramification index of the covering X,(N)—X,(N) at
i) is G.C.D. of d and N/d. Let O; (1=/=#(Z/NZ)*/A)) be the

d
cusps on X,(N) lying over the cusp O on X (N). Then O, are all Q-rational.

the cusp (
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We call them O-cusps.
Let co—_—(;

C,. We here discuss the field of definition of the cusp C. Put N=d,-N,; for
coprime divisors d, and N, such that d and d, have same prime divisors. Put

r={a modd,lasi, a=1 mod N/d}, Al={a=(Z/d,Z)*|a=1 mod d}, and let
A, be the subgroup generated by A} and A.

) be a cusp on X (N), and C be a cusp on X,(N) lying over

LEMMA 1.2. With the notation as above, let k(A, d) be the field associating
to the subgroup Ay of (Z/d Z)*. Then k(A, d) is the field of definition of the
cusp C. For C=o0, we know As=A.

ProoF. The cusp C is represented by the pair
(GaXZ/(N/d)Z, (§, 1) mod A)

for a primitive d-th root {={,; of unity (1.1). The subgroup A acts by (, 1)
—(L?, a) for a=A. Further, as a generalized elliptic curve, Aut (G, xXZ/(N/d)Z)
is generated by (x, ©)—(&%/q-x, 7) and (x, i)—(x"!, —i) (see D. O

(1.3) Let M=1 be a positive divisor of N prime to N/M. The matrix
(Ma b
Nc¢ Md
wy of Xi(N). For a choice of a primitive M-th root £, of unity. wy is de-

fined by

) for integers a, b, ¢, d with adM?*—cdN=DM defines an automorphism

(E, £P)—— (E/{Py>, £(P+Qux) mod<{Py>),

where Py=(N/M)P and Q@ is a point of order M such that ey(Py, Qu)=Cux
and ey : EyXEy—py is the ey (Weil)-pairing. Then wy induces the involution
of X,(IN) defined by

(E, A)—>(E/Au, (A+Ex)/Ax),

where Ay is the cyclic subgroup of order M of A. For an integer ; prime to
N, let [7/] denote the automorphism of X;(N) represented by g=I"o(N) such
7

0
wy and [7] the automorphisms of a subcovering X,(N) which are induced by

that gE( :) mod N, then [7] acts as (E, = P)—(E, =/P). We denote also by

wy and [7], respectively.

(1.4) There are exactly nineteen values of N for which X, () are hyper-
elliptic curves and they are listed in the table below [18]:
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genus
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hyperelliptic involution

- (%)
W3y

—10 1
(—120 10)
Wi

Was

War

(Cis o
Wso

Wse

W

(*) s is not represented by any 2x2 matrix §5, [18].

§2. Hyperelliptic modular curves X,(N)

In this section, we determine the hyperelliptic modular curves of type X,(V).
To determine the hyperelliptic modular curve X,(N) (of genus g,(N)=2), it
suffices to discuss the following three cases (1), (2) and (3):

Case (1) goN)=2 (see (1.4)).

Case (2) goN)=1 (N=17, 19, 20, 24, 27, 32, 36 and 49)

Case (3) goN)=0 (N=13, 16, 18 and 25)

THEOREM 2.1.

twenty-two modular curves:

Xo(N)

and

All the hyperelliptic modular curves X,(N) are the following

for the nineteen integers N in (1.4),
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genus hyperelliptic tnvolution v
X,(13) 2 [51=[2]°
X,(16) 2 [71=[5]
X,(18) 2 wae[7]

PROOF. Suppose that X,=JX,(N) has the hyperelliptic involution w. Then
w is defined over @ and belongs to the center of Aut X,(N). If moreover
go(N)=2, then w induces the hyperelliptic involution v of X (V).

CASE (1) goN)=2: At first, we discuss the case when the hyperelliptic
involutions v of X,(/N) are of type wy (1.4). For N=23, 26, 29, 31, 35, 39, 41,
47,50, 59 and 71, v(0O)=co and the cusps lying over oo are defined over the
fields associated with the subgroup A of (Z/NZ)* by lemma 1.2. For N=22,
28, 30, 33 and 46, by we see that the cusps on X,(N) lying over
v(0) are not defined over @ for A#(Z/NZ)*. Now we discuss the remaining
case for N=40, 48 and 37.

Case N=40: The maximal subgroup of (Z/40Z)*=(Z/8Z)* x(Z/5Z)* con-
taining =1 are A,=<{=*1, (3, 1), (—1, 1)>, A,=<(=£1, (3, 2)> and A,=<=+1, (1, 2)).
The hyperelliptic involution v of X,(40) sends the cusp oo to (411) (1.4). The
cusp C on X,, lying over (i) are all @-rational, and those lying over co are

defined over the fields associated with the subgroups A; of (Z/40Z)*, cf.

Case N=48: The maximal subgroups of (Z/48Z)*=(Z/16Z)* X(Z/3Z)* are
A=<(=*1, 3, 1)), A=<x1,(09, 1), 1, —1)> and A,=<=x1, @3, —1)>. Tne hyper-

elliptic involution v of X,(48) sends the cusp oo to (;) (1.4). Let P; and Q;:
be the cusps on X,, lying over the cusp o and (é), respectively. Then P;

are defined over real quadratic fields, cf. But the cusp Q, is defined
over Q(x/—=2), and the cusp Q; is defined over Q(+~/—1). For A,, suppose that
X», has the hyperelliptic involution v, which induces the hyperelliptic involution
—6 1
—48 6
an automorphism u of X,,, and u does not commute with v.

w of X,(48) represented by ( ) cf. (1.4). The matrix ((1) i/ 2) represents

Case N=37: The hyperelliptic involution s of X,(37) sends the cusps to
non cuspidal @-rational points, §5, Theorem 2. Further by [13], any
automorphism of X,(N) is represented by a matrix belonging to GLj(R) for
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A+(Z/)37Z).

CaSE (2) goN)=1: Let I'f(N)/Q* be the normalizer of [',(N)/+1 in
PGL¥(®), and put B,=B,N)=I¥N)/I' (N)Q*, which is a subgroup of
Aut X,(N). For square free integers N with g,(N)=2, B,(N)=Aut X,(N)
except for X,(37) [13].

Case N=17, 19 and 20: For A+#{=x1l}, g,(N)=1. For N=17 and 19,
Xi(N)XQ) consist of the O-cusps, and X,;(20)@) consists of the O-cusps and

ramified cusps C, and C, lying over the cusp (;) [10], Lemma 1.2l Suppose

that X,(N) has the hyperelliptic involution ». Then v induces an involution w
of Xy(N) such that Xo(N)/<w)>= P}, and w commutes with the automorphisms

of type wy cf. §4. Then w fixes O, and (é) for N=20. For N=17 and

19, there are not such involutions. The orbit of {O, (;)}» under the subgroup

w,, wsy is {O, oo, (é), (i), (é), (110>}, which consists of fixed points of w.

This is a contradiction.

Case N=21: The maximal subgroups of (Z/21Z)*=(Z/3Z)*X(Z/7Z)* are
A=<x1, (1, =1), A,=<=%1, (1, 2)), and g,,(21)=3, g,,(21)=1. Suppose that X,
has the hyperelliptic involution v for A=A,. Then v induces the involution

w=w, or wy [1] §4, table 5. Since w;(0)=co, w+#w,, cf.
hence w=w, But then v dose not commutes with w,.

Case N=24: Since X,(24)(@)={cusps} [24] table 1, and ["(24)/+1 has no
elliptic element, any @Q-rational automorphism of X,(24) belongs to B¢24). The
maximal subgroups of (Z/24Z)*=(Z/8Z)* X(Z/3Z)* are A,=<=1, (—1, 1), A,=
(%1, (3, 1)> and A,=<(+£1, (5, 1)>. For A=A, and A,, g,(24)=3 and g,,24)=1.

Suppose X, has the hyperelliptic involution v for A=A, or A,. Since (1) i/ 2)

mod /" ,(24) does not belong to Aut X,, v induces the involution w=w; or wy,
§4, table 5. But w, and w,, are defined over Q(+/2) for A=A,. For
A=A,, w,, is defined over Q(+~/—3), hence w=w, Since X,(Q) consisits of
the O-cusps and ramified cusps C,, C,, C; Ci,, w=w; must fix the O-cusps.
This is a contradiction.

Case N=27: For A={=xl}, g,(27)=1, and g,(27)=3. Let X=2,(27) be
the normalization of the projective j-line in the function field of X,(27). Then
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#X(F;)=#{0-cusps} =9, so that X;(27) is not hyperelliptic cf. [18].

Case N=32: For A'=<(zx1, 14+16), g,,(32)=5, and for A"=<{*£1, 1+8),
g,(32)=1. Let J’, J” be the jacobian varieties of X, and X,, respectively.
Then J'=J]”+ A for an abelian variety A(/Q) of dimension 4. The involution
[9] acts by +1 on J”, and by —1 on A. If X,. has the hyperelliptic involu-
tion v, then [9] v acts by —1 on J”, and +1 on A. But there is not such an
involution. It is easily seen by Riemann-Hurwitz formula.

Case N=36: The maximal subgroups of (Z/36Z)*=(Z/4AZ)*X(Z/9Z)* are
A=<x1, (1, 4)>, A,=<(+1, (1, —1), and ga,=3, g»,=7. Snppose X, has the
hyperelliptic involution v. Then v induces an involution w of X,(36). At first,
we discuss for A=A, The set X,,(Q) consists of the O-cusps and ramified
cusps C,, C, cf. table 1, Lemma 1.2 Then w fixes the set of O-cusps.

The matrix ((1) i/ 3) represents an automorphism g of X,,, and the orbit of O

under the subgroup <{g, w., wey is S:{O, 00, (iél),<;), (i),(f;)} Then w

must have more than #S=8 fixed points, which is a contradiction. Now con-
sider the case for A=A,. The set X,,(Q) consists of the O-cusps and the cusps

lying over the cusps (;),(i), cf. Then v fixes a rational points

on X,,, since #X,,@)=9. The matrix (O 1/ ) represents an automorphism g

of X,,, and the subgroup {g, w,, 7)> acts transitively on X, (@), where 7 is a
generator of the covering group of Xa,—X,(36). Thus v fixes all the points
belonging to X, (@) and wy(Xx,(@)). This contradicts to g,(36)=7.

Case N=49: Let A, be the maximal subgroups of (Z/49Z)* of indices
n=3,7. Let 2, be the normalization of the projective j-line 2,(1)= P} in the
function field of X,. For A=A, the cusps on X, are all defined over Q(.),
so that #2,(Fg)=24. For A=A, #X,(F,)=7. Therefore X,, are not hyper-

elliptic cf. [18].

CASE (3) goN)=0: For A+#{*1}, X,=P}. For N=13, 16 and 18, [5],
and w,[7] are the hyperelliptic involutions of X,(N), respectively. There
remains the case for N=25. Let A, be the maximal subgroups of (Z/25Z)* of
index n=2,5. Then g4,(25)=0 and g»(25)=4. We know that X, (@) consists
of the O-cusps [6]. Suppose that X=X, has the hyperelliptic involution v.
Then v fixes a O-cusp, hence v fixes all the O-cusps. Then the divisor class
cl((0")—(07")) are of order 2 for the O-cusps O’ and 07, 0’0", But we know
that the Mordell-Weil group of the jacobian variety of X is isomorphic to
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Z/71Z [6]. O

§3. Automorphism groups of hyperelliptic curves X,(N)

In this section, we determined the automorphism groups of hyperelliptic
modular curves of type X,(N). For square free integers N, Aut X,(N) are

determined [13], [19]. Hence it suffices to discuss for X,(16) and X,(18) cf.
Theorem 21.

THEOREM 3.1. The automorphisms of X,(16) and X,(18) are represented by
2X 2 matricies.

PROOF.

Case N=18: Let ¥ be the minimal model of X,(18) (/Z). The special
fibre XQF; has two irreducible components Z, Z’ which are isomorphic to P!
and intersect transversally at three supersingular points S;, S; and S, [2]. Let
v=w,[7] be the hyperelliptic involution of X,(18). Since the jacobian variety
J.(18) of X,(18) has stable reduction at the rational prime 2 [2], any endomor-
phism of J,(18) is defined over Q%" [22] Lemma 1. Let G be the subgroup of
Aut X,(18) consisting of automorphisms g which fix the irreducible component
Z. Then we see that the representation of G into the permutation group S,
of the set {S,, S,, S;} is faithfull. Thus we see that G=<w,, [7]>. Further
w, exchanges Z by Z’. Thus Aut X,(18) is generated by w,, w, and [7].

Case N=16: The hyperelliptic involution v=y? for y=[3]. Put X=X,(16)
and Y=X/<w). Let C,, C, (resp. C, C,) be the cusps on X lying over the

cusp (;) (resp. (;)) Then C; are the ramification points of the covering
X-Y. Let P, P, be the totally ramified cusps lying over (111) and (_i),

respectively. Let S, be the set of the Weierstrass points of X:S,=
{P,, P,, C,, C,, C,, C,}, and let Ss be the permutation group of the elements of
S,. Then (Aut X)/{v) becomes a subgroup of S,.

LEMMA 3.2. {gc€Aut X | grg *=r*'}=<r, wie>.

PROOF. We can take a local parameter x along the cusp oo of X,(16)
such that the modular invariant j=F(x)/G(x) for F(x)=(x3+2'x"+7-2*x°+7-
26x5469-24x4+13-27x%411-2"x24+20x+2"%)® and G(x)=x(x+4)(x2+4x+8)(x+2)*
[3] kapitel IV. Further the values x=0, —2, —24+2+/—1, —2—2+/—1 and —4
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4 4

=7*!, then g induces an automorphism of A of X,(16)=P(x), and h* sends the
set {—4, —2} and {—2-+2+/—1} to themselves. If A*(—4)=—2, then w,*h*
fixes both —4 and —2. Changing g by gw;e if necessary, we may assume
that h* fixes both —4 and —2. Let 0 be the automorphism of P'(x) defined
by 8*(x)=x+4/x+2, then 6*(—242vV—1D)=1—+—1, 0¥(—2—2v/=1)=1+4+/—1,
and (Ohd H)*(x)=ax for some a=C*. If a#l, then a(l++v—1)=1—+—1, so
that a=—+/—1. But then 14++/—1=0hrd V0 —+v —=1)#(—+=1)1—+-1).
Therefore a=1, i.e., h=:id and g belongs to <{r>. O

corresponds to the cusps oo, (é), (1>, (—1> and (é), respectively. If grg™

At first, we show that any 2-sylow subgroup H of G=Aut X containg 7
and w, is equal to the subgroup {wis, 7>, Which is a dihedral group with rela-
tion w,ywid=y~'. If #H=8, then G has a subgroup K of order 16 containing
{wi, ¥>. Then <r)> is a normal subgroup of K, since <7) is the unique cyclic
subgroup of order 4 of <wi, 7>. Then by Lemma 3.2, any g= K belongs to
{wye, 7>. It is a contradiction. Now we show that G is a 2-group. The prime
divisors of #G are 2, 3 or 5. If g=G is of order 5, then g fixes a Weierstrass
point C, which is defined over Q({,,). Let t be a local parameter along C.
Then g*()={st+ayt*+ --- for a primitive 5-th root {; of unity, so that g is not
defined over Q%". But we know that any endomorphism of the jacobian variety
of X is defined over Q%" for any prime number p=2 [2], [22] Lemma 1. Sup-
pose that an automorphism g G is of order 3. By the same way as above,
we see that g does not fix any Weierstrass point. Changing the induces of
{P;}, {Cy, Cs} and {C,, C,}, if necessary, we may assume that (1) g(P,)=PF, or
2) g(P)=C..

CLAamM. g(Py)+# P..

We know that y=(C,, C,)(C;, C,) mod<v). If g(P,)=P, then grg mod <v)
is of order 5, so that g(P,)#Ps.

Put Ah=gyg™!, which fixes the @Q-rational cusp C,. Let ¢t be a local param-
eter along C,. Then h*(t)=+~/—1t+ --- €Q(~/—1)[[t]], and 4 is defined over
Q(~/—1). For any o¢=Gal (Q/Q), h’=h*!, so that g°g"! belongs to {wy, 7> by
Since g°g™' fixes the Q-rational cusp C;, g°¢ '=1 or ». Then
- (g?)=g® Since g is of order 3, g’=g, so that g is defined over Q. But we
know that Ende/:(16)RQ=Q(~/—1) [14], [20, 21], where Endg -+ is the subring
consisting of the endomorphisms defined over @. Thus Aut X is a 2-group. [
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