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REPRESENTATIONS OF REDUCTIVE GROUP SCHEMES

By

Akihiko GYOJA

Introduction.

Let S be a reduced, irreducible scheme and G a reductive group scheme
over S. A representation of G is, by definition, a pair (p, V) of a vector
bundle V over S and a homomorphism p: G—=GL(V). If 7 is the generic geo-
metric point of S, we call (G, p, V) an S-form of (Gj, ps Vz). The purpose
of this paper is to describe the S-forms of an irreducible representation of Gy,
assuming that S is normal and locally noetherian.

As is well known, if S is the prime spectrum of a field, the S-forms of a
given representation can be obtained by twisting the split S-form using the
Galois cohomology. In the general case, the S-forms of a given representation
can be also obtained by twisting the split ones using a non-abelian étale co-
nomology, which is a natural generalization of the usual Galois cohomology.
In contrast with the case where S is the prime spectrum of a field, there are
possibly more than one split S-forms.

The results of this paper will be applied to a study of prehomogeneous
vector spaces.

Conventions. Since we refer very often, we shall write [Exp. X, Y.Z.
-] for [5; Exp. X, Y.Z.---]. If we are considering an algebraic variety V
over an algebraically close field K, we often identify V' with the set of rational
points V(K). If a scheme X is considered as a scheme over another scheme
S, we add suffix S and write X5. If S=Spec A, we write X, for Xspecu-

1. Representations of Chevalley-Demazure group schemes.
The purpose of this section is to describe the irreducible representations of

a Chevalley-Demazure group scheme. The main result of this section is (1.19).

1.1. Let K be an algebraically closed field, Gx a (connected) reductive
algebraic group over K, Tx a maximal torus of Gx, Bx a Borel subgroup of
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Gk which contains Tk, R (resp. RV) the root system (resp. the coroot system)
of Gk with respect to T x, M=Hom (Tx, K*) and MV=Hom (K*, Tx). Let Gx
be the Lie algebra of Gg, @x=8x(r) the root subspace of Gx associated with
a root »(€R), R*={reR|®x(r)cLie(Bg)} and R, the basis of R which is
contained in R*. Let (X,),eg be a Chevalley system of Gy [Exp. 23, 6.1].
Define a homomorphism p,=p, x: K—Gg by p,(x)=exp(xX,)and let P,=P, ¢
p-(K). Let

w,=p,(Dp-(—1)p,(1)
=p_(—=1)p-(p-(—1).

Let we=w, w,, - w., be “the longest element”, i.e., the following conditions
are satisfied :

Rt*={ry, Wryry_1, WryWrpy_ TN-2, "y WryWyepy ) Weypt1}
and
|R*|=N.

Let U, be the enveloping algebra of Gr.

1.2. Let px:Gxk—GL(Vgk) be a representation of Gx on a finite dimen-
sional vector space Vg, VY the dual vector space and p¥% the composition of

0
Gy —> GL(Vg)—= GL(VY),

which is called the contragradient representation of px. Let ( >: VXV g—K
be the natural pairing of VY% and Vg, and V,, x=Vx(u) (resp. Vi x=V%(w)
the weight space of Vx (resp. VY) which belongs to g (€M).

If there is no fear of confusion, we refer to (px, Vx) or px as a repre-
sentation. We refer to Vx as a Gg-module.

1.3. Let S be a reduced, irreducible scheme whose residue field at the
generic point 7 is contained in K. Let 7 be the generic geometric point

7:Spec K—>n—>S.

Let ©s5 be the structure sheaf of S.

1.4. An (Og-)lattice of Vg is, by definition, a pair (V(Os), ¢) of a locally
free ©g-module V(©s) of finite rank and an isomorphism 7:V(Qs)=V k. Two
lattices (V(Os), 7) and (V'(Os), ') of Vg are isomorphic if there is an isomor-
phism f:V(Os)—V'(®s) and a (non-zero) homothety c¢:Vg—Vg such that the
diagram
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V(Os); ——> Vi

sl e

V'(Os)i -——Z—’ VK

is commutative. Let VV(©s) be the dual Os-module of V(0s), i.e., VV(Os)=
Homo(V(0s), ©s). The natural isomorphism 7V: VV(Os);—V¥% which is induced
by z, gives a lattice (VV(Os), V), which is called the dual lattice of (V(Os), 7).
Let S(V(©s)) and S(VV(®s)) be the symmetric algebras over V(0s) and VV(Os),
respectively. Then V g=Spec S(VV(®s)) and V¥=Spec S(V(Os)) are vector bundles
over S, and their generic geometric fibres Vs 5 and V¥ 5 are isomorphic to Vg
and VY, respectively. If there is no fear of confusion, we refer to V(Os) as a
lattice of V.

1.5. Let Gs be the Chevalley-Demazure group scheme over S such that
Gs,5=Gg. (In other words, Gs=GzXxS, where Gz is the Z-group scheme
which is constructed in [Exp. 25].) We can define an S-analogue of each object
(or notion) which appears in (1.1) and (1.2). Especially we can define Tgs, Bg
etc., which are objects over S, corresponding to 7Tk, Bx etc. We may assume
that TsQK=Tg, BsQK=Bg etc. We assume that Gg is equipped with an
épinglage [Exp. 23, 1.1].

REMARK. One of the advantages of the construction of [Exp. 25] is that
we can treat representations which are not faithful.

1.6. Let ps: Gs—GL(Vs) be a homomorphism such that ps@K=pg, and
p¥ the composition

Cs— GL(V ) = GLIVY)
We shall call ps a representation of Gg and ¥ the contragradient representa-
tion of ps. We say that ps is (absolutely) irreducible if ps@K is irreducible.
1.7. Let U be the Z-subalgebra of U¢, which is generated by the elements
X%/ m! (reR, m=0,1, 2, ---).
Let g be the Og-algebra defined by
U—TI'(U, 05)QWz,

where U is any open set of S. The Og-algebra 1y has a graded Og-algebra
structure of type M:
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deg (XT/m\)=mr (eM).

1.8. Let V(©®s) be a locally free ©s-module of finite rank which has a (left)
Us-module structure. We say that V(Og) is irreducible if V(Os)QK is an irre-
ducible Ug-module. A graded Us-module is, by definition, a (left) Ng-module
equipped with a graded Og-module structure of type M which is compatible
with the graded ©s-algebra structure of s, A graded Ng-module is said to be
irreducible, if it is irreducible as a Ug-module.

1.9. Let us show that, from a given representation ps of Gs, we can
canonically construct a graded Us-module structure on V(Og).

Let ©sM be the group algebra of the additive group M. The épinglage of
Gs gives an identification of the character lattice of 7s with M. Hence we
get a canonical identification of Ts with Spec ®sM. Thus the composition of
morphisms

Ts —_> Gs _—> GL (V,s) — End (Vs)

induces an algebra homomorphism V(©s)QQVV(0s)—OsM, which induces an Ogs-
linear mapping ¢:V(0s)—V(0s)ROsM. Let us define Os-linear mappings
Gu: V(0s)—V(0s) (peM), by qv)=3 penq.(v)Qu, where v is a local section of
V(O0s). It is easy to see that g,’s are mutually orthogonal projections onto sub-
modules of V(O0s) and X¢g,=id. (See [1;1I, §2, 2.5].) Let V,(Os) be the
image of g,. Then V(Os)=PuenV .(Os). Denote (symbolically) by X[,"”IV#(OS)
the composition of mappings

p-(1) Juemr

V(0s) = V(Os) V(Os) ——> V pin.(Os),

where r&R and m=0,1, 2, ---. Let Xi{™ (€End V(©s)) be the direct sum of
these mappings.

1.10. REMARK. Let us consider the case S=Spec K. Let C be the coordi-
nate ring of Gx. Then C has a K-coalgebra structure. See [2] for the defini-
tion of coalgebra and related notions. The left Gx-module structure on Vg
induces a left C-module structure on VY¥%. The inclusion Tx—Gx induces a
homomorphisms KM<C and

Vi— VYRXC — VYRQKM .

By the argument of (1.9), we can define a graded K-module structure on VY%
of type M. Also {p,(1)}<.Gg induces K—C and

Vi — ViRQRC — VY.
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Thus, to define the operator Xi™? on VY%, we need only the C-module structure
on VY. In other words, we can define the operators X{™ for any C-module.
Moreover, it is not difficult to generalize our argument to an arbitrary S other
than Spec K.

1.11. LEMMA. There is a (unique) Ws-module structure on V(Os) such that
(X™/mDv=X for every local section v of V(Os).

PrROOF. Our task is to show that the operators Xi™ (reR, m=0, 1, ---)
satisfy the relations which they should satisfy. By an extension of scalars, we
may assume that S=Spec K from the beginning. By (1.10), we can consider
the same statement as above for any C-module W. To use the results of [2],
we shall prove the statement in such a generalized form. By [2; 1.5a], we
may assume that W is an injective C-module. By [2; 1.5h], we may assume
further that W is indecomposable. By [2; 2.4c], we can reduce the proof to
the case S=Spec L, where L is an algebraic closure of the quotient field of
the Witt ring of K. Since L is an algebraically closed field of characteristic
zero, the above statement is clear from the construction of Chevalley groups.

1.12. Thus we get a Ug-module structure on V(Os) and a graded Og-module
structure (V ,(Os))yen 0of type M, which are clearly compatible.

Conversely, if we are given a graded Ug-module structure on V(Qg), we can
define linear actions of p, s (#*<R) and Ts on V. By a similar argument as
above, we can show that these actions extend to a linear action of Gg on V.
Thus we get the following lemma.

1.13. LeEMMA. The functor
Vsr—>(V(0s), (Vu(Os))uen)

is an equivalence of the category of irreducible Gg-modules with that of irre-

ducible, graded Wg-modules.

In the remainder of this section, we assume that px is an irreducible repre-
sentation of Gg, V(Os) is a lattice of Vg and ps@K=px.

1.14. As is well known, Vx has a highest weight g, with respect to Bk,
i.e., BgVg(p)=V (o). It is also known that dimg V g(po)=1. Let V=
V4(Os) be a subsheaf of V, ., which is locally free of rank 1. Here we are
considering K as a constant sheaf on S. Since we can regard I'(U, Ug) as a
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subring of 11y for any open set U of S, we can define a sheaf V ;,(Qs) by
Ur—T'U, Us)- vy, (CVk).

Let 7: Vmin(Os);—V x be the natural morphism.
1.15. LEMMA. The pair (Vmin(Os), ) is an Og-lattice of V k.
PrOOF. Follow the proof of Corollary 1 to Theorem 2 of [6; p. 17].

1.16. Let pY¥ be the highest weight of the contragradient representation
p¥% of ox. We can prove that p¥=—w,u,. Hence { > defines a complete pairing
between w,V x(¢o) and V% (uY). Let <Vy be the dual Os-module of w,V,. Then Y
is naturally a subsheaf of V% (x¢¥) and a locally free @s-module of rank 1. Thus
we can define (VY;.(0s), V) in the same way as above. Let (Vmax(Os), 7) be its
dual lattice. Then Vnin(©s) can be naturally considered as a submodule of
Vmax(Os) and Vmin, 4o(Os)=V max. x,(Os)=V,. The graded Os-algebra structure
of Ug is inherited by graded Ug-module structures on V ,in(Os) and V max(Og).
The inclusion V nin(QOs)CTV max(Os) is compatible with these structures.

If we need to state clearly the dependence on <V,. we write V nin(Os; V)
(resp. Vmax(©s; Vo) for Vmin(@s) (resp. Vmax(Os). If €V, is a trivial @s-module
and generated by a global section v,, we write Vmin(Os; vo) (resp. Vmax(©Os; o))
for Vmia(Os; Vo) (resp. Vmax(Os; Vo).

1.17. An S-form of Vg is, by definition, an Og-lattice (V(Qs), ¢) of Vg,
equipped with a graded Us-module structure which is compatible with the
graded Ux-module structure of V. Let & be an element of H!(S, ©35). An S-

form (V(0y), 7) is of type &, if V, (Os) is an invertible sheaf whose cohomology
class is &.

Let us fix an invertible ©s-submodule &/, of V x(x,) whose cohomology class
is & We sometimes write Vqin(Os; &) (resp. Vmax(©@s; &) for Vimin(Os; Vo)
(resp. Vmax(Os; Vo).

1.18. LEMMA. Let V(Os) be a graded Ws-submodule of V max(Os) which is
locally free Os-module and contains V min(Os). Denote by ¢ the composition
V(Os)a —> Vmax(gs)ﬁ":\i+ VK .
Then (V(Og), i) is an S-form of V x and every S-form (up to isomorphims) of Vg

of type & can be obtained uniquely in this way.

Proor. If (V(Os), i) is an S-form of type &, then, multiplying by a scalar
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if necessary, we may assume that V, (0s)=V,. Then V(0s)DVmin(Os) and
VV(Os)DVYin(Os), where VV(0Oy) is the dual ©@s-module of V(©g). Hence V nmax(Os)
DV (Os)DV min(Os). The remaining is clear.

1.19. PROPOSITION. (1) The correspondence
G:V(Os)—>V, (0s)

defines a surjective mapping of the set of isomorphims classes of S-forms of Vg
onto H'(S, O%).

(2) Let §=HYS, 0%). There is a one-to-one correspondence between the set
@) and the set of graded Wg-submodules of V max(Os; &) which is a locally free
Os-module and contains V min(Os; &).

(3) For any two cohomology classes &, &;H'(S, ©%), there is a one-to-one
correspondence @1 (E)=¢1(E).

Proor. The first and second parts are already proved. Let us prove the
last part. Assume that §eHYS, 0%) and

Vmax(Os; £ DV(0s)DV min(Os; &) .

Then there is an open covering {U,} of S such that §|y, is trivial for every
a. Then V,(0s) has a section v, on U, which does not intersect the zero sec-
tion. There is a unique graded Us-automorphism ¢, of V(Os)lgan[jﬁ such that

¢'a,@(Uﬂ|UanUﬁ)_—'Ua | UanlUg +
If we patch the Ug-modules {V(Os)|r,} according to the patching data {¢.s}, we
get a graded Ug-module V(Og) such that
Vmax(Os; )2V o(Os) DV min(Os; &o)

and which is a locally free ©s-module. Here &, is the trivial class of HXS, ©3).
Thus we get a correspondence ¢~'(§)—¢ (&), which is clearly bijective.

2. Vector bundles.

To treat representations of general reductive groups, we need to show that
a quasi-coherent ©g-module of finite type is étale locally free if and only if it
is Zariski locally free.

2.1. LEMMA. Let A and B be local rings, A—B a local homomorphism, M
an A-module and N=MKB. If B is a finite étale over A and N is a free B-
module of finite type, then M is a free A-module of finite type.
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ProoF. If is known that B is a free A-module of finite type [3; Chapter
4, 18.2.3]. Hence, if we ragard N as an A-module, it is free of finite type. If

B:Axl@ @Axn s

then 1 (€B) can be expressed as 1=a,x,+ -+ +a,x, (a;:=A). Let R(A) (resp.
R(B)) be the radical of A (resp. B). Since l& R(B), at least one of a; is not
contained in R(A). If a,= R(A), {1, x,, ---, x,} is a free A-basis of B. Hence

0 A B Ax,D - BAx, —> 0

and
0=Tord(M, Ax. P - PAx,) —> M —> N

are exact. Since N is a free A-module of finite type and A is a local ring, M
is also a free A-module of finite type.

2.2. LEMMA. Let f:S'—S be a surjective, étale morphism and U an Os-
module such that f*U is a free Os-module of finite type. Then U is a locally
free Os-module of finite type.

ProoF. Let xS, vy be a point of S’ sucn that f(y)=x, A=0s,, and B=
Os'.y- We may assume that S=Spec A and S’=Spec B. By a descent argu-
ment [4], we can show that ¥ is quasi-coherent. Thus we have reduced the
proof to (2.1).

3. Representations of reductive group schemes.

The purpose of this section is to describe the irreducible representations of
reductive group schemes over normal, locally noetherian schemes. The main
result of this section is (3.10).

3.1. Let S be a scheme.

DEFINITION. Let G be a group scheme over S. If G is affine and smooth
over S, and its geometric fibres are all connected and reductive, then G is said
to be reductive.

3.2. Let *R=(M, MV, R, RV, R,) be a reduced root datum with an épinglage
(i.e., donnée radicielle reduite épinglée). In other words, M is a Z-lattice, MV
is the dual lattice of M, R is a (reduced) root system which is contained in M,
RV is the dual root system of R and R, is a basis of R. Assume that a reduced
root datum R is given.
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3.3. DEerFINITION ([Exp. 23, 1.11). Let us consider a family e=(i, (X,),er,)
of
(i) an isomorphism 7 of Spec O©sM onto a maximal torus T of G, where
OsM is the group ring of the additive group M, such that R (resp. RVY) is
identified with the root system (resp. the coroot system) of G with respect
to T via this isomorphism ¢,
and
(ii) a section X,<I'(S, ®™)* for each root subspace &” (= R,) of &=Lie (G),
where I'(S, 8™)* is the set of global sections which does not intersect the
zero section.
Such a family e is called an épinglage of G of type R.

3.4. The followings are known:

(1) If (R, e) and (R, e’) are two épinglages of a group scheme G over S,
then there exists a unique inner automorphism of G over S which transforms
the former épinglage to the latter [Exp. 24, 1.5].

(2) A reductive group shceme G over S has an épinglage of type R, if
and only if it is split and of type R [Exp. 22, 2.7]7.

(3) Assume further that S is locally noetherian and normal. For any
point s of S, there exists an open set U of S containing s and a surjective
finite étale morphism S’—U such that Gg=G XS’ is split [Exp. 24, 4.1.6].

3.5. Let (G, p, V) be a triple of a reductive group scheme G over S, a
vector bundle V over S and a homomorphism p: G—-GL(V). We call such a
triple a representation of G. If there is no fear of confusion, we refer to
(o, V), p or V as a representation of G. We also refer to V as a G-module.
If S is irreducible and 7 is a generic geometric point of S, then we say that
(G, p, V) is an S-form of (Gy, p5, V3). If S=Spec A, we call it an A-form.

A representation (G, p, V) is said to be split if G is split and V,,(Os) is
isomorphic to ©Os as an Og-module.

Let (G, p, V) and (G’, p’, V') be two representations. A homomorphism of
(G, p, V) to (G', p’, V') is, by definition, a pair (¢, ¢) of a homomorphism
¢ : G—G’ and a morphism ¢ : V-V’ of vector bundles which are compatible.

Assume that S is an irreducible scheme. Let % be the generic point of S,
K be an algebraically closed field which contains the residue field at » and 3
be the geometric point Spec K—S. We say that p is (absolutely) irreducible if
p7: G7—GL(V5) is irreducible. Hereafter, we assume that p is irreducible.
We say that p is an S-form of p; If the representation p is split, we say
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that p is a split S-form of p;.

3.6. Consider a triple e=(R, e, v,) of a reduced root datum with an épin-
glage R, an épinglage e of G of type R and a global section v,&I'(S, V. (0s)".
Such a triple e=(®R, e, v,) is called an épinglage of the representation (G, p, V).

The following lemma can be obtained from (3.4).

3.7. LEMMA. (1) A representation has an épinglage if and only if it is
split.

(2) Given two épinglages of a representation, there exists a unique auto-
morphism of the representation which transforms one épinglage to another épin-
glage and induces the identity mapping on M.

3.8. Hereafter, we shall assume that S is irreducible, normal and locally
noetherian. In that case, (G, p, V) has étale locally an épinglage. Let S be
the totality of étale neighbourhoods S’ such that pXxsS’ is split. Fix an épin-
glage for each pXxsS’ (S’eS8). If S,, Sg=S, there are two épinglages ¢, and
ep of oXs(SaXsSp) which come from pXsS, and pXsSs respectively. By
(3.7), there is a unique automorphism (¢.s, ¢ap) 0f pXs(SaXsSs) which trans-
forms e5 to ¢,. By a usual descent argument, we can show that p XS, (S,ES8)
can be patched together according to the patching data {(@.s, ¢.p)} and give
a split representation (G,, po, Vo). (See for the descent.) Here we used the
results of section 2.

If o has an épinglage, we can show that the patching data {(d.s, ¢as)} is
a coboundary. Hence p is isomorphic to p,. Hence every irreducible repre-
sentation can be uniquely obtained by twisting a split irreducible representation
po by using H'(S, Aut p,). Here Aut po is the étale sheaf

S’ —— Aut (poXsS’),

i.e., the étale sheaf represented by Aut p,. Let us restate our results.

3.9. Let S be an irreducible, normal, locally noetherian scheme and
7 : Spec K—S its generic geometric point. Let (G, px, V) be an irreducible
representation of a reductive algebraic group with an épinglage (R, e, v,). Let
F =the set of isomorphism classes of S-forms of px (see (1.17) for an S-
form)
F,=the set of isomorphism classes of split S-forms of px
g,=the set of graded Us-modules V(©s) which are locally free ©s-modules
and
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Vmin(OS ; UO)CV(OS)CVmax<@S N Uo) .

See (1.14)-(1.16), for Vmin(@s; ve) and V max(Os; vo). By (3.8), we can define a
mapping
Q. F —> T,

such that @|g, is the identity mapping.
3.10. Under the notations of (3.9), we have the following theorem.

MAIN THEOREM. (1) There is a bijection F,=9F,.

(2) For each p=%,, there is a bijection HY(S, Jut p)=0 Y (p).
(The first assertion is a restatement of the second part of (1.19) with £=0.
The second assertion has been proved in (3.8).)

3.11. REMARK. If S=Spec A, we define Vmin(A4) and Vimax(A) to be the
set of global sections of Vin(Os) and Vmax(Os), respectively. It is known that
the category of quasi-coherent ©s-modules and that of A-modules are equivalent.
Hence to give an element V(Os) of &, is equivalent to give a graded (U;RA)-
module V(A) which is a projective A-module and

Vmin(ACTV(A)CV max(A4) .

3.12. REMARK. If A=F is a field, then Vamin(k)=Vmax(k). Hence the
choice of V(k) is unique. Hence there is a one-to-one correspondence

F — HY(Gal (ksep/ k), Aut (0Qksep)),

where k¢ is a separable closure of k.

4. Automorphism group of a representation.

In the statement of the Main Theorem, we have met with the sheaf Aut p,.
To determine this sheaf, it suffices to determine Jut p for every split irreduci-
ble representation p, which is our purpose of this section. Our result of this

section is and [(4.3.2).

4.1. Let S be a reduced, irreducible scheme, G a split reductive group
scheme over S and (p, V) a split irreducible representation of G. Let (@, ¢)
be an automorphism of the representation (G, p, V). Then p-¢ is isomorphic
to p. Let us fix an épinglage (R, e) of G. By [Exp. 24, 1.3], ¢ is uniquely
expressed as @,¢,, where ¢, is an automorphism of (G, R, e) and ¢, is an inner
automorphism [Exp. 24, 1.1]. Then p-@, is locally isomorphic to p-¢ for the
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fpgc topology. Hence ¢, fixes the highest weight u, of p.

Conversely, assume that an automorphism ¢, of (G, R, e) fixes g,. Since
¢. preserves {X,},cr,, ¢: also preserves the Os-algebra of operators on V(Os)
generated by X!™ (reR, m=0,1, 2, ---). (See (1.9).) Hence p-¢, corresponds
to the same graded Us-module as p. Hence p-¢, is isomorphic to p. If ¢=4¢,¢,
with an inner automorphism ¢, p-¢ is also locally isomorphic to p for the
fpgc-topology. Hence for each point s of S, we can find an fpgc-neighbourhood
S’ of s and an automorphism ¢ of VXS’ such that (¢XsS’, ¢) is an auto-
morphism of pXsS’. This automorphism ¢ is uniquely determined by ¢ up to

homothety.

4.2. Let H be the sheaf theoretical image of Aut p—AutG. Here we
identify a scheme on S with the fpqc-sheaf represented by it. Define a homo-
morphism G,—Aut p by

¢ — (identity, multiplication by ¢).
The automorphism group of G can be expressed as a semi-direct product

Aut G=ad (G)xAut (G, R, e).

4.3. Using the notations of (4.2), results of (4.1) can be stated as follows:

4.3.1) 1—6G,— Autp— H—1

is exact.

4.3.2) H=ad (G)xAut (G, R, e, p,).
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