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A FACTOR OF SINGULAR HOMOLOGY

By
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0. Introduction

Singular homology is a beautiful theory, in which we can see a clear cor-
respondence between Algebra and Topology. However, it behaves badly on
topological spaces which are not locally simply connected in comparison with
Cech homology. In the present paper we introduce a canonical factor HI(X)
of singular homology H,(X), which agrees with singular homology on ANR’s
and behaves well on the indicated spaces. We also introduce a notion “quasi-
homotopy” for continuous maps. It turns out that the factor is invariant under
quasi-homotopy.

We state definitions and basic facts in Section 1. In Section 2, we prove
that HL(X)=H,(X) for every ANR X. In Section 3, we show that HI(X) is
isomorphic to a free abelian group whose rank is equal to the cardinality of
equivalence classes with respect to a certain kind of connectedness. There we
also introduce a notion “quasi-homotopy” and show that the factor is invariant
under quasi-homotopy. In Sections 4, 5 and 6, one can see the advantage of
HI(X) to the singular homology groups H,(X). More precisely, HZI(X) are
calculated for certain spaces such as the so-called Hawaiian earring and infinite
products and so on. Furthermore, certain natural abelian groups are realized
as H7(X) by natural topological spaces X. We shall show that any homo-
morphism from HZ(X) to H%(Y) is induced by a continuous map if X and Y
are obtained by attaching copies of S™ in certain ways. For example, for the
Hawaiian earring H, any homomorphism from HZI(H) to itself can be induced
by a continuous map from H to itself, though this fact does not hold for H,(H).
We also characterize slenderness of abelian groups by using H7(H) and the notion
of spatial homomorphism. (See Theorems 6.2, 6.3 and Remark 6.4.) Ralph [22]
has defined a factor of singular chain and homology groups HA and HM. In
Section 4, one can see that HZ has similar effect as HA.
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1. Definitions and basic facts

All (topological) spaces in this paper are Tychonoff spaces and all groups
are abelian, unless otherwise stated. For a space X, let Pm(X) denote the set
of all continuous pseudo-metrics on X. ANR’s mean absolute neighborhood
retracts for metrizable spaces [13].

By 4,, we denote the standard n-simplex with vertices e, '+, e,, Where
e (:)=1 and e;(j)=0 for j#:. We regard 4,C4,,,. Let C(4,, X) be the set
of all continuous maps from the n-simplex 4, to a topological space X, S, (X)
the free abelian group generated by C(4,, X) and 0=0,4;: Sp+:(X)—>S(X) be
the boundary operator as usual [3, Ch. III 2.1]. Namely &;: 4,—4,.. is the
linear map defined by : e;(e;)=e, for ;<7 and ¢;(e;)=e;,, for 7=i. Then 0,,,(u)
= (—1)u-e; for usC(dni1, X). The singular homology is defined by:
H,(X)=Z.X)/Bn(X), where Z,(X)=Kerd, and B,(X)=Im0,,.

Now we state the definition of the factor. Regarding C(4,, X) as the
topological space with the compact-open topology, we consider Sp(X) as the
free abelian topological group on C(4,, X) (in the sence of Markov [18]).
Then, 9 becomes a continuous homomorphism, hence the closure B,(X) of B.(X)
isincluded in Z,(X). (Refer to[18], and for the definition of free abelian
topological groups and for summary.) We define HZL(X)=Z ,(X)/B.(X).
Though HZ(X) naturally becomes a topological group, we ignore this topology.
By definition, there exists a natural epimorphism ox: H,(X)—> HI(X). Let
fx: H(X)>H,Y) be the homomorphism induced by a continuous map f: X—-Y.

PROPOSITION 1.1. Each continuous map f:X—Y induces a homomorphism
fEHI(X)-HIY) such that fLooyxy=0y-f .

In fact, since S,(X) is a free abelian topological group on C(4,, X), we
can define a continuous homomorphism f;:S(X)—>S(Y) by: fa(u)=f-uc
C(d,, X) for uC(d,, X). Then fu(B.(X)Cfe(Ba(X))CB,(Y) by the con-
tinuity of fs and a basic fact about singular homology. Thus f% can be de-
fined by fL(u+B.( XN=f+(u)+B.(Y). We have fLodx=ay-fx by definition.

By the homotopy invariance of singular homology and [Proposition 1.1 and
by definition, we get the following.

PROPOSITION 1.2. The groups HL(X) are homotopy invariant.

PROPOSITION 1.3. If two continuous maps f, g: X—Y are homotopic, then
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This will be strengthened in Section 3 (Theorem 3.8). For basic results
and notions about algebraic topology, we refer the reader to [3 and 23]. The
set of nonzero positive integers is denoted by N. As usual we abbreviate the
subscript of the boundary operator 9, and Z,(X) or B,(X)by Z, or B, respec-
tively, in case no confusion will occur.

2. HI(X)=H,X) for ANR’s X

The purpose of this section is to prove the following theorem.

THEOREM 2.1. Let X be an ANR. Then B,(X)is closed in the free abelian
topological group S«(X) for each n. Consequently, HL(X) is identical with Hn.(X)
for each n.

COROLLAY 2.2. Let X be a space which has the homotopy type of an ANR.
Then HL(X)=H, (X).

To show this, Graev’s metric on free abelian groups plays a crucial role in
spite of the fact that the metric topology is coarser than the free topology
except rare cases. It seems impossible to perform the proof only by using the
universality of free abelian topological groups [17]. Our proof implies that
B»(X) is not only closed but also open in Z,(X) and hence HZ(X) turns out
to be discrete for every ANR X even if we consider its topology.

First we introduce Graev’s metric of the free abelian group A(M) generated
by a metric space M=(M, p) [12]. Fix an element x* of M and extend o to
p’ on the set MU{0}\U—M as follows: (1) p'(x* 0)=1; (2) p'(x, 0)=p'(—x,0)
=p(x, x*)+1 for x€X; (3) p'(—x, —y)=p(x, ) and p’(—x, y)=p(x, 0)+ (0, ¥)
for x, yeM. For u, ve A(M), define

p(u, v)=Iinf {Z00" (x4, ¥i): U=20"0%1, V=200,
x4 Y EMU{0}U—M, me N}.

In fact, Graev proved that there exist x;, y,;=eMU{0}\U—M (0<i<m) such
that u=21ox;, v=322y; and §(u, v)=2T0p'(xs, ¥:) and that § is a metric on
A(M). Observe that both x; and y; in the above belong to either M or —M,
if g(u, v)<1. One should remark that the topology induced by g is coarser
than the topology of A(M) as the free abelian topological group on M. For
the simplicity of notation, we also use p for 4.
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Now we start to prove the theorem. Without loss of generality, we can
assume by that X is a closed subset of a normed linear space ¥ =(V, |-|)
and there is a retraction #: U—X of a uniform neighborhood U of X in Y, i.e,,

U={y€Y :||x—y|<d for some x=X}

for some 6>0. The compact-open topology on C(4,, X) is induced by the sup-
metric

o(f, g)=sup{lfla)—gla)ll: aEAa}.

Let o (=p) be the metric on S.(X) induced by p as above. To prove the
theorem, it suffices to show that B,(X) is open in Z,(X), hence closed under
this metric p.

To this end, let u=Z,(X) and vE B,(X) such that p(u, v)<min{l, §/N},

where N:max{(nj._l> 0 j§n+1}. By the remark following the definition of

p (=p), we can write u=2{%odeuur and v=231fLodsVs where u;, v, €C(d,, X),
Ar=-=1 and p(u, v)=0Fe0p(us, ve)<6/N. We will construct 0<=S,..(U) so that
d6=u—v. Then 7r40)=Sn+(X) and 0(rs(o))=rs(0c)=rs(u—v)=u—v because
u—vESa(X). Thus it follows u=0(rs(0))+ve B(X).

Since du= o " o(—1),uze:=0, we have a partition P, of the set (m+1)
X(n+1) such that each member of P, has exactly two elements and
{(k,7), (k' i")}e P, implies (— 1) A, upes+(— 1) A up-e0- =0, i. €., (=12 +(—1)" As-
=0 and u,e;=us . (We identify a natural number n with the set {7:05:i=
n—1} to simplify the notation.) We denote (k, i)~y (', ¢’) if {(k, ), (R, 1)}
€P,. Similarly, we have a relation ~, on (m+1)X(n—1) such that (%, 1)~y
(k’, i) implies (—1)'2,vres+(—1)" A4 vr- e =0. Next, we extends ~, and ~, to
relations on (m+1)X{F: Fcn+1 and |F|=j} for 0<j<n as follows: (&, F)~,
(k’, F") if there exist ;= F and i’ F’ such that (k, ©)~.(k’, ) and g(F\{i})=
F'~\{i’} for the order preserving (o.p.) bijection g: n+1IN{i}—>n+1\{’}. For
Fcn+1, let ep:dn_7i—4, be the linear map such that er(e;)=esu, Where
f:n+1—|F|—n+1\F is the o.p. bijection. Since (&, i)~.(k’, ') implies u,&;
=uy e, (B, F)~u k', F’) implies u,er=user. Since for each (k,7) there
exists a unique (&', ¢*) such that (k, i)~ (k’, ), [{(k’, F"):(k’, F')~u(k, F)}|
<|F|. Extend ~, similarly, which has the same properties as ~,. A j-block
B is a nonempty minimal subset of (m+1)X{F:Fcn+1 and |F|[=j} which
satisfies the following: If (B, F)~.(k’, F’) or (k, F)~k’, F’) then (k, F)=B
implies (k’, F)eB. In other words, B is an equivalence class of the equi-
valence relation generated by ~, and ~,. For the convenience of notation,
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we regard {(k, @)} as a O-block for each k. For each block B, we choose a
representative (k(B), F(B))= B. Note that every (k, F) belongs to only one j-
block, where j=|F]|.

LEMMA 2.3. Suppose that (k, F) and (k’, F’) belong to the same j-block B,
FcGcn+1l and G'=F"Ug(G\F) for the o.p. injection g:n+1INF-n+1\F'.
Then (k, G) and (k’, G') belong to the same |G|-block.

PrROOOF. The case ;=0 is clear. Let j>0. Note that (2, F) and (&', F’)
are combined by a sequence of members of B such that adjoining members
have the relations ~, or ~,. We prove the lemma by induction on the length
of this sequence. Suppose that the lemma holds for (k, F) and (k*, F*), i.e,,
(k, G) and (k*, G*) belong to the same | G|-block, where G*=F*Ug*(G\F) for
the o.p. bijection g*:n-+1NF—-n+1NF* Now let (k*, F*)~.(k’, F'), where
x=u or p. By definition, there exist ;*F* and i/’ F’ such that (k*, )~
(k', i) and F'={i’}Uf(F*\{i*}) for the o.p. bijection f:n+IN{/*}—-n-+1N{i'}.
Observe g=f-g*. Then it follows

G'=F"Uf+g* G F)
= {1} UF(FNF DU f(GENFF)
={'}Uf(G*\{i*}).

Therefore (k*, G*)~.(k’, G’). Thus (k, G) and (k’, G’) belong to the same
block.

LEMMA 2.4. If (k, F) and (k’, F’) belong to the same j-block B, then
o(urer, Ur ep)<d, p(Urer, Vircr )< and p(Vrer, Vi er)<0.

PrOOF. Observe the following facts: For each 0<h<m, [{G: (h, G)EB}|
1 o
g(”j ); (h, G)~u(h', G') implies uncs=1unec ; (h, G)~(h’, G') implies vace

=vn€a ; p(Unes, Vnea)=p(un, vy). Considering a shortest sequence combining
(k, F) and (k’, F') by ~, and ~,, we obtain

n+1 n+1
o(urer, uk'eF')é( ) )Z}%op(uh, vh)é( ) )p(u, )
J J
nt+1
<( , )5/N§5
J

and the others similarly.
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Let el=eiXid: dpn_ 1 X 4> dn X4, (0<i<m)and el=id X e; : A X dn_1>dn X 4>,
(0=i=<n). For each 0=;=<n, the set of all injections s:j—n+1 is denoted by
I(j, n+1). Here, we admit @ as a map from 0 and identify s with the j-tuple
(S, -+, sj-1). For each s€I(j, n+1) and 0<p<j, let f?: n+1N\{sq;: 0=Z¢g<p}—
n+1—p be the o.p. bijection.

For each %, we define 74: 4,x4,—Y by:

T, (1—2)ec+2e)=(1—2)-vi(a)+2-u(a).

For each s=I(j, n+1) (>0), we define inductively 7% 4y ;X d;4,—Y as follows:
7i(a, ) is linear for each a=4,_; as a map from 4,,, to Y,

Tia, e))=vim°czm(a) and
i@, epr)=1i(esi"1s; (@), €;)  for 0Sp<j,

where s=(so, ---, $;_2) and B is the j-block which contains (%, Im s).

We represent % a little bit more directly by using the notion of blocks. Let
B%¥? be the (j—p)-block which contains (%, {sq: 0=¢<j—p}) and Fi?P=
F(BeP)U{g(sy): j—p=<q<j}, where g:n+1\{s,: 0<qg<j—p}—-n+INF(B:?) is
the o.p. bijection. Then, B%*°=B and By ?*'=By? for p=0. Moreover, F&?+
=F¢?PU{g(s;-1)}. Then by induction, we have the following.

LEMMA 2.5. For each s€1(j, n+1) and 0£p<j<n,
*(a, ep):vk(gg.p)oepg.p(a) (especially tia, e;)=viceims(a)) and
(@, ej)=uratireephi(@)=uroery f(a).
By Lemmas 2.3, 2.4 and we have

CORLLARY 2.6. For each s=1(j, n+1) (0£7<n), Im ztCU.

Next we explicitly represent triangulations of products of simplexes. The
order < on (m+1)X(n+1) is defined by: (7, /)@, ;') if i<’ and j<j'. We
triangulate 4,X4, so that vertices are (e;, e;) and simplexes are spanned by
(es, €5,), -, (€, €;,) With (7o, 7o)< --- <(ip, 7p)- By O(m, n) we denote the set
of all o.p. injections from m-+n+1 to (m+1)X(n+1). For t€O(m, n), let
o dnya—dn X4, be the linear map defined by wu.(e;)=(e: ), €, ), Where (7)
=(to(2), t:(2)).

For z:4,x4,-U (m, n=0), let
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Cm, n(T):EtEO(m, n)(_l>cct)f°ﬂt s
where c(t)=27" 1N +D—1(7)),

and especially C_; n(t)=Cn,_:(z)=0. The following figure helps us to prove
the next lemma. In the figure, t=0O(m, n) is written as a shortest path from
(0, 0) to (m, n) on the lattice.

T A R s R (m, n)
(Figure) D e |
0, 0t oo Lot (m, 0)

The next lemma can be seen as a generalization of the so-called prism
lemma.

LEMMA 2.7. For t: 4, X4,—U (m, n=0),
0Cn, n(T)=2o(—1)*"Coy, a(toe)F Do — 1) C i, noi(To8) .
PRrROOF. First observe

0Cn, 2A(T)=teocm, n>21?1=46n(—‘1)c(t)+k7-'°#t° €k .

If m=0 or n=0, then C.,, »(r)=t and hence we have the formula. Next, ob-
serve that top;oe, is cancelled in the above sum if 1=k<m+n—1 and
@(R)—t(k—D))t(k+1)—t.,(k))=0 for both v=0, 1, i.e., ¢t is bent at the point
(to(R), ti(k)) in the above figure. Therefore,

acm,n(T):—Zu, k)EPO('—l)c(t)+k7°ﬂt°5k+z(t. k))epl(—l)c(t)”ﬂ#ﬁsk »
where
P,={t, k) €0O(m, n)X(m+n+1):t(k—1D)=t(k)=t,(k+1) or
k=0 & t,(0)=t, (1) or k=m+n & t.im+n+1)=t(m+n)}
for y=0, 1. For (¢, k)P, let i=t,(k) and j=t,(k). Theni+j=~k. Define t*<
O(m—1, n) by : t*(p)=t(p) for p<k, and t*(p)=©(p+1)—1, t:(p+1)) for p=k. It

is a routine to check c¢(t)—c(t*)=n—j=n-+i—k, hence (—1)¢®+k=(—]1)n+i+ct®
On the other hand, repy,ce,=t-elopiv. Therefore,
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2(:,k)epl("l)c(t)+kf°/lc°€kZZ?:OZL*EO(m-l.n)(—l)HnH([*)T"Eg"ﬂz*
=2~ 1) Criy a(Toed) .
For (t, k)P, set ¢ and j as above. Define t*=O(m, n—1) by : t*(p)=t(p) for

p<k,and t(p)=(to(p+1),t(p+1)—1) for p=k. Then,[(—1)**=(—1)*“" and
Toplo€r=1oc}ots. Therefore,

S oep(— D @M reproer =T 0B eocm, n-(— 10T )0 prea
=S (1Y Comor(Eee)).

Now, we have shown the lemma.

For s€I(j, n+1), let S,=ITj_«(—1)?*/¥'¢»-0 and S,=1 if j=0. Finally
let 0;=30le D ser¢s. ne0Ss: Cnojojei(th) for 0<7<n and 6=27(—1)Y-0;. Then,
o belongs to S,,,(U) by Corollary 2.6. We want to show do=>7-.(—1)dc,=
u—v. By [Lemma 2.7,

00 ;=32 0Ae Dse1¢j. n+1>Ss 0C n_j, j41(75)
=20 Zser ¢ nenSs DI (=D Cr oy, jea(Tho€))
+ 20 Ae ser . neSs  Caoj, (Tho€h)
+30Ae Xser e naSss DIE(—1) - Cr_y, (Thoed)

+ 20 Dser ¢ nenSer DiE (= 1)*-Ca- JJ(Ts &1),
especially,

00 =207 0Ar 27=o — 1)1 Cry, (Tho €D+ 2 iokr(Ur—ve) .
LemMmA 2.8. For each j>0

Si0As DseroaenSs (—1Y - Ca_j, (thoe))=0  and
El:ioszsEI(j. n+1s '(—1)j+1 . cn—j.j(Tg" 8}.,.1):0 .

PRrROOF. For each s<I(j, n+1) and 0=k<m, s'€1(j, n+1) and 0Zk’'<m
are uniquely determined so that (k, so)~.(k’, s§) and g(sp,)=sp for 0<p <y,
where g: n+1N\{so}—>n+1\{s¢} is the o.p. bijection. Observe u,ce;;=u; °&s.
It follows Ureeims=Ur cEims. Since (&, {s,: 0=Zg<j—p)~u(k!, {s5: 0=Zg<j—p})
for 0<p<j, B¥?P=B%'? and Ft¢?=F%'? for 0<p<j. By a, e,)
=tk (a, e,) for 0=<p<; and 7¥a, €;:1) = Ur°Cims(@) = Up €1 (@) =TE (@, €;41).
Thus we have tkeel=t%-¢l. By definition of ~,, Ax(—1)%042,.(—1)0=0. Since
FUso)=s0, fU(sg)=s and [P Ysp_1)=fE(sp-1) for 2£p<j, we have 2;S;+2:' Sy
=0. Thus we get the first equation. By replacing ~, by ~,, we have t%-¢},,
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=tkoel,; and 2, S;+4: S;=0, which imply the second equation.

LEMMA 2.9. The following equation holds for ;>0 and 0Zk<m:

2iser¢. nanSs 25— 1DP Caj f(tioe3)=0.

Proor. Let 0<p<j. Foreach s=I(j, n+1), 5€1(j, n+1) is uniquely deter-
mined so that §,=s, for ¢g<p—1 or ¢>p, §,.,=s, and 5,=s,_,. Then, Bti=
B%? and Fi?=F%? for g+p, hence thoel=rtloc}. Observe f¥s,)=s%35,) for
g<p—1 or ¢>p. If sp.1<sp, then fP7'(sp-1)=S2(5,) and f2(sp)+1=f5(5,).
Otherwise, i.e. s,<sp_1, /3 ‘Gp)=rf2(sp) and fI(5,)+1=f2(s,). In any case,
Ss+S;=0, which implies the lemma.

LEMMA 2.10. For 0<j<n,

Esel(j,n+1)Ss'E?Qg("'l)i”“cn-j-l.j+1(77§°52)
Zzsel(jﬂ,n—x-uss'Cn-j_1,j+1(T’§°5é)-

PrROOF. For each s=I(j, n+1) and i<n—j, sx=I(j+1, n+1) corresponds
uniquely to the pair (s, 7) so that s«(p)=s(p) for p<j and s«(j)=g(’), where
g:in+l—j-n+1N{s,: 0=p<j} is the o.p. bijection. Then fI,=g ! and s4,=
g(7). By the definition of z%,, 7%,°¢¥(a, ep}:z";os}g*“*j)(a, e,)=tt-e)(a, e,) for each

0=p=y. Since  fE(Sxp-)=SF(sp-1) for 1=p=<; and [fl(ss;)=i, Si=
(—1)+*+1S..  Therefore,

(=118 Coo g, a(752€0)=Ssy Crnojur, saa(thioel)  and

(=1 ZsercsnenSs DEL(—1)V Crsjon, jar(thoed)
=2Vserir1. 405" Cnojog, je1(Tho€l) .
Recalling the formula before we have

00 =1(—1Yds;

=20 As(Us—0s)
H(=D)"Zi0As Zsercn nenSs Do — 1P C Ly, nya(Thoed)

=" A(Uur—v)=u—v.

by Lemmas [2.8, and
Now, we have completed the proof of [Theorem 2.1l
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3. Broken path connectedness and quasi-homotopy

Let x, y&X. We write x~y if x and y are connected by a path, i.e.,
Y4

there is a continuous map f:I—X such that f(0)=x and f(1)=y. A finite
sequence of continuous maps f;:I—X (=0, ---, n) are called a broken path.
And we say that (f:), conmects x to vy if fo(0)=x and f,(1)=y. For pe
Pm (X), the p-gap of a broken path (f;)%, in X is 275 0(f«(1), f:+1(0)). In case
n=0, the p-gap is 0. We write X~y if for any p=Pm(X) and ¢>0, x and y
are connected by a broken path with the p-gap less than ¢, i.e., there are
x5, y:i€X (=0, ---, n) such that x,=x, y,=y, xif;yi for each /=0, ---, n and

Doy, xi41)<e. Then ~ is an equivalence relation on X. It is said that

X is broken path connected if X~y for any x, yeX.

PROPOSITION 3.1. Let x, yE X, then Xy iff f(x)=f(y) for any continuous

map f: X—R which is constant on each path component.

ProoF. For an arbitrary continuous map f: X—R which is constant on
each path component, define p=Pm(X) by: p(u, v)=|f(u)—f(v)]. Since ur;v

implies p(u, v)=0, X~y implies p(x, y)=0, thatis, f(x)=f(y). To see the con-
verse implication, for any p=Pm(X) we define f: X—R by:

F)=inf{3Z7=' o(us, xis1): Xius (0=i<n), xo=x, us=uj}.

Then, f is continuous and f(u)=f(v) if u~v. From the assumption, f(y)=
D
f(x)=0, which implies x~y.

Let X={(x, ¥)|y=0 or y=x"'}CR*? and p be the Euclidean metric on X.
Then each pair of points of X are connected by broken paths with arbitrarily
small p-gaps. However X is not broken path connected because X is homeo-
morphic to three parallel straight lines in the plane. The following is such an
example in case X is compact.

ExaMPLE 3.2. Concerning Cantor’s ternary set, the following is well-known.
There exist families {I;: /= N} and {J;:i= N} of pairwise disjoint open sub-
intervals of / such that p(\Uenl:)=1, p(\JienJ:)=1/2 and both IN\U:en!l: and
I~\U;enJ: are nowhere-dense perfect sets, where p is the Lebesque meaure.
Then there exists a homeomorphism h: I—-I such that A(\Uienli)=Uien/:-
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Let
W={(x, y): y=sin(z/x), 0<x<1/2} U
{(x, —y): y=sin(z/(1—x)), 1/2<x<1}.

For each /€N, let A;:(0, 1)=1,; be a homeomorphism and W,;=(a,xid)W). We
define X=(I\Uienl:)X[—1, 1] UUsecxW,;. Then, X is a plane compactum.
Any path in X is included in {a}x[—1, 1] for some a=I or W, for some
i€N. Since p(\Uienl;)=1, the infimum of p-gaps of broken paths connecting
(0, 0) to (1, 0) in X is equal to 0, where o is the Euclidean metric on the plane.
On the other hand, the infimum of p-gaps of broken paths connecting (0, 1) to

(1, 0) in (AXidXX) is 1/2 by the same reason. Therefore, X is not broken
path connected.

Any path connected space is obviously broken path connected but the con-
verse does not hold. The example has been given in Example 3.2, i.e., WU
{0, 1} x[—1, 1] is broken path connected but not path connected. Any broken
path connected space is connected but the converse does not hold. In fact, the
space in Example 3.2 is such an example. The pseudo-arc P is also such a
continuum since it has no nontrivial paths.

One should remark that each equivalence class of ~ is closed in X which

contains a path component but it need not be connected. For example, let
X= °,f=1{l/n} XIU{(O, O)} (O, 1)}'
Then A={(0, 0), (0, 1)} is an equivalence class of ~. In case X is compact, it

is connected as shown in the next proposition. But even if X is compact metric,
it need not be broken path connected. For example, let P be a pseudo-arc in
the plane and let A, (n=N) be a sequence of arcs which converges to P in
the hyperspace. Define X=\Us.,{1/n}xA4,U{0} X PCR®. Then, X is compact
metrizable and {0} X P is an equivalence class of ~.

PROPOSITION 3.3. If X is compact, then each equivalence class of ~ is con-
nected.

PrROOF. For each p=Pm(X), take a broken path from x to y with the p-
gap less than 1 and let K, be the union of the images of its paths. For 0, o
EPm(X), define p<p’ by: p(x, y)=p'(x, y) for all x, yeX. Then (Pm(X), <)
is a directed set. Since the hyperspace 2¥ with the Vietoris topology is
compact, the net (K,: p=Pm(X)) has a cluster point K<=2%, Clearly, K con-
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tains both x and y. Suppose that K is a disjoint union of nonempty closed
subsets A and B. Take p=Pm(X) so that p(a, b)>3 for each a=A and be B.
Let U={xX: p(x, A)<1} and V={x&€X: p(x, B)<1}. Then there exists
p'EPm(X) such that p=p’, K,cUUV, K,N\U#@ and K, N\V#@. This
contradicts to the fact that the p’-gap of the broken path is less than 1.

Now, we prove the following.

THEOREM 3.4. For any space X, H%5(X) is canonically isomorphic to the
free abelian group whose rank is equal to the cardinality of equivalence classes
with respect to -

COROLLARY 3.5. A space X is broken path connected if and only if HY(X)
=Z.

To show the theorem we must recall the topology of the free abelian topo-
logical group A(X), because Z (X)=S,(X) is identical with A(X). Any pe&
Pm(X) can be extended to j=Pm(A(X)) by the same way as metrics (cf.
Section 2). We abuse p with g as before. It is known that the topology of
the free abelian topological group A(X) is determined by all such pseudo-metrics
p [20, p. 379 or 24, Theorem 1]. Here, we outline the proof. By [16], the
topology of A(X) is determined by all invariant continuous pseudo-metrics 7 on
A(X). Let pPm(A(X)) be the extension of r|X in the above manner. Since
2(a+b, c+d)<(a, ¢)+(b, d) by the invariantness of ,

{ac A(X): p(a, 0)<elC{acsA(X): (a, 0)<e} for ¢>0.

Thus we get the conclusion. The theorem is an immediate consequence of the
next lemma, where C(d,, X) is naturally identified with X.

LEMMA 3.6. By(X)=<x—y: xf;/y>=<x—y : xr;y) in A(X).

PROOF. Suppose that x~y. For each p=Pm(X) and ¢>0, we have x;, y;
X (0<i<n) such that xif;ayi, xo=x, ya=y and Xp(yi, x:41)<e. Then,
Sro(xs—y)E B, and

p(x—y, Dro(xi—y:))=p0, Zloxi—2f0yi—x+y)
=00, Shx:i— 15 y4)
=350y xe)<e.
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Hence x—y<B..

To see the other inclusion, we introduce some notion and notation. For
each ueXUu(—X), |lu|=uif usXand |u|=—u if us—X. We identify —(—x)
with x for x&X. A reduced form of a non-zero uc A(X)is u=2>%,u;, where
uie X\ U(—X) (1<i<m) and wu;#—u; for any 7, j. Let ucB, (u+#0) and u=
S™,u; be a reduced form of u. We claim that there exist u;€X and u,e—X
such that Ui —Uj Suppose the contrary. Then there exist pePm(X) and

0<e<1 with the following: p(u, 0)>¢; u;=X and u;€—X imply that the p-
gap of any broken path connecting u; to —u; is greater than e. Since ue B,,
there exist x;, y;=X (0<i<n) such that X Yi (0=7/=<n) and p(u, DPo(x:—y4)

<e. We may assume that 37 .(x;—y;) is a reduced form. Since uz+0 and
p(u, Bo(x;—:))<1, there exist a;, by X\U(—X) (1=i<k) such that u=233}%_,a,,
Sheolxs—y) = 2%1b;  and o(u, DX —yi)) = ’5=1P(ai, bs) - Since
o xi—y)=23k_1bs, k iseven. Since I, u;=>)%F_.a;, m is also even. We may
assume that u,€X, a;=u; for i=1, -, m and MOreover dmisi 1=—0m+2i X
for /=1, ---, (k—m)/2. We can choose a partion P of {1, ---, 2} such that each
element of P has exactly two elements and {7, j}=P implies that b, X iff
bje—X, and Ibilf;;lbjl. (Note that b;=—b; implies [biI;Jlbjl.) We get a
sequence

@iy, biy, by, Gy, Qi big, o0 Diyy, Quy,y,
such that 7,=1, f,n=m, {isj_1, t2;}EP for j=1, -+, h and 7s;4,=i5;—1>m for
j=1, -, h—1. Then by, \€X, by, —biy, for j=1, -+, h and ai,;,,=—ai,;
e X for j=1, ---, h—1. Then,
ol as,l, 1bi, D+2320(1biy;l, 10iy;0, 1)+ 0( iy, 1, 1a3,,1)
<o(las], 10y, DHSE 0 bey, 1, 1@iy, DA Qigpnls 16150, 1)
+0(1biy, |, las,, 1)
=2he(lasl, 1biyl)
=>tap(adl, 10:)<e,

that is, we have a broken path connecting u,=a;, to u,,,=as,, wWith the p-gap
less than e. This contradicts to the hypothesis. Now, we have shown the
claim, from which lemma follows by induction.

Next we define a notion “quasi-homotopy”. For f, gC(X,Y), we write
Vi 8 if f and g are homotopic. In case X is locally compact, as is well-known
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f»’\:g iff ff;g, where C(X, Y) is endowed with compact-open topology. We
say f and g are quasi-homotopic (denoted by ff;g) if the statement obtained
by replacing ~ and X by ~ and C(X, Y) in the definition of broken path con-
nectedness. More precisely, ff;g if for any p=Pm(C(X, Y)) and >0 there
exist fi, g« (0<7<n) such that f,=f, gr=g, fi?gi and 25 (g, fi+)<e. In
case X is locally compact, f ~8 iff f ~8.

Analogously to [Proposition 3.1 and Lemma 3.5, we get

PROPOSITION 3.7. Let C(X,Y) be endowed with compact-open topology and
f,e=C(X,Y). Then, ff;g iff F(f)=F(g) for any continuous map F: C(X,Y)

— R such that F(u)=F@) when uNv.

PROPOSITION 3.8. Let 4H(KX, Y):<f——g:f~:g, f, 8=C(X,Y)> be the sub-
group of the free abelian topological group A(C(X,Y)) over C(X,Y). Then,
freg iff f~gETX, V).

THEOREM 3.9. For f, g=C(X,Y), if f and g are quasi-homotopic, then
T — T
T=g% holds.

PROOF. Let p=Pm(C(4,, Y)). For z&Z,(X), define p’€Pm(C(X, Y)) by:
o'(f, 8)=p(fsz, g+z). For each ¢>0, there exist f;, g:=C(X, Y) (0<i<m) such
that fo=f, gn=g, fi7g: and 250 (fi+1, g:)<e, Which implies

P(f#z"g#Z, Ezz;o(fiﬁz—gi#z))g217‘:01‘0(][”1#2, gisZ)
=200 (fie, 80)<e.
Hence fiz—gsz= B (Y).

COROLLARY 3.10. If there exist continuous maps f : X—Y and g:Y —X such
that gof?idx and f°g’\q/idy, then HL(X)=HL(Y).

Here we give some maps which are quasi-homotopic.

ExamMmpLE 3.11. (1) Let
X={(x, v, 0): (x—12+y*=1}U{(x, 3, 1/m): (x—1*+3y*<1, nE N}
Ui{0,0, 2):0=52z<1}
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and define f,: X—X by: (x, v, 2) if z=1/m,

falx, v, 2)={

(x, v, 1/m) otherwise.

Then, idf\qJ f1, since any neighborhood of idy contains some f, and fmf\’: fi-

Consequently HZ(X)=0.
(2) Let
X={(x, v, 2): (x—cos 210 )+ y?*+(z—sin 270 *<1: 6 =Q}

U{(x, ¥, 2): (x—cos 2702+ y2+-(z—sin 276 )2=1: 8++/ 2 =Q}.

Then, similarly as the previous example, idy is quasi-homotopic to a constant
map and consequently HZ(X)=0.

4. H%(X) for products and sums

Let X; (1) be spaces with base points a;. For an element u of the direct
product II:;e;X;, the support of u is the set suppu={/=1: u(f)+*a;}. The 3-
product Tlic;X; denotes the subspaces of II;c;X; consisting of all u with
countable supports. Let \/ie; X;={ucTl.c;X;: supp u is at most one} denote
the subspace of Il;=;X; with base point a=(a,)ic;. BY Vie;X:, we denote the
quotient space of the discrete sum of X; by identifying all a;’s, where the
identified point a is the base point. These spaces Vie;X: and \;e;X: can be
regarded as spaces with the same underlying set. In case each X; includes a
copy A; of A, V.e/(X;, A;) is the quotient space of the discrete sum of X; by
identifying all A;’s, which generalizes the one point case.

Corresponding to the above, for groups C; (I&I), [l:c;C: denotes the sub-
group of the direct product IT:e;C; consisting of all » with countable supports,
i.e., suppu={r=I: u()#0} is countable. The direct sum of C; is denoted by
PBic:Ci, i.e., Pic;Ci={usIlic;C;: suppu is finite}. In case C,=C for all
i€l, Tlie;Cy, Tlie;C: and @ie;C; are abbreviated by C?, [I;C and &,;C re-
spectively.

In general H; does not commute with direct products for path connected
spaces, but H? does, that is,

PROPOSITION 4.1. Let X; (/<1) be (n—1)-connected spaces. Then HE(IT:c;X:)
=TLie;HE(X:) and HE(Mlie: X)= T HE(X:) canonically for n=1.

We need the following lemma.

LEMMA 4.2. Let X and Y be (n—1)-connected spaces, z=Z ,(XXY) and
Px: XXY X, py: XXY Y be the projections. If pxez=B(X) and pysz<
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B.(Y), then z€ B,(XXY).

PrOOF. Note that XxY is (n—1)-connected. By Hurewicz’s theorem [23,
Ch. 7, §5], we may assume the following: In case n is odd, z& C(d,, XXY)
and Im zee;={(xo, vo)} for 0<i<n; In case n is even, z=u—v for u, v&
C(d,, XxY) and Im u-e;=Im v={(x,, yo)} for 0=i=<n.

Since the proofs are not so different, we prove only in case n is odd. De-
fine zx(a)=(px-z(a), Vo), zv(a)=(x,, pyez(a)) for acsd,. Then, z—(zx+zyv)E
B.(XXY). Hence, it suffices to show zx+zyEB,(XXY). By the assumption,
2x= B (XX 1ye]) and zyeB,({xo} XY), where the closures are taken in
S XX {y.})and S.({x,} XY ) respectively. Since C(4,, XX {y.})and Cdn,{x.} XY)
are retracts of C(d., XXxY), the closures can be regarded as the ones in
SAXXY). Hence zx+zyS B.(XXY).

PROOF OF PROPOSITION 4.1. Let p;:Il:e;Xi—X: be the projections and
define ¢: Hi(TLic; X0)—>TLie/HA(X:) by ¢(a)Xi)=p{(a). By using Hurewicz’s
theorem, it is easy to see that ¢ is an epimorphism. It suffices to show Ker ¢
=MNies Ker pf,=0.

Let 2=z iz EZ 4 (Ar==1, ur = C(dn, Tlic; X)) such that z+Br,=Ker o,
i.e., pi#(z)EBn(—X—i) for each i=l. For any open neighborhood U of z in
S.(ITic; X:), there exist compact subsets Ki of 4, and basic open sets Ui of
Tlic; X; (0<7<7) such that u.€N-0(K}, Uj) and S A(NI=0(K}, UD)U,
where O(K, U)={uc C(4,, TLie:X:): u(K)CU}. There exists a finite subset F
of I such that Ui’s only depend on F. Define u;e C(d,, IlierX:) by : pis(ur)=
pis(uz) for ;=F. Since each X, is (n—1)-connected, S\t Asuie Ba(llier Xz) by
Lemma 4.2 Pick an element x,€ X, for each i/ and define ujeC(ds, IlicsXs)
as follows : ul(1)=u() for i€ F and uj(i)=x,; for i¢ F. Then, uye N5-,0(K}, U)
hence M A.ufsUNB,. Therefore z= B, and Ker ¢=0. By separability of
4o o(HY([Tie X:)CTlie HY(X:). Therefore, the proof for 3i-products can be

done similarly.

To calculate HZI(X) for attaching spaces X, we introduce properties (x,)
and (sx) for (X, A). These properties are necessary only for n=2.

(x2) If DPdrur€Z, (MWEZ, ursC(da X)) and U, is an open neighborhood
of us, then there exist v,€U; (0<k=m)and Y CX such that ACY, Imuv,
cY, SroAwwrsZ, and some neighborhood of A in Y deforms into A
in Y.
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(*x) For any open neighborhood O of ideC(X, X) with the compact-open
topology, there exist YCX and f=0, such that ACY, f(X)CV, f|A=id
and some neighborhood of A in Y deforms into A in Y.

It can be clearly seen that (xx) implies (*,) for every n.

LEMMA 4.3. If (X, A) satisfies the property (xx) and A is closed in X, for
each i<l, then (Ve (Xi, A), A) satisfies (x%). In case A={a}, (Vie:X:, a)

also satisfies (#x%).

PrOOF. Let K;CVic;(Xi, A) be compact and U; open neighborhoods of K;
(0<7<m). Then there exists a finite subset F of I such that K;CVer(X;, 4)
for every 0<7<m. There exist f;: X;—Y,; (dF) so that f(KN\X;)cU,NX;
with other properties in (#*). Since A is closed, we have a continuous map
f i VierXi—=VierY: with f|X;=f; for each /=l. Then f satisfies the desired
properties.

In case of \/ie;X;, we may assume that each U; is a basic open subset for
each j. Therefore, there exists a finite subset F of I such that every U; only
depends on \;erX;. Thus the proof is same as the above.

THEOREM 4.4. Let X and Y be spaces such that XNY (=A) is an acyclic
retract of both X and Y.
(Case n=1) HI(XUY)=HIY(X)DHIY) canonically.
A

(Case n=2) If X and Y are normal and (XLAJY, A) satisfies (*,), then
H%(XyY);HE(X)EBHE(Y) canonically. (In case A consists of one point,

the normality is not necessary.)

PrRoOOF. We have retractions rX:X&)YﬁX and rY:kaan—»Y such that
rx(Y)=ry(X)=A. Let z‘X:X—»XyY and 7y : Y—+X\AJY be the inclusions. Let
0:Z n(X\A)Y)—»H (X)DHLEY) be the homomorphism defined by :

P(u)=(7 x4(1)+Bo( X))+ (rys(u)+Ba(Y)).

Since ry(X)C A and A is acyclic, rf4°iZx=0. On the other hand, #Z.-:%.=id.
Then ¢(Gxs(u))=u+B,(X) for each u=Z,(X). A similar statement holds for
Y. Therefore, ¢ is surjective. We shall show that Ker ¢=B,(XUY). Then,
¢ induces the desired isomorphism. First we have

BA(XUY) Nrze(Ba(X)) Nryi(Ba(Y))=Ker ¢.
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To see Ker goCBn(XLAjY), let zzZé’LozkukeZn(XkA)Y) (ursC4,, X\XY), lr==1)

such that ¢(z)=0. Since rx4(2)€B.(X) and rys(2) B.(Y), it suffices to show
z—z'X#°rX#(z)——z'y#°r”(z)eBn(X&}Y). Let V be an open neighborhood of

Z—iysorys(2)—iyserys(z). Choose an open neighborhood U of z so that
U—iyserxs(U)—iysorys(U)CV and then open neighborhoods U, (CC(4a, X&AJY))

of u, so that S U.,cU. We want to find v,€U, (0£k<m) so that
v——z'“or“(v)—z'y*or”(v)eB,,(X&A)Y), where v=>11%,A:v:. Then VmBn(X&JY)
*+D.

(Case n=1) We may assume ukeZl(szY) for each 2. Now fix £, We
may also assume U,=N:.,0(K;, W;). Let UiOizu;I(XLiY\A), where O, are

open subintervals of 4, and O;N\Oy=@ for i#i’. If there are only finitely
many O;’s, then we can easily see that u,—ixs°rxs(ur)—iysorrs(ur)E B;(ijY)
since A is acyclic. In this case we let v,=u,. Otherwise we assume that the
index 7 ranges over N. Define w,=C(4,, X\A}Y) by: wp|lOi=u,|0; for i<n

and wa(a)=r-ui(a) for a&\J%,0;, where r: XkA)Y—>A is the retraction defined

by: #| X=rx|X and r|Y=ry|Y. We claim the existence of w,€U;. Other-
wise, there exists 0<;</! such that w.&O(K;, W;) for infinitely many w,’s.
Therefore, for infinitely many O,’s there exist a;=€O;N\K; such that reu,(a;)
&W,. Let a* be an accumulation point of a;’s. Then reu,(a*)&W;, ux(a*)
A and a*<K,. Hence rou,(a*)=u(a*), which contradicts to u,€O(Kj; W).
Therefore we get w,eU,. Now as in case there are only finitely many O,’s,
we can conclude wn—z‘“or“(wn)—z’wor”(wn)eBl(XyY). We let vi=w,.

(Case n=2) There exist subsets XCX and YCY and v,€U, with the
properties in (#,). Let v=3,4:v:. There is an open neighborhood W of A
in X \;))_/ which is deformable into A in X \Aﬂ_f. By taking barycentric subdivi-
sions, we can take v, C(4,, X&}Y) and A, (0<k<m’) so that vyd,)CW, or
ViAINA=@ and I™.Aw; is homologous to v (see [3, Ch. IIl, §7]). By using
the deformation of W into A and an Urysohn map with respect to A and
(XUY\W, we can construct w:E,z’;'oZ;wkeZn()_(EjZ) so that w.(d,)CX or

A
wi(4,)CY and w is homologous to v. Then we can write w=wx+wy, Where
wyxESA(X) and wyeS,(Y). Since dwx=—0wyEZ,_,(A)and A is acyclic, there
is a w*sSa(A) such that dw*=0wy. Let w'=wx—w*€Z,(X)and w'=wy+w*
eZ.Y). Then w=w’+w”. Note that iyseryz(w’)=w’ and ipsorys(w’)=w".
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Since A is acyclic, iysorys(w’), z'X#orX#(w”)EBn(XyZ). Then ixserys(w)—w’
EBn()_(\AJX) and Z'Y#°7'Y#(w)_w,IEBn(XyZ)- Thus w—ixserxe(wW)—iysorya(w)

= Bn()_(gj)_f). Since v and w are homologous, v—ix 47 x (V) —iysorys(v)E Bn(X&A/Y).

Next we are concerned with spaces obtained by attaching infinitely many
spaces.

DEFINITION 4.5. For a space X with ACX, (X, A) is primarily n-realizable,
provided

HIX)={u—v+B,: u, veCld,, X), u(ﬁn), v(ﬂn)CA, u—ve,}.

If X is (n—1)-connected, then (X, A) is primarily n-realizable for any ACX
by Hurewicz’s theorem. We only deal with the case that A is acyclic. In this
case, the condition v(Zln)CA can be replaced by v(4,)CA. The notion “pri-
marily n-realizable” is a little bit ad hoc, but it works well later on.

THEOREM 4.6. Let X; (i€l) be spaces with retractions r;: Xi—A; onto
copies of a contractible space A, or with base points a;. Then, the following
hold.

(1) If (X, A)is primarily n-realizable for each i< I, then both Vier(X;, Ay, A)

and (\/1e; Xi, @) are primary n-realizable.

(2) (Case n=1) HI(ie/(Xi, A))=DicHI(X,) canonically. Suppose that

(Xy,a4)is primarily 1-realizable, then HY(\/ 1 1 X:)= T1ie 1 HY(X:) canonically.
(Case nz2) If each X; is normal and (X, A;) satisfies (xx), then
HU(V er(Xs, A=DieHYX,). If each (Xi, a:) satisfies (**) and is pri-
marily n-realizable, then HL(\/c; X;)= Ilic HY(X;) canonically. (In case
A={a}, the normality of spaces is not necessary.)

PROOF. First we prove the statements for Ve (X;, A:). Let py: \Vied(Xi, As)
—X; ({€1) be the retractions induced by the given retractions 7, (zel) and
¢©: Zu(Vier(Xi, A))—ILie/HE(X;) be the homomorphism defined by : ¢(z)z)=
pi#(2)+Ba(X;). Since the image of ue C(dn, Vie (X;, A)) is contained in the
union of finite components, we have Im ¢C@:c;H%(X;). By [Theorem 44 and
Lemma 4.3, we can see HZI(Vie/(Xi, A))=®Pic,HL(X:) canonically. Suppose
that (X;, A;) (f=l) are primarily n-realizable. Let cEDierHE(X;). Then, for
each 7esupp ¢ there exist u; v;eC(d,, X;) such that o(u;—v)=c(@). Since A
is contractible, taking small simplexes in 4, of the same number as supp ¢ and
‘using u;, v;, We can define u, v=EC(4,, Vier(X;, A;)) so that o(u—v)=c. There-
fore, (\Vier(X;, A:), A) becomes primarily n-realizable.
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Next we prove the statements for Vie: X;. Let p; and ¢ as above. Then
go(B_n):o. Since the image of any us C(4,, \VierX:) is contained in a countable
union of X.’s by the separability of 4,, we have Im ¢Cllie,/H%(X:). To see
HI(ser X0)= Tl  HY(X), if suffices to show that Ker o€ B, and [TwesHA(X:)
Clm .

Suppose that ¢(z2)=0 for z= ZPAsur EZn (A EZ, urC(4n, Vier Xq)).
Then, p:s(z)€Ba(Xs) for every i. For any neighborhood U of z, ux (0sk=m)
have neighborhoods Uy (CC(ds, VierX:)) such that 32:U.CU. We may
assume there is a finite subset F of I such that U,’s depend on Ve rX:. Let
pr: VierXi—VierX: be the retraction and 7r: VierXi—Vier X: the inclusion
map. Then ipseprs(u)EU, and E;Z’lolka#(uk)EBm) by
4.4. Now iFWPF&(ZZfioZkuk)EBn(\~/ieri) and iF#"PF#(Zilolkuk)zzl'iolkiF»
o pra(up)E SR Uy CU. Thus, UNB,+#@ hence zE By,

Now, let celTicsHE(X,). Then, I,=supp ¢ is countable. Since each (X, a:)
is primarily n-realizable, there exist u; v:E C(d., X;) Gl,) such that c(z)=
=u;—v;+B.(X;) and uid)=vi(d,)=a;. We take small simplexes E.Cd.
(i=1,) so that each E; is similar to 4, with orientation preserving similar maps
fi: Es—d, and E;NE;=@ for i#j. Define u, vEC(4n, VierXi) by: ulE;=
uiofi, vl Es=vio f1 G€1y) and u(a)=v(a)=a for a&\Uier, Ei.  Since the dia-
diameters of E;’s converge to 0, u and v are continuous. For each 7, pix(u)| E;
=usofy, Pis()| Es=vse f1 and Deis(u) A NE)=pis(vX 4 E)=a. Since pix(u) and
pix(v) are homotopic to u; and v: respectively, pis(u)—uq, pis(v)—v:E Bal(Xo).
Thus we have

c()=pie(u)— p13()+ Bo(X)=pis(u—v)+ Ba(Xy)

and consequently ¢(u—v)=c. We have not only shown [T«e;HE(X:)CIm ¢ but
also (Vie;Xi, @) is primarily n-realizable.

DEFINITION 4.7. For a space X with base point a, the X-piled spaces are
spaces with base point inductively defined as follows :
(1) X is an X-piled space with base point a;
2) If X; (iel) are X-piled spaces with base points a;, then both VierX:
and V.e;X: are X-pilled spaces.

Along the definition of X-piled spaces, we define their types and orders.
A rigorous reader should think that X-piled spaces are not just pointed spaces,
but pointed spaces with their construction. However, in some cases we confuse
them for short expression. Types are pairs (¢, P), (¢, S) and (g, M) of ordinals
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¢ and letters P, Sand M. The partial order < for types is defined as follows:
(¢, [)<(v, V) for p<v and I, V=P, M or S; (g, P)<(¢, M); (¢, S)<(p, M).
We identify the types (0, P) and (0, S) as a special case. The supremum sup*S
of a set of ordinals S is the least ordinal which is strictly greater than every
ordinal in S.

DEFINITION 4.8. For an X-piled spaces Y, the type ty(Y) is defined as
follows and the ordinal of ty(Y) is called the order of Y and denoted by o(Y).
(1) ty(X)=(0, P)=(0, S);
(2%) Let X; ({=l) be X-piled spaces of type ty(X;), where |I|=2.
Case (a): sup*{o(X;):7el}=1.
1, S) if I is infinite;
tY(\/iEIXi):{ )
0, M) otherwise.
_ 1, P) if I is infinite;
ty(Vier Xi)= .
o, M) otherwise.
Case (b): sup*{o(X;):icl}=p+1 for p=1.

(u+1,8)  if Ip is infinite;

ty(Vier Xo)=1 (&, S) if Ip is empty;
(¢, M) otherwise,
(p+1, P) if Is is infinite;
ty(Vier X)=1 (¢, P) if Is is empty;
L (u, M) otherwise,

where Ip={i: ty(X:)=(¢, P)or (g, M)} and Is={i: ty(X)=(g, S) or (¢, M)}.
Case (¢): sup{o(X;):iel}=p a limit ordinal.

ty(Vier Xo)=(g, S) and tY(\‘V/iEIXi):()u, P).

Since types of X-piled spaces are defined along the inductive definition, it
is possible that spaces of the same homotopy type have different types. How-
ever, under some condition on (X, a), types of X-piled spaces are quasi-homo-
topy invariant and so homotopy invariant. To state the condition we need a
definition about groups, which is a version of a notion in [4, p. 189]. We
refer the reader to for undefined notions about groups. Further results
we need will be proved or mentioned in the appendix.

DEFINITION 4.9. For a group A, the maximal divisible subgroup of A is
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denoted by D(A) [10, p. 100]. The properties (P) and (S) are defined as follows :
(P) The group n!-TIyA/D(A) is not isomorphic to a summand of n!-(A/D(A)™
for any m, ne N.

(S) The group n!-@yA/D(A) is not isomorphic to a summand of n!-(A/D(A)™
for any m, ne N.

If a group of finite rank is not isomorphic to a direct sum of a divisible

group and a bounded group, then it satisfies both (P) and (S). Especially, a
reduced torsion-free group of finite rank satisfies both.

THEOREM 4.10. Suppose that (X, a) is primarily n-realizable. In case n=2,
we also assume (X, a) satisfies (*x). Let Y and Y’ be X-piled spaces. If there
exist continuous maps f:Y—-Y’' and g:Y'—>Y such that fog~idy., then ty(Y)<
ty(Y") under the following conditions: !

HT(X) satisfies (I') and

(@) ty(Y")=(m, V) for an odd meN;

(b) ty(¥Y")=(m, I') for an even meN; or

(¢) oY) is infinite,
where (1) '=P and V=S8; or 2) '=8 and V=P.

Particularly ty(Y)<ty(Y’) in case HE(X) satisfies both (P) and (S) and o(Y")
=1. Therefore, in this case the type is quasi-homotopy invariant for X-piled
spaces of nonzero order. In addition if HY(X) is of finite rank, the condition
o(Y")=1 is not necessary in the above.

ProOOF. By Theorem 3.8, HZ(Y) is isomorphic to a summand of HZL(Y").
Let A=HZ(X). By and the definition of type for ¢-Reid(A) groups
in the appendix, H%(Y') and H%(Y’) belong to the o-Reid class of A and ty(}")
=ty(HLZ(Y)) and ty(Y")=ty(H%L(Y’)). Therefore, the theorem follows from
Theorem A.7 and Corollary A.8.

Ralph has defined a factor of singular chain and homology groups HA
and HM. He showed that HM can be used to detect the anomalous singular
homology constructed by Barratt and Milnor [2], which is H,(\/»S7). Though
HM(X) and Ker gy, in the present paper, are different in general, Ker ¢x can
also be used to detect such a phenomenon. To see this, we show the following.

PROPOSITION 4.11. Let X be the inverse limit im(Xy, 745, I) of subspaces X;
of X such that each bonding map ri;: X;—X; is a retraction. Then HZE(X) is
naturally isomorphic to a subgroup of Um(HL(X.), vk, I).
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PROOF. Let r,: X—X; (f=l) be the retractions and define ¢:Z,(X)—
Um (HY(X,), 7%, 1) by: rke@p(z)=rix(z2)+Ba(X:) for icl. Let z=2M.exus
(ureC(4,, X), ex==1) such that r;5-¢(z)=0 for all i=. For any neighborhood
U of z, there exist neighborhoods U;CC(4,, X) of u, such that X%, U,.CU.
Observe C(dn, X)=Um(C(d., Xi), (ri;)s, 1). Then there exist j&l and neigh-
borhood V', of »;s(u:) (1<k<m) such that r;z'(V.)CU,. Since r; is a retrac-
tion, esor;x(ur)sr,;z (V)CU, where e: X;— X is the inclusion, hence eyor;s(z)
U. On the other hand, eser;s(2)E B.(X) since 7;:(z)=B.(X;). Therefore
z€ Ba(X).

COROLLARY 4.12. Let X=lim(X;, r;, 1), where each X; is a subspace of X
and ry;: X;~X; is a retraction. In case HE(X,)={0} for all icl, HEX)={0}
and consequently Ker ¢ x=H,(X).

By this corollary HI(\/xS7)={0} for ¢>r which implies Ker ¢ x=H(\/xS")
+{0} with ¢g=1mod (r—1), ¢>1, »>1 [2, Theorem 1].

REMARK 4.13. In Section 3, we have shown the difference among the Cech
homology group Hy(X), the singular homology group H,X) and HZ%(X). Here
we demonstrate examples which show the difference among HI(X), H,(X) and
HT(X).

(1) Let D={(x, y): x2+y?=<1} and S'=D={(x, y): x>+y?=1}. Define X=
S'} {0} U\UnenD*{1/n}. Then H(X)=Z and H\(X)=HT(X)=0.

(2) Let X be the example space due to H.B. Griffiths [23, p. 59], i.e., X=
YUY’ the subspace of R*® where Y={(x, v, 2): 05251, (x—(1—2)/n)+y2=
(1—2z)*/n* ne N} and Y’ is the reflection of Y through the origin of R3. Then,
7.(X)#0 but also H,(X)#0. On the other hand, H,(X)=HT(X)=0.

(3) Let X=\/,8*. Then H(X)=Z! and HT(X)=[[;Z. The first author
has shown that in case / is infinite H,(X) contains D, @ as a subgroup and
hence as a summand, where @ is the group of the rational [25, Theorem 4.14
and [Theorem Al1]. It is an interesting question whether H,(X) is torsion-free
or not.

(4) Since HY is a factor of H,, one may think that H? gives us less in-
formation than H,. However, it is not true. Let H be the so-called Hawaiian
earing, i.e. H=X with I=N in (3), and let x be a point of H such that H is
locally simply connected at x. Then H\(H)=A®DD,@ by (3). Take a sim-
plicial complex Y with yeY so that H(Y)=@Q. Let Z be the one point union
(H, x)\V(Y, y). Then Z is locally simply connected at the common point.
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Therefore, H,(Z)=H,(H)DH,(Y)= AD(D«QPR=H.(H). On the other hand,
HY(Z)=HT(H)PH(Y)=Z"¥DQ, which is apparently not isomorphic to HI(H)
=77V,

5. Realizing the groups C(X, Z)

In this section, we show the following.

THEOREM 5.i. Let X be a bounded subset of the real line R. Then
HI(R*"*"!\Xx{0})=C(X, Z) canonically, where 0=(0, ---, 0)= R™.

ProOF. We indentify YCR with Y X{0}JcCR"*. For each x=X, let
iz: R"'\X—R""'\{x} be the inclusion. Identifying Z with HI(R"*'\{x})
canonically, we define a homomorphism ¢: Z,(R**'\X)— Z* by ¢(zXx)=
(G)iz+B,). Let z=30Arur&Z,, where A, Z and u,sC(d,, R**\X). Each
x&X has a contractible neighborhood U in R™*! such that UNIm u,=@ for
every k. Therefore, (z'x),E(z—I—B_,,) is constant in U as a function of x, which
implies Im ¢ C(X, Z). And clearly B,cKer ¢. Then, it suffices to show that
(i) Ker ¢C B, and (ii) C(X, Z)CIm ¢.

(i) Let z=Ker ¢ be written as above. For any open neighborhood V of z,
there exists ¢>0 such that o(u:, ur)<e (0=<k<m) implies XAz u;EV, Where
p is the sup-metric induced from Euclidean metric. Choose xo<x;< -» <xy in
R so that XC(xo, xx) and x;i—x;1<e/n+1 (1</<M) and x;=X implies
(x:—0, x:+06)C X for some 0>0and x;, x;x1 X implies [x;, x4 JCX. Let K=
{7: (x4, xis)N\X#@}. For each i€K, let D;=(xi xi+)X(—&/n+1, e¢/n+1)"
and take y:=(xi, x::1)X so that x;€X implies [x;, y,JCX and xy,€X im-
plies [yi, x:i:.JCX. Let

h: R""\{y;:i€K} — R""'/\UickD;

be the radial deformation retraction, i.e. for each a on the boundary of D;, h
maps the segment between y; and a to the point a@. According to the choice
of x; and y;, we have

MR\ X)=R""'"\(XUUiexD:) (CR"\X).

which has a homotopy type of an n-dimensional bouquet. Since (7,,)%(h4(2)=
(i, )%(2)=0 for each i€E, we can see h4(2)E B,(h(R""'\NX))CBa(R"*'\X).
Since h moves points in distance less than &, p(u, hs(u:))<e for each k. Then
hy(2)=oAehy(ur)EV. Thus we have Ker oCB,.

(ii) To see C(X, Z)CIm ¢, let f=C(X, Z). There exist pairwise disjoint
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open intervals I, (k= N) such that XC\Urenl: and f is constant on each XN/,.
Let D, be the (n41)-ball with center x, and its diametrical axis /., and C.
the boundary n-sphere of D,. Take an n-simplex ECR"X {0} large enough
so that E contains all C,\R"X{0} in its interior. Take a homeomorphism
g:4,—E and for each k let u,, vi: d,—EUD,\{x:} be continuous maps such
that :

(1) urla)=vi(@)=g(a) for ag g (D:NR"X{0});

(2) ur maps g ' (D:NR"X{0}) to Cy;

(3) v: maps g ' (D:NR"*"*x{0}) to C:N\R"X{y: y=<0} homeomorphically ;

(4) (2K us—ve+Ba)=f(R)SHLR " \{x,}).
Finally, let u, v:4,—»R""'\X be the maps defined by: u(a)=v(a)=i(a) for
a&E\Ureng (D:NR"%{0}); and u(a)=ur(a)and v(a)=vi(a) for acg (D:NR"
% {0}) and each k= N. Then, u—vEZ, and p(u—v)=/.

REMARK 5.2. In case X is unbounded in the theorem, we get HL(R®*\X)
~(feC(X, Z): supp f is bounded}, where supp f={x= X: f(x)#0}. Let L* be
Cantor’s long ray [21, p. 643] and XCL*. Similarly we get an isomorphism
HI(L*X R \Xx{0})={feC(X, Z): supp f is bounded}. Thus, the group in [9,
is naturally realized by HI(Y).

It will be shown in Proposition A.11 that C(X, Z) is a ¢-Reid(Z) group
for any scattered subspace X of R. On the other hand neither C(Q, Z) nor
C(R~Q, Z) belongs to the o¢-Reid class of Z by the same reason as in [5].
Hence, neither R*\Q nor R*\(R\Q) is quasi-homotopic to R*\ X for any scattered

subspace X of R by Theorem 5.1.

6. Spatial homomorphisms

For spaces X and Y, a homomorphism A : HY(X)—HL(Y) (h: Hy(X)—>H(Y))
is called spatial if there exists a continuous map f: X—Y such that h=f%
(h=f4). In this section, we show that any homomorphism from HZ(X) to
HZ(Y) is spatial for any S"-piled spaces X and Y. As we shall show later,
this does not hold for singular homology groups. Recall that an S”-piled space
X consists of copies of S™ with identified base points. By e, we denote the
base point of S and also of X. We call each copy of S™ a basic component
of X. Our result of this section is concerned with slenderness of groups. A group
A is slender if for any homomorphism h: Z¥— A there exists n€ N such that
h(en)=0 for m=n, where e,(m)=1 and e,(?)=0 for 7=#m [11, XIII 94]. Asis well
known, it is also equivalent that for any homomorphism h: Z¥— A there exists
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n< N such that A(ZV\")={0}.
By a straightforward induction on the definition of piled spaces, we get the
following

LEMMA 6.1. Let X be an S™-piled space and X; (A= A) be all the basic com-
ponents of X. If 0,: X1—X;: (A€ A) are base point preserving continuous maps,
then the induced map ¢ : X—X (i.e., 0| Xa=0, for each 1) is continuous.

THEOREM 6.2. Let X and Y be S™-piled spaces. Then any homomorphism
from HE(X) to HEY) is spatial.

ProoOF. In case X=Y =8", the theorem holds, since any endomorphism on
HI(S™) (= Z) is spatial. Our proof goes by induction on the definitions of X
and Y. In the sequel, ¢;: Y=Y, (j€]) denote the projections in both cases
Y=V,esY; and Y=V,e;Y; Let X=Vic;Xi or X=Vie,;X;. Our induction hy-
pothesis is that any homomorphism from HZ%(X) to H%(Y; and one from
HY(X;) to HL(Y) are induced by base point preserving continuous maps. We
remark the following property (+) of S™:

(4+) There exist pairwise disjoint open sets O, (m&N) in 8™ and con-
tinuous maps dn:S"—8” (m&N) such that eZO0n, on(S"\On)={e}
and amTid.

(Case 1) X=8". Let Y=V,e,;Y . Since HY(Y)=P,e,H%(Y ;) canonically by
Theorem 4.6 and HZ(S™)=Z, there exists a finite subset F of J such that Im A
CP,erHL(Y ;). The induction hypothesis implies the existence of base point
preserving continuous maps f;: X—Y; (jEF) such that (f)5=(¢)%-h. Take O;
and ¢;: X—X indexed by j&/ with the properties assured by (+). Define
f:X-Y by:

fieofs) for s€0; (JEF);
f(S)={

e otherwise.
Then f is continuous, Im fiC®erHLY ;) and (g% fx=(q;°/)5=(g;°fo0)k=
(fNE=(g)L-h for each j=F. Hence fi=h.

Next, let Y=\/;esY,. Since HL(Y)=TlesH%Y ;) canonically by [Theoreml
4.6, there exists a countable subset C of J such that Im hCIlecHE(y;). As
in the case of \V,e,Y,, take f; O; and ¢, (j€C) and define f: X—-Y by:

fieafs) for s€0; GO);
f(8)={

e otherwise.
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Since g,of is continuous for all j= ], f is continuous and we can conclude i
=h as above.

(Case 2) X=V\/ie;X;. By induction hypothesis, there exist base point pre-
serving continuous maps f;: X;—Y (i€I) such that h|HZL(X,)=(f:,)L. Define a
continuous map f: X—Y by: f|X,=f,; for i=l. Then it is easy to see that
h=fE.

(Case 3) X=V/ie;Xi. When Y=8" HLY) (=Z) is a slender group. Ap-
plying Theorem 1(1) of in a similar way as in the proof of Lemma A.2,
we get a finite subset E of I and A: PiesHE(X:)—HLY) such that h=foxp,
where 7p: [Lie/HY( X)) —PiceHE(X:) is the projection. We get the desired con-
tinuous map f through the projection as in Case 2.

Let Y=V,esY;. By Lemma A.2 and the torsion-freeness of H 2(Y), there
exist finite subsets £ of I and Fof J such that WM Tiene HH X))CD,e r HYY ).
Let X2 (A= 4,) be all the basic components of X; for each 7. Then, HI(X;,;)
(A 4;, i€I) correspond to all the basic components of H 2(X). (See Definition
A.9.) Since ViezX; is a retract of X, by induction hypothesis there exists a
base point preserving continuous map g;: VieneX:€Y; for each 7 such that
(8)5=(g%h| TlienneHE(X:). We get 0,3,C Xy (GEF) and a4y, Xi1—X;; with
the properties assured by (4). Then there exists a continuous map ¢;: \VienzX;
—\ViernsX: induced by o:1; GEINE, 2= 4;) for each j&F by Lemma 6.1 De-
fine fpg: \7ie1\EXi—>\/jeFYj (CVjesY ;) by:

85°0:248) for s€042; GEINE, A=A, jEF);

fE(S>:{ )

e otherwise.
Then the continuity of fz follows from the continuity of ¢ ; U€F). We have
h e eHE(X:)=(f£)% by the definition and Lemma A.10, since (g)k-h|HE(X,;)
=(gN5HE(X:i)=(g)%(f)k for j=J. For each i=E, there is a base point
preserving continuous map f;: X;—Y such that h|HZ(X;)=(f,) by induction
hypothesis. Combining fz and f, (=E), we get the desired map.

Let Y=\/;esY;. Then there exist base point preserving continuous maps
g+ X—Y; (&€ ) such that g,(x)=2y; and (¢;)%-h=(g,)%. As before for eachi=]
and A= 4;, there exists a countable subset C;; of J such that h(HLYX: )
Iljec,, HX(Y ;). We get 0:;,CX;; (J=Ciz)and g4z;: Xi2—X;; as before. Define
f: XY by:

g°0:148) for s€0.1; (icl, 2= 4;, 5 Cia);
f(8)={

e otherwise.
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For each j, define a continuous map ¢;: X—X by:
;) Xia=ai; if j€Cu; ¢ Xia)={x} otherwise.
Then ¢;°f=g;°¢; for each j=J, hence f is continuous. It follows that
(g% FEIHL( X:2)=(gso 0% HE( X 2)=(g )L | HK Xi2)=(g)%= h | Hi(X:2)
for iel, 2 A4; and j=Ci; and
(g% FEIHL(X:2)=0=(g,)%h| H%(X:2)  otherwise.
Therefore h=/f% by Lemma A.10.

Next we show that slenderness of groups can be characterized using the
notion of spatial homomorphisms. Let H=\/;cxS} be the Hawaiian earring,
where S! is a copy of S* for ;= N, and K(A, 1) be an Eilenberg-Maclane com-

plex [23].

THEOREM 6.3. The following statements are equivalent for a group A.

(1) A is slender ;

(2) For a path connected space X with H(X)=A, any homomorphism
h: H(H)—-H\(X) is spatial;

(2T) For a path connected space X with HY(X)=A, any homomorphism
h: HY(H)-HY(X) is spatial;

(3) Any homomorphism h: H(H)—H,(K(A, 1)) is spatial;

(3T)  Any homomorphism h: HY(H)—-HT(K(A, 1)) is spatial.

ProoF. The implications (2)—(3) and (27)—(3") are obvious. Since
H(K(A, 1))=HI(K(A, 1)) by (3)—(37) follows from [Proposition 1.1,

(1)=»(27): By [Theorem 4.6, HY(H)=Tl:enH%(S}) (=Z") naturally. There
exists ne= N such that h(I1:..H%(S}))=1{0}. Fix a point x=X. Since X is path
connected, there exist continuous maps f;: Si—X (z<n) such that f;(e)=x and
(F5=h|HI(SY). Define f: H-X by: f|Si=f: ((<n) and f(ViaSD={x}.
Then h=fE%.

(1)~>(2): Here we use some results and notation in [25]. By Griffith’
theorem [25, Theorem A.l], =,(H, e)=XnyZ hence H,(H)=Ab(¥XnxZ). Since
HT(H)=Z" canonically, Kerogyg=Cy/(XnyZ), which is complete mod-U by
Theorems 3.3 and 4.7 of [25]. Consequently h(Ker op)=1{0}, hence, there
exists a homomorphism #&: HI(H)—H,(X) such that h=h-og. Similarly as
above we define f,’s so that (f)«=h|H,(S}) and also f. Since h only depends
on the direct summands H,(S?) (1<i<n) of H,(H), we get h=f.
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(37)—(1): Let h: Z¥—A be a homomorphism, where we identify Z¥ and
A with HT(H) and HI(K(A, 1)) respectively. Let f:H—K(A, 1) be a con-
tinuous map with fLZ=h. Since K(A, 1) is locally contractible, there exists
ne N such that fL(HT(SY)={0} for 7<n. Hence A is slender.

REMARK 6.4. (1) Here we show that does not hold for singular
homology groups. By [25, Theorem 4.14], H,(H) contains a subgroup iso-
morphic to Q. Since HI(H)=ZY is a torsion-free abelian group of cardi
nality 2% and op: H(H)—HT(H) is an epimorphism, there exist 2?™°-many
endomorphisms on H;(H). On the other hand, there exist only 2%-many con-
tinuous maps from H to itself. Hence, not all endomorphisms are induced by
continuous maps.

(2) In case X=TI:c;S}, any endomorphism A of H(X) (=H1(X)) is spatial.
We show this as follows. Since 7(X)=T[1,Z, H(X)=TI;Z. Let p;: X—S}
((1) and pr: X—IlicrSi (FCI) be the projections, where we consider S} and
I1:c»S! as subspaces of X. Hom (IT:c;A:, Z)=P:c; Hom (A;, Z) [8], hence for
any /=1 there exists a finite subset F; of I such that (pi)xeh=(p)x°h(DPr;)x-
Since any homomorphism from H,(IT;c7;S}) to Hy(S}) is spatial, there exists a
continuous map f;: Il;e;SieS: such that (p)seh=(f)x (=(f)%) for each 7.
Define a continuous map f: X—X by: p;of=f; for every 7. Then h=f.

In case X=11,S!, the situation is a little different. (Recall that this is
a canonical compact abelian group.) If the cardinality of I is less than the
least measurable cardinal, then every endomorphism of Hy(X) is spatial, since
Hom (TTicr Ai, Z)=Pie; Hom (A;, Z) [11, §94]. Otherwise, there exist non-
spatial endomorphisms of H,(X) (=zH7(X)). To see this, let p; and pr be the
projections as above. Take a non-principal countably complete ultrafilter & on
1 and define a homomorphism £ : Hl(_X)—>H1(S%O) (CH(X)) by:

h(u+B,)=a iff {i=l: p;cu+B,=a}lseT,

where us C(4,, X)N\Z(X) and a=H(S},) (=Z). Suppose that h=f4 for some
continuous map f: X—X. Then (p;,°f)«=fs holds. We define uesC(4,, SHN
Z(SY) by: u(x, y)i)=(cos 2w x, sin 2z x) for (x, y)=4, and 7=l. Then h(u+B,)
#0. Let ¢>0 be so small that p(v, w)<e implies that v~w for v, wesC(4,, SY)

NZ(S*). Choose basic open sets V,, -+, V,CX so that ImucC\U%,V; and
sup{p(pi,o f(x), Pi,eo (¥ x, yEV;}<e for 1=j<m. Then there exists a
finite FCI such that every V; depends on Il;crSi Let v=ppeu. Then Imv
C\U.V; and j)ioofou*;;;bioofw, hence h(u-+B,)=h(v+B,). However, p,c.v=DB;
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for i¢F and hence (pi,°f)«(v+B)=~h(v+B,)=0 by the definition of 4. This
contradicts to hA(u+ B,)=0.

(3) Let T=S81xS} be the torus with base point e. Then any endomor-
phism of H\(T) (=HY(T)) is spatial, but does not hold for 7'-piled
spaces. To see this, take free generators e,, e,, ei, e} (=1, 2) so that H(T)=
{e,, e and H(TVT)=<el, e}>P<et, ey naturally. Let h: H(T)-»H(TVT) be
the homomorphism such that h(e;)=e! for 7/=1, 2. Suppose that h=fx (=f%)
for some continuous map f: T—T\VT. Let p:T\VT—S'VS'be the projection
so that p projects the first torus to the first coordinate S' and the second to
the second. Then p-f induces a homomorphism from z,(T) to =,(S'VS?")
(=ZxZ) and Im ph=ZDZ.

a(T) —> 7 (TVT) — n(S'VSHY=Z *xZ

(Diagram) 771 1 l
H(T) T H(TVvT) — H,S'VSY=ZBZ

* Dx

Since any nonzero abelian subgroup of ZxZ is isomorphic to Z and the diagram
commutes, Im pyefxon is isomorphic to Z or trivial, hence so is Im pxeofx
because % is surjective. This is a contradiction.

(4) Let X be a connected 2-simplicial complex and Y a path connected
space. Then the standard method shows that any homomorphism 7,(X) to w(Y")
is induced by a continuous map from X to Y. On the other hand, there exists
a 2-simplicial complex X with #(X)=Z~. Then H{(X)=H(X)=Z". How-
ever, we cannot replace H by such an X in Thoerem 6.3. In addition, though
HT(SYM)=ZY, we cannot replace H by (S")¥ as the preceding (3) shows.

A. Appendix

All groups in the sequel are abelian groups. Here we prove a hierarchy
theorem for the ¢-Reid class of certain abelian groups, which is a version of
of and Theorem 1 of and corresponds to the class of X-
piled spaces.

DEFINITION A.l. Let A be a group. The o-Reid class of A is defined as
the smallest class which contains A and also [T:c;X; and @i X; when each X;
(=) belongs to the class. A group in the ¢-Reid class of A is called a o-
Reid(A) group. Along the inductive definition, we define types for o-Reid(A)
groups. Orders are the ordinals of types as in Definition 4.8
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(1) ty(A)=(0, P)=(0, S);
(2) Let X; (i=l) be o-Reid(A) groups of type ty(X;), where |I|=2.
Case (a): sup™{o(X,):isl}=1.
1, S) if I is infinite;
tY(EBiEIXi):{ )
0, M) otherwise.
1, P) if I is infinite;
ty(ITier Xo) 5{ .
0, M) otherwise.
Case (b): sup™{o(X;):icl}=p+1 for p=1.
(p+1, S) if Ip is infinite;
ty(Pier Xi) =1 (¢, S) if Ip is empty;
(¢, M)  otherwise,
(p+1, P) if Ig is infinite;
ty(Ilie: Xs) =3 (¢, P)  if Is is empty;
(p, M) otherwise,

where Ip={i: ty(X;)=(g, P) or (¢, M)} and Is={i: ty(X)=(u, S) or (g, M)}.

Case (¢): sup*{o(X;):i=I}=p a limit ordinal.

ty(Pics Xi)=(g, S) and ty(I1ic; X:)=(g, P).
(Refer the remarks before [Definition 4.8|)

By induction along the definition of ¢-Reid(A) groups, we get the follow-
ing Lemmas.

LEMMA A.2. Let X be a o-Reid(A) group and (p, I')sty(X). Then there
exists a o-Reid(A) group of type (u, I') which is isomorphic to a summand of X.

LEMMA A.3. If a o-Reid(A) group X is of type (¢, M) (u=1) then there
exist o-Reid(A) groups Y, and Y, such that V. PY,=X and ty(Y.))=(y, P) and
ty(Y)=(gt, S).

Since the functors D and n! not only commute with direct sums but also
with o-products, we get the next lemma.

LEMMA A.4. If X is a o-Reid(A) group of type (u, I'), then there exists a
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o-Reid (A/D(A)) group of type (u, I') which is isomorphic to X/D(X) and also
exists a a-Reid(n1A) group of type (u, I') which is isomorphic to n!X.

The next lemma is a version of [14], but there exists no trap of the
measurable cardinality, because we only deal with ¢-products. (Direct products
cause a trap of the measurable cardinality and [6]. Using II instead of \/ in
in the definition of piled spaces, we get a version of piled spaces. In this case,
HZ corresponds to groups in the Reid class, which is obtained by using direct
products instead of ¢-products.) We investigate o-Reid(A) groups for a group
A with the properties (P) or (S) (Definition 4.9.

LEMMA A.5. Let A; GlI) be groups and G; (€ J) be reduced groups. For
any homomorphism h: [lie1 Ai—>@jesG; (=G), there exist finite sets I'C I, J'C]J
and n= N such that

h(n-Tienr, A)CDjer G-

PROOF. Since we want to apply Theorem 1(3) of [8], we use the same
notion and notation. There exists a quasi-sheaf (S, p) over P(I) such that S”
is isomorphic to [l:c;A:. (See [8, Definition 1].) By Theorem 1(3) of [8],
there exist countably complete maximal filters Fi, ---, Fn, of P(I) and an integer
n>0 and a finite subset J’ of J such that h(n-Kp,.r,)C@jesr G, 1f Fisa
non-principal countably complete maximal filter of P(I) Kr=Tl:c;A: holds.
Therefore we may assume that Fy, ---, F, are principal. There exist ai, '+, @mn
eI such that Kp,=T1Tiza,A:. Let I’={as, -+, an}. Then Kpr,=NikKr,=
IT:ic;\ s A4; and we get the conclusion.

By using Lemma A.5 instead of Lemma 4 of [5], we prove the following

lemma.

LEMMA A.6. Let A be a reduced group. If any o-Reid(n!A) group of type
(g, I') is not isomorphic to a summand of any o-Reid(n1A4) group of type (g, V)
for each nE N, then any a-Reid(n!A) group of type (u+1, V) is not isomorphic
to a summand of any o-Reid(n!A) group of type (u+1, I') for each ne N, where
I’'=P and V=S, or ['=8S and V=P respectively.

PROOF. Suppose that a o-Reid(m!A) group X of type (#+1, V) is isomor-
phic to a summand of a ¢-Reid(m!A) group Y of type (¢+1, I').

First consider the case that '=Pand F=S. Then by Lemma A.3, we may
assume that X=@;;X; and Y=[I;esY,; where {i:ty(X)=(g, P)} is infinite
and ty(Y )=(g, S) for every j= /. There exist h: X—Y and ¢:Y—X such
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that ¢-h=id. By Lemma A.5, there exist n=N (n>m) and finite sets I’C ],
J'CJ such that g(n - <m+1)‘ﬂjeJ\J'Yj)C@iez'Xi- Then Dicpn - (m4-1X;
is isomorphic to a summand of Il,cs 7 - (m+1)Y; The latter group is iso-
morphic to a o-Reid(n!A) group of type less than or equal to (g, S). There
exists an 7&I\I’ such that ty(X;)=(g, P). Then n .- (m+1)X; is isomorphic
to a o-Reid (n!A) group of type (x, P) and thus we get a contradiction.

Next consider the case that I’=S and V'=P. Then as the former case, we
may let X=IT:c;X; and Y=0,c,Y; where {i:ty(X;)=(g, S)} is infinite and
ty(Y )=(p, P) for every j=J. Let h and ¢ be as before. By Lemma A.5,
there exist neN (n>m) and finite sets I'CI, J'CJ such that A(n --- (m+1)-
ITicr Xi)T@jer Y ;. This implies that [Tiernsn - (n+1)X; is isomorphic to
a summand of @Pjcs;n - (m+1)Y,;, which induces a contradiction as the dual
case.

THEOREM A.7. Let X and Y be o-Reid(A) groups and X be isomorphic to a
summand of Y. Then, ty(X)<ty(Y) if A satisfies (I") and

(@) ty(Y)=(n, V) for an odd n=N;

) ty(¥)=(n, I') for an even n=N; or

(¢) oY) is infinite,
where (1) I'=P and V=S; or (2) I'=8 and V=P, respectively.

Consequently, if A satisfles both (S) and (P)and o(Y)=1, then ty(X)<ty(Y).
Therefore, isomorphic a-Reid(A) groups of nonzero order have the same type.

Proor. If X is isomorphic to a summand of Y, then X/D(X) is isomor-
phic to a summand of Y/D(Y). Therefore we may assume D(A)=0 by Lemma

A4,

(Finite case): From Lemma A.6, it suffices to show the case of n=1. We
use the notation in the proof of Lemma A.6. Suppose that ty(X)=ty(Y). If A
satisfies (S), ty(Y)=(1, P) and ty(X)=(1, S). By Lemma A.2, we may assume
that X=@;A and Y=[[,;A for infinite index sets / and /. By Lemma A.5,
there exist m< .V and finite sets I'C 1, J'CJ such that e(m ! - [Trs AP, m!A.
This implies that (P;\;/(m!A) is isomorphic to a summand of (m!A4)"'!, which
contradicts to (S). In case A satisfies (P), we can perform the proof similarly.

(Infinite case): Suppose that the lemma holds in both cases ty(Y)=(p, P)
and ty(Y)=(g, S). Then it holds in cases ty(Y)=(u+1, P) and ty(Y)=(u+1,S)
by Lemmas A.6 and A.2. Then it also holds for the case ty(Y)=(y, M). The
only remaining cases are ty(Y)=(y, P) and ty(Y)=(g, S) for a limit p. We
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can prove similarly to Lemma A.6 by using Lemma A.2.

CORRLLARY A.8. Let A be a group of finite rank. If A is not isomorphic
to a direct sum of a divisible group and a bounded group, then isomorphic o-
Reid(A) groups have the same type.

PROOF. Since A/D(A) is a group of finite rank and unbounded, m-A/D(A)
is a nonzero group of finite rank for each meN. Therefore A satisfies (P)
and (S). Moreover, A™ is isomorphic to A only when m=1. Now the corol-
lary follows from Theorem A.7.

There exist many groups of infinite rank which satisfy either (P) or (S).
For example, unbounded almost slender groups satisfy (P) and unbounded,
reduced Fuchs-44-groups satisfy (S). We refer the reader to [71, and
fol those groups.

Recall that a group is cotorsion-free if it does not contain a nonzero cotor-
sion group, and that a homomorphic image of an algebraically compact group
is cotorsion [II]. A slender group is cotorsion-free and the class of cotorsion-
free groups is closed under direct products and subgroups. To prove a lemma
about homomorphisms between g-Reid(A) groups, we introduce a concept corre-
sponding to basic components of X-piled spaces.

DEFINITION A.9. Basic components of ¢-Reid(.A) groups are inductively
defined as follows:

(1) A itself is the only basic component of A;

(2) Let Ai; (A=4,;) be all the basic components of a g-Reid(A) group X;
for each iel. Then A;; (A=A, icl) are all the basic components of both
ﬁieIXi and DicrXs.

Note that a basic component of a o-Reid(A) group X is isomorphic to A
and is a subgroup of X. The next is a lemma for

LEMMA A.10. Let A be a cotorsion-free, and X and Y be c-Reid(A) groups
and g, heHom (X, Y). If glAi=h|A; for each basic component A; of X, then
g=h. ‘

PROOF. We prove by induction on the definition a ¢-Reid(A) group X.

(1) In case X=A, there is nothing to prove.

(2) In case X=X, it is clear from Hom (X, V)=1l:e, Hom (X;, Y) and
induction hypothesis. In case X=[T:c;X:, we can see that g|PDic; Xi=h|Dics Xs
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by the preceding case. Since [Tic;X:/@Pic;X; is algebraically compact [11,
Theorem 42.17 and Y is cotorsion-free, we conclude g=nh.

In the remaining part of this appendix, we state about C(X, Z) for a scattered
subspace X of R. First recall definitions concerning scatteredness. For a space
X, let X’ be the subset of X consisting of all accumulation points. Let X,=X
and define X,=Xj; for a=8+1 and X,=s<, X3 for a limit ordinal @. We
say that X is scattered if X,=@ for some a. For a scattered space X, let
r(X) be the least ordinal @« such that X,=@ and r(x)=max{a: x X,} for
x=X.

PROPOSITION A.11. Let A be a group with the discrete topology.

(1) Any o-Reid(A) group defined by using only index sets of countable cadi-
nalities is isomorphic to C(X, A) for some scattered subspace X of R.

(2) For any scattered subspace X of R, C(X, A) is isomorphic to a o-Reid(A4)
group defined by using index sets of countable cardinalities.

Proor. (1) To prove by induction, it suffices to realize PrenC(X,, A) and
II2enC(Xn, A) for scattered subspaces X, of R. The only nontrivial case is
PBrenC(Xn, A). We may assume XnC(1/n+1, 1/n) and C(X,, A)+0. Let X=
{0} UUrenXoCR. Then X is scattered and C(X, A)= ADP,enC(X,, A). Since
every C(X,, A) contains a summand isomorphic to A, C(X, A)=PnenC(Xn, A).

(2) This is shown by induction on #(X). We remark that for any scattered
subspace X of R, r(X)is countable and hence X is countable and 0O-dimensional.
If n(X)=1, X is discrete and hence C(X, A) is isomorphic to A%, which is a
o-Reid(A) groups. In case r(X)=p-+1, Xy is discrete. We can take clopen
subsets U, of X (x&Xj;) so that {x}=U."Xp, U.NU,=@ and UxexﬂszX.
Now we work in U,. Take clopen subsets V, (neN) of U, so that VanVs,
=@ (m#*n), UnenVaU{x}=U, and Unz.V.U{x} (meN) form neighhorhood
bases of x. Then CU,, A)= ADP,enC(V,, A), which is isomorphic to a ¢-
Reid(A) group because 7(V,)<B. Therefore C(X, A)EHIeXﬁC(UI, A) is also
isomorphic to a ¢-Reild(A) group. In case »(X) is limit, let X={x,: ns N}.
Since 7(x,)<r(X), we can successively take clopen subsets U, of X so that
UNU;=@ (@#7), r{U.)<r(X) and x,€\U%U;. Then \UncyU,=X and hence
C(X, A)=I1nenC(Ur, A), which is isomorphic to a o-Reid(A) group by the
induction hypothesis.
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