HARMONIC FOLIATIONS ON THE SPHERE

By

Zhi-Bo Lı

Introduction.

Let M be a compact orientable manifold and let \mathcal{F} be a harmonic foliation on M with respect to a bundle-like metric. Kamber and Tondeur [4] proved a fundamental formula for a special variation of \mathcal{F} , and making use of it they proved that the index of a harmonic foliation \mathcal{F} on the sphere S^n (n>2) for which the standard metric is bundle-like is not smaller than q+1, where q is the codimension of \mathcal{F} . On the other hand, Nakagawa and Takagi [6] proved that any harmonic foliation on a compact space form $M^n(c)$, $c \geq 0$, for which the normal plane field is minimal is totally geodesic. Here a complete Riemannian manifold of constant curvature is called a *space form* and an n-dimensional space form of constant curvature c is denoted by $M^n(c)$. However a formula in [6] contains an error, and hence the above result is yet open.

The purpose of this paper is to study a harmonic foliation on the sphere. We use the method of Nakagawa and Takagi [6] to calculate the divergence of a vector field and obtain a formula of Simons' type. Then, after Chern, do Carmo and Kobayashi [2] it is proved that a harmonic foliation \mathcal{F} of codimension q on an n-dimensional unit sphere satisfying $S \leq (n-q)/(2-1/q)$ for which the normal plane field is minimal, is totally geodesic or n=4, q=2, where S denotes the square of the norm of the second fundamental form of each leaf. Moreover, was also prove that if $S \leq (n-q)/(2-1/q)$ or $K \geq (q-1)/(2q-1)$ for a harmonic foliation \mathcal{F} of codimension q on the unit sphere with respect to a bundle-like metric, here K denotes the sectional curvature of leaves, then \mathcal{F} is totally geodesic. Thus they have been completely classified by the theorem due to Escobales [3].

The author would like to express his thanks to Professors Nakagawa and Takagi for their valuable suggestion and encouragement during the preparation of this paper.

1. Preliminaries.

Let (M, g) be an n-dimensional Riemannian manifold and \mathcal{F} a foliation of codimension q on M. We may choose a suitable Riemannian metric on the tangent bundle T(M) of M and decompose T(M) as the direct product $\mathcal{F} \oplus \mathcal{F}^{\perp}$, where \mathcal{F}^{\perp} is called a *normal plane field*. For any vector field X on M we decompose it as

$$X=X'+X''$$
.

where X' (resp. X'') is tangent (resp. normal) to \mathcal{F} .

We define two tensors A and h of type (1, 2) on M by

(1.1)
$$A(X, Y) = -(\nabla_{Y''}X'')', \quad h(X, Y) = (\nabla_{Y'}X')''$$

for any vector fields X and Y on M, where ∇ denotes the Riemannian connection with respect to g. The restriction of h to each leaf of \mathcal{F} is identified with the second fundamental from of the leaf.

After Reinhart [7] we define the second fundamental from B of the normal field \mathcal{F}^{\perp} by

(1.2)
$$B(X, Y) = \frac{1}{2} \{ A(X, Y) + A(Y, X) \}$$

for any vector fields X and Y on M.

The following convention on the range of indices will be used throughout this paper:

A, B, C,
$$\dots = 1, \dots, n$$
;
 $i, j, k, \dots = 1, \dots, p$;
 $\alpha, \beta, \gamma, \dots = p+1, \dots, p+q=n$,

where p=n-q denotes the dimension of \mathcal{F} . The summation Σ is taken over all repeated indices, unless otherwise stated. We take a local orthonormal frame field $\{e_A\}$ in (M, g, \mathcal{F}) such that e_1, \dots, e_p are tangent to \mathcal{F} and hence e_{p+1}, \dots, e_n are orthogonal to \mathcal{F} . The dual coframe field is denoted by $\{\omega_A\}$.

The structure equations of M are given as follows:

(1.3)
$$\begin{cases} d\omega_A + \sum \omega_{AB} \wedge \omega_B = 0, \\ \omega_{AB} + \omega_{BA} = 0, \end{cases}$$

(1.4)
$$\begin{cases} d\omega_{AB} + \sum \omega_{AC} \wedge \omega_{CB} = \Omega_{AB}, \\ \Omega_{AB} = -\frac{1}{2} \sum R_{ABCD} \omega_{C} \wedge \omega_{D}, \end{cases}$$

where ω_{AB} is the connection from with respect to ω_{A} , Ω_{AB} denotes the curvature form of M and R_{ABCD} are its components, which are the Riemannian curvature tensor with respect to g.

The Riemannian connection ∇ on M is given by

$$\nabla_{e_A} e_B = \sum \omega_{CB}(e_A) e_C.$$

It follows from (1.1) and (1.5) that

(1.6)
$$\begin{cases} h(e_i, e_j) = \sum \omega_{\alpha i}(e_j) e_{\alpha}, \\ A(e_{\alpha}, e_{\beta}) = \sum \omega_{\alpha j}(e_{\beta}) e_j. \end{cases}$$

Thus the only components h_{BC}^A (resp. A_{CD}^B) of h (resp. A) which may not vanish are

(1.7)
$$h_{ij}^{\alpha} = \omega_{\alpha i}(e_j), \quad (resp. \ A_{\alpha \beta}^i = \omega_{\alpha i}(e_\beta)).$$

Moreover the connection form $\omega_{\alpha i}$ are given by

(1.8)
$$\omega_{\alpha i} = \sum h_{ij}^{\alpha} \omega_j + \sum A_{\alpha\beta}^{i} \omega_{\beta}.$$

The foliation \mathcal{F} is said to be harmonic or minimal if $\sum h_{jj}^{\alpha}=0$. The foliation \mathcal{F} is said to be totally geodesic if $h_{ij}^{\alpha}=0$. The normal plane field \mathcal{F}^{\perp} is said to be minimal if $\operatorname{Tr} B = \sum A_{\alpha\alpha}^{i} e_{i} = 0$. The normal plane field \mathcal{F}^{\perp} is said to be totally geodesic if B=0. The Riemannian metric tensor g is bundle-like (see Molino [5]) if and only if

$$A_{\alpha\beta}^{i} = -A_{\beta\alpha}^{i}.$$

This is equivalent to that B=0. Since the distribution $\omega_{\alpha}=0$ is integrably by definition, it yields

$$(1.10) h_{ij}^{\alpha} = h_{ji}^{\alpha}.$$

Now, for a tensor field $T = (T_{B_1}^{A_1 \dots A_r})$ on M, we define the covariant derivative $T_{B_1}^{A_1 \dots A_r}$ by

Then, from the definition of (h_{BCD}^A) , (A_{BCD}^A) and (1.8), it follows that we have

$$h_{ijk}^{l} = -\sum h_{ij}^{\alpha} h_{lk}^{\alpha},$$

$$h_{ija}^{l} = -\sum h_{ij}^{\beta} A_{\beta a}^{l},$$

$$h_{i\beta j}^{\alpha} = h_{\beta ij}^{\alpha} = \sum h_{ik}^{\alpha} h_{kj}^{\beta},$$

$$h_{i\beta\gamma}^{\alpha} = A_{\beta i\gamma}^{\alpha} = \sum h_{ik}^{\alpha} A_{\beta\gamma}^{k},$$

$$h_{\beta \gamma C}^{A} = h_{\alpha CD}^{j} = A_{C\beta D}^{j} = 0,$$

$$A_{j\alpha\beta}^{i} = -\sum A_{r\alpha}^{i} A_{r\beta}^{j},$$

$$A_{\alpha j\beta}^{i} = -\sum A_{\alpha \gamma}^{i} A_{\gamma \beta}^{j},$$

$$A_{i\alpha k}^{i} = -\sum A_{\beta\alpha}^{i} h_{ik}^{\beta},$$

$$A_{\alpha jk}^{i} = -\sum A_{\alpha \beta}^{i} h_{jk}^{\beta},$$

$$(2.21) A_{\alpha\beta j}^{\tau} = \sum A_{\alpha\beta}^{l} h_{lj}^{\tau},$$

$$A_{\alpha\beta\delta}^{\gamma} = \sum A_{\alpha\beta}^{l} A_{\gamma\delta}^{l},$$

$$A_{ijD}^{C} = A_{iCD}^{\alpha} = A_{CjD}^{\alpha} = 0.$$

Moreover, by the exterior derivatives of (1.8) and by means of (1.14), (1.15) and (1.18), we have

$$h_{ijk}^{\alpha} - h_{ikj}^{\alpha} = R_{\alpha ijk},$$

$$(1.25) h_{ij\beta}^{\alpha} - h_{i\beta j}^{\alpha} + A_{\alpha j\beta}^{i} - A_{\alpha \beta j}^{i} = R_{\alpha ij\beta},$$

$$(1.26) h_{i\beta\gamma}^{\alpha} - h_{i\gamma\beta}^{\alpha} + A_{\alpha\beta\gamma}^{i} - A_{\alpha\gamma\beta}^{i} = R_{\alpha i\beta\gamma}.$$

Next, the Ricci formulas for the second covariant derivatives of h are given by

$$(1.27) h_{BCDE}^{A} - h_{BCDE}^{A} = \sum (h_{BC}^{F} R_{AFDE} + h_{FC}^{A} R_{BFDE} + h_{BF}^{A} R_{CFDE}).$$

2. The divergence of a vector field.

Let (M, g) be a locally symmetric Riemannian manifold and \mathcal{F} be a harmonic foliation on M. We consider a global vector field $v = \sum v_A e_A$ on M defined by

$$v_k = \sum h_{ij}^{\alpha} h_{ijk}^{\alpha}, \quad v_{\alpha} = 0.$$

We calculate the divergence δv of v as follows: First, noting $\sum h_{kk}^{\beta} = 0$, we have

$$(2.1) \qquad \qquad \sum v_{kk} = \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} + \sum h_{ij}^{\alpha} h_{ijkk}^{\alpha} + \sum h_{ij}^{\alpha} h_{ik}^{\beta} h_{ik}^{\beta} h_{ik}^{\beta} + \sum h_{ij}^{\alpha} h_{ik}^{\alpha} h_{ik}^{\beta} h_{ik}^{\beta} + \sum h_{ij}^{\alpha} h_{ik}^{\alpha} h_{ik}^{\beta} h_{ik}^{\beta} ,$$

To calculate h_{ijkk}^{α} , we take the exterior derivative of (1.24):

$$d(h_{ijk}^{\alpha}-h_{iki}^{\alpha})=dR_{\alpha ijk}$$
.

Then, noting $R_{\alpha ijkl}=0$, it yields

(2.3)
$$h_{ijkl}^{\alpha} - h_{ikjl}^{\alpha} = \sum (h_{ijk}^{m} - h_{ikj}^{m}) h_{ml}^{\alpha} - \sum \{ (h_{\beta jk}^{\alpha} - h_{\beta kj}^{\alpha}) h_{il}^{\beta} + (h_{i\beta k}^{\alpha} - h_{ik\beta}^{\alpha}) h_{jl}^{\beta} + (h_{ij\beta}^{\alpha} - h_{i\beta j}^{\alpha}) h_{kl}^{\beta} \}$$

$$- \sum R_{mijk} h_{ml}^{\alpha} + \sum (R_{\alpha \beta jk} h_{il}^{\beta} + R_{\alpha i\beta k} h_{il}^{\beta} + R_{\alpha ij\beta} h_{kl}^{\beta}).$$

Remark. In [6] this formula is wrongly derived.

Now, interchanging i, j and k, l in (2.3), we have also

$$(2.4) h_{klij}^{\alpha} - h_{kilj}^{\alpha} = \sum (h_{kli}^{m} - h_{kil}^{m}) h_{mj}^{\alpha} - \sum \{ (h_{\beta li}^{\alpha} - h_{\beta il}^{\alpha}) h_{kj}^{\beta} + (h_{k\beta i}^{\alpha} - h_{ki\beta}^{\alpha}) h_{lj}^{\beta} + (h_{kl\beta}^{\alpha} - h_{k\beta l}^{\alpha}) h_{ij}^{\beta} \}$$

$$- \sum R_{mkli} h_{mj}^{\alpha} + \sum (R_{\alpha\beta li} h_{kj}^{\beta} + R_{\alpha k\beta i} h_{lj}^{\beta} + R_{\alpha kl\beta} h_{ij}^{\beta}),$$

from which together with (2.3) it follows that we get

(2.5)
$$h_{ijkl}^{\alpha} - h_{klij}^{\alpha} = (the \ right \ hand \ side \ of \ (2.3))$$
$$-(the \ right \ hand \ side \ of \ (2.4))$$
$$+(h_{ikll}^{\alpha} - h_{klli}^{\alpha}).$$

Noticing that

$$(2.6) h_{kilj}^{\alpha} = h_{iklj}^{\alpha},$$

and, by means of the Ricci formula (1.27) for h_{ij}^{α} , we can derive the following equation from (2.5):

(2.7)
$$h_{ijkl}^{\alpha} - h_{klij}^{\alpha} = (the \ right \ hand \ side \ of \ (2.3))$$
$$-(the \ right \ hand \ side \ of \ (2.4))$$
$$+ \sum (R_{\alpha\beta il}h_{ik}^{\beta} + R_{imil}h_{mk}^{\alpha} + R_{kmil}h_{mi}^{\alpha}).$$

Putting l=k in (2.7) and noting $\sum h_{kk}^{\beta}=0$, we have

$$(2.8) \qquad h_{ijkk}^{\alpha} - h_{kkij}^{\alpha} = \sum (h_{ijk}^{m} - h_{ikj}^{m}) h_{km}^{\alpha} - \sum (h_{\beta jk}^{\alpha} - h_{\beta kj}^{\alpha}) h_{ik}^{\beta}$$

$$+ \sum h_{kik}^{m} h_{mj}^{\alpha} + 2 \sum (h_{\beta ki}^{\alpha} - h_{\beta ik}^{\alpha}) h_{kj}^{\beta} - \sum h_{kk\beta}^{\alpha} h_{ij}^{\beta}$$

$$+ 2 \sum R_{imjk} h_{mk}^{\alpha} - 2 \sum R_{\alpha \beta ki} h_{kj}^{\beta} + 2 \sum R_{\alpha \beta jk} h_{ik}^{\beta}$$

$$+ \sum R_{mkki} h_{mj}^{\alpha} - \sum R_{\alpha kk\beta} h_{ij}^{\beta} + \sum R_{kmjk} h_{im}^{\alpha}.$$

It can be easily seen in [6, Lemma 2.2] that

Hence we have

$$(2.10) \qquad \sum h_{ij}^{\alpha} h_{ijk \, k}^{\alpha} = -2 \sum h_{ij}^{\alpha} h_{kl}^{\alpha} h_{li}^{\beta} h_{kj}^{\beta} - \sum h_{ij}^{\alpha} h_{kl}^{\alpha} (h_{ij}^{\beta} h_{kl}^{\beta} - h_{ik}^{\beta} h_{jl}^{\beta})$$

$$- \sum h_{ij}^{\alpha} h_{ik}^{\beta} (h_{jl}^{\alpha} h_{lk}^{\beta} - h_{kl}^{\alpha} h_{lj}^{\beta}) - \sum h_{ij}^{\alpha} h_{jl}^{\alpha} h_{jk}^{\beta} h_{kl}^{\beta}$$

$$+ 2 \sum h_{ij}^{\alpha} h_{jk}^{\beta} (h_{kl}^{\alpha} h_{li}^{\beta} - h_{il}^{\alpha} h_{lk}^{\beta}) - h_{ij}^{\alpha} h_{ij}^{\beta} h_{kl}^{\alpha} h_{kl}^{\beta}$$

$$+ 2 \sum R_{imjk} h_{ij}^{\alpha} h_{mk}^{\alpha} + 4 \sum R_{\alpha\beta jk} h_{ij}^{\alpha} h_{ik}^{\beta}$$

$$+ 2 \sum R_{mkki} h_{ij}^{\alpha} h_{mj}^{\alpha} - \sum R_{\alpha kk\beta} h_{ij}^{\alpha} h_{ij}^{\beta} .$$

Now, let M be a space of constant curvature $c(\geq 0)$. For each index α , we denote by H_{α} the symmetric matrix (h_{ij}^{α}) and set

$$(2.11) S_{\alpha\beta} = \sum h_{ij}^{\alpha} h_{ij}^{\beta}.$$

Since the matrix $S_{\alpha\beta}$ of order q is also symmetric and it is diagonalizable, a local field of orthonormal frames $\{e_{\alpha}\}$ can be chosen in such a way that $S_{\alpha\beta} = S_{\alpha}\delta_{\alpha\beta}$, where the eigenvalues S_{α} 's are real-valued functions on M. We denote by S the squence of the length of the second fundamental form h:

$$(2.12) S = \sum h_{ij}^{\alpha} h_{ij}^{\alpha} = \sum S_{\alpha}.$$

From (2.1) and (2.10) we have

Thus the divergence δv becomes

(2.14)
$$\delta v = \sum v_{\alpha\alpha} + \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} + \sum Tr \left[(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha})(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha}) \right] - \sum S_{\alpha}^{2} + pcS.$$

3. The main result.

In the present section we follow Chern, do-Carmo akd Kobayashi [2] closely. For an $n \times n$ matrix A with components (a_{ij}) we denote by N(A) the trace of the matrix A^tA , i.e., we put $N(A) = \sum (a_{ij})^2$. First of all, we need the following

LEMMA [2]. Let A and B be symmetric $q \times q$ watrices. Then

$$N(AB-BA) \leq 2N(A)N(B)$$

and the equality holds for nonzero matrices A and B if and only if A and B can be transformed simultaneously by an othogonal matrix into scalar multiples of \widetilde{A}

and \widetilde{B} respectively, where

$$\widetilde{A} = \begin{pmatrix} 0 & 1 & & \\ 1 & 0 & & \\ & & 0 \end{pmatrix} \qquad \widetilde{B} = \begin{pmatrix} 1 & 0 & & \\ 0 & -1 & & \\ & & 0 \end{pmatrix}$$

Moreover, if A_1 , A_2 and A_3 are $(n \times n)$ --symmetric matrices and if

$$N(A_{\alpha}A_{\beta}-A_{\beta}A_{\alpha})=2N(A_{\alpha})N(A_{\beta}), \qquad 1 \leq \alpha, \ \beta \leq 3,$$

then at least one of the matrices A_{α} must be zero.

THEOREM 1. Let $(S^n(c), g)$ be an n=(p+q)-dimensional sphere of constant curvature c and let \mathcal{F} be a harmonic foliation of codimension q on $S^n(c)$. If the normal plane field \mathcal{F}^\perp is minimal, then we have

$$\int_{S_n(c)} S\{\left(2 - \frac{1}{q}\right) S - pc\} *1 \ge 0,$$

where *1 denotes the volume element of $S^n(c)$.

PROOF. Since the normal plane field \mathcal{F}^{\perp} is minimal, we get $\sum v_{\alpha\alpha}=0$ by (2.2), which implies that (2.14) becomes

(3.1)
$$\delta v = \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} - \sum N(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha}) - \sum S_{\alpha}^{2} + pcS.$$

Thus we have

$$\begin{split} -\delta v + \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} &= \sum N(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha}) + \sum S_{\alpha}^{2} - pcS \\ &\leq 2 \sum_{\alpha \neq \beta} N(H^{\alpha}) N(H^{\beta}) + \sum S_{\alpha}^{2} - pcS \\ &\leq 2 \sum_{\alpha \neq \beta} S_{\alpha} S_{\beta} + \sum S_{\alpha}^{2} - pcS \\ &= (\sum S_{\alpha})^{2} + 2 \sum_{\alpha < \beta} S_{\alpha} S_{\beta} - pcS \\ &= q^{2} \sigma_{1}^{2} + q(q-1) \sigma_{2} - pcS \\ &= -q(q-1)(\sigma_{1}^{2} - \sigma_{2}) + (2q^{2} - q)\sigma_{1}^{2} - pcS \end{split}$$

where $q\sigma_1 = \sum S_{\alpha} = S$ and $q(q-1)\sigma_2 = 2\sum_{\alpha < \beta} S_{\alpha} S_{\beta}$. It can be easily seen that

$$q^2(q-1)(\sigma_1^2-\sigma_2) = \sum_{\alpha < \beta} (S_{\alpha}-S_{\beta})^2 \ge 0$$
 ,

and therefore we get

$$\begin{split} -\delta v + \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} &\leq (2q^2 - q)\sigma_1^2 - pcS \\ &= S \left\{ \left(2 - \frac{1}{q} \right) S - pc \right\}. \end{split}$$

By Green's theorem we have

$$0 \leq \int_{S^{n}(c)} \sum h_{ijk}^{\alpha} h_{ijk}^{\alpha} * 1 \leq \int_{S^{n}(c)} S\left\{\left(2 - \frac{1}{q}\right)S - pc\right\} * 1.$$

COROLLARY. Under the condition of Theorem 1, if \mathfrak{F} is not totally geodesic and if $S \leq pc/(2-1/q)$ everywhere on $S^n(c)$, then

$$S = \frac{pc}{2 - \frac{1}{q}}$$

and the second fundamental form of each leaf is parallel along the leaf.

Let S^n be a unit sphere. We assume that the square length S of the second fundamental form of each leaf is equal to p/(2-1/q). If the foliation \mathcal{F} is harmonic on S^n , then each leaf of \mathcal{F} is the minimal submanifold in M. So, the well known theorem due to Chern, do-Carmo and Kobayashi [2] implies that there are only two cases as follows:

- 1. q=1,
- 2. p = q = 2.

However, by a theorem of Barbosa, Kenmotsu and Oshikiri [1] it is seen that the case 1 does not hold for our foliated Riemannian manifold. But we give here a direct simple proof of this fact. By definition we get

$$\begin{aligned} \nabla_{e_{p+1}} e_{p+1} &= \sum \omega_{ip+1}(e_{p+1}) e_j = \sum A_{p+1p+1}^j e_j , \\ \delta(\nabla_{e_{p+1}} e_{p+1}) &= \sum A_{p+1p+1j}^j . \end{aligned}$$

On the other hand, from (1.14), (1.18) and (1.25) we have

Thus we have

$$\delta(\nabla_{e_{p+1}}e_{p+1})\!=\!-p\!-\!S\!-\!\mid\! A\!\mid\!<\!0\;.$$

Integrating it over M, we derived a contradiction. So we prove the following

THEOREM 2. Let S^n be an n=(p+q)-dimensional unit sphere and \mathfrak{F} be a harmonic foliation of codimension q on S^n satisfying S=p/(2-1/q). If the normal plane field \mathfrak{F}^1 is minimal, then p=q=2.

COROLLARY. Let S^n be an n=(p+q)-dimensional unit sphere and \mathfrak{F} be a harmonic foliation of codimension q on S^n . If the normal plane field \mathfrak{F}^\perp is minimal and if $S \leq p/(2-1/q)$ holds on M, then the foliation \mathfrak{F} is totally geodesic or p=q=2.

Remark. Yau [8] has proved the following

THEOREM. Let M^n be a compact minimal submanifold in the unit sphere S^{p+q} . Suppose that the sectional curvature of M^n is everywhere not less than (q-1)/(2q-1), then either M^n is the totally geodesic sphere, the standard immersion of the product of two spheres or the Veronese surface in $S^4(1)$.

Following Yau's theorem we easily prove that a harmonic foliation on the sphere, for which the normal plane field \mathcal{F}^{\perp} is minimal and the sectional curvature of leaves $K \geq (q-1)/(2q-1)$, is totally geodesic or p=q=2.

The compact condition of leaves is not necessary, because the integration is taken on the sphere.

Hereafter, we assume that the standard metric is bundle-like. Obviously, it implies that the normal plane field is minimal. If the sphere $S^4(1)$ is foliated foliated by the Veronese surfaces, then it is known in [2] that

(3.2)
$$(h_{ij}^3) = \begin{pmatrix} 0 & -\sqrt{\frac{1}{3}} \\ -\sqrt{\frac{1}{3}} & 0 \end{pmatrix}, \quad (h_{ij}^4) = \begin{pmatrix} \sqrt{\frac{1}{3}} & 0 \\ 0 & -\sqrt{\frac{1}{3}} \end{pmatrix}.$$

From (1.25) we have

$$\sum R_{\alpha i i \alpha} = -\sum A_{\alpha \tau}^{i} A_{\tau \alpha}^{i} - \sum h_{i i}^{\alpha} h_{i i}^{\alpha}$$

i. e.,

By differentiating (3.3) it yields

On the other hand, it follows from (1.15) and (1.26) that we get

$$(3.5) \qquad \sum A_{\alpha\beta\gamma}^{i} - A_{\alpha\gamma\beta}^{i} + 2\sum h_{ij}^{\alpha} A_{\beta\gamma}^{j} = 0.$$

By cycling the indecies α , β and γ , it yields

$$(3.6) \qquad \qquad \sum A_{\beta \gamma \alpha}^{i} - A_{\beta \alpha \gamma}^{i} + 2 \sum h_{ij}^{\beta} A_{\gamma \alpha}^{j} = 0,$$

$$(3.7) -\sum A_{\tau\alpha\beta}^{i} + A_{\tau\beta\alpha}^{i} - 2\sum h_{ij}^{\tau} A_{\alpha\beta}^{j} = 0.$$

Taking the summation of (3.5), (3.6) and (3.7), we have

$$(3.8) \qquad \sum A_{\alpha\beta\gamma}^{i} = -\sum (h_{ij}^{\alpha} A_{\beta\gamma}^{i} + h_{ij}^{\beta} A_{\gamma\alpha}^{j} - h_{ij}^{\gamma} A_{\alpha\beta}^{j}).$$

By means of (3.4) and (3.8), we have

$$(3.9) \qquad \qquad \sum (h_{ij}^{\alpha} A_{\alpha\beta}^{i} A_{\alpha\gamma}^{j} + h_{ij}^{\beta} A_{\alpha\beta}^{i} A_{\gamma\alpha}^{j} - h_{ij}^{\gamma} A_{\alpha\beta}^{i} A_{\alpha\beta}^{j}) = 0.$$

It yields

$$(3.10) \qquad \qquad \sum_{i,j} h_{ij}^{r} A_{r\beta}^{i} A_{r\beta}^{j} = 0.$$

Note that we do not take the summation with respect to α and β .

Now, taking $\gamma=3$ and then $\gamma=4$, we have

$$(3.11) A_{34}^1 A_{34}^2 = 0,$$

$$(3.12) (A_{34}^1)^2 = (A_{34}^2)^2.$$

From (3.11) and (3.12) we derive

$$A_{34}^1 = A_{34}^2 = 0$$
.

It contradicts to (3.3). So, we can prove

THEOREM 3. Let \mathcal{F} be a harmonic foliation of codimension q on $S^{p+q}(1)$, for which the standard metric is bundle-like. If $S \leq p/(2-1/q)$ holds on $S^{p+q}(1)$, then the foliation \mathcal{F} is totally geodesic.

THEOREM 4. Let \mathfrak{F} be a harmonic foliation of codimension q on $S^{p+q}(1)$, for which the standard metric is bundle-like. If the sectional curvature K of leaves satisfy $K \geq (q-1)/(2q-1)$ on $S^{p+q}(1)$, then the foliation \mathfrak{F} is totally geodesic.

Rfeerences

- [1] J.L.M. Barbosa, K. Kenmotsu and G. Oshikiri, Foliations by hypersurfaces with constant mean curvature, Preprint.
- [2] S.S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in "Functions Analysis and Related Fields," Springer-Verlag, Berlin, Heidelberg, New York, 1970, pp. 59-75.
- [3] R.H. Escobales Jr., Riemannian foliations of the rank one symmetric spaces, Proc. Amer. Math. Soc. 95 (1985), 495-498.
- [4] F.W. Kamber and Ph. Tondeur, The index of harmonic foliations on spheres, Trans. Amer. Math. Soc. 275 (1983), 257-263.
- [5] P. Molino, "Riemannian foliations," Birkhaüser Verlag, Basel, Boston, Stuttgart, 1988.
- [6] H. Nakagawa and R. Takagi, Harmonic foliations on a compact Riemannian manifold of non-negative constant curvature, Tôhoku Math. J. 40 (1988), 465-471.

- [7] B. Reinhart, "Differential geometry of foliations," Springer-Verlag, Berlin, Heidelberg, New York, 1983.
- [8] S. T. Yau, Submanifolds with constant mean curvature II, Amer. J. Math. 97, 76-100.

Keywords. Riemannian foliations, normal plane field, harmonic, minimal, totally geodesic.

Institute of Mathematics, University of Tsukuba. 305 Ibaraki, Japan Department of Mathematics, Zhengzhou University 450052 Zhengzhou, China