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ON THE MULTIVALENT FUNCTIONS

By

Mamoru NUNOKAWA, Ohsang KWON and Nak Eun CHO

Let $A_{p}$ denote the class of functions of the form

$f(z)=z^{p}+\sum_{n\Leftarrow p+1}^{\infty}a_{n}z^{n}$ $(p\in N=\{1,2,3, \cdots\})$

which are analytic in the unit disk $U=\{Z:|z|<1\}$ .
Ozaki, Ono and Umezawa [4, Theorem 1] obtained the following result.

THEOREM A. Let $ f(z)=z+a_{2}z^{2}+\cdots$ be analytic in $U$ and suppose that

$|f^{\prime\prime}(z)|<1$ in $U$ ,
then $f(z)$ is univalent in $U$.

In this paper, we need the following lemmata.

LEMMA 1. Let $w(z)$ be analytic in $U$ with $w(O)=0$ . If $|w(z)|$ attains its
maximum value on the circle $|z|=r$ at a point $z_{0}$ , then we can write

$z_{0}w^{\prime}(z_{0})=kw(z_{0})$

where $k$ is a real number and $k\geqq 1$ .

We owe this lemma to Jack [1] (also, by Miller and Mocanu [2]).

LEMMA 2. Let $p\geqq 2$ . If $f(z)\in A_{p}$ and suppose that

$Re\frac{f^{(p-1)}(z)}{z}>0$ in $U$ .

Then $f(z)$ is p-valent in $U$.

We owe this lemma to Nunokawa [3].

THEOREM 1. Let $p(z)$ be analytic in $U,$ $p(O)=1$ and suppose that

(1) $|p(z)+zp^{\prime}(z)-1|<2$ in $U$ .
Then we have

Received April 3, 1990.



142 M. NUNOKAWA, $0$ . KWON and N.E. CHO

$Rep(z)>0$ in $U$.

PROOF. Let us put
$p(z)=1+w(z)$ ,

then we have $w(z)$ is analytic in $U$ and $w(O)=0$ .
If we suppose that there exists a point $z_{0}\in U$ such that

$\max_{|z|\leq|z_{0}|}|w(z)|=|w(z_{0})|=1$ ,

then from Lemma 1, we have

$z_{0}w^{\prime}(z_{0})=kw(z_{0})$ $(k\geqq 1)$ .
Then we have

$|p(z_{0})+z_{0}p^{\prime}(z_{0})-1|=|1+w(z_{0})+z_{0}w^{\prime}(z_{0})-1|$

$=|w(z_{0})+kw(z_{0})|=|u(z_{0})(1+k)|\geqq 2$ .

This contradicts (1). Therefore we have

$|w(z)|<1$ in $U$.
This shows that

$Rep(z)>0$ in $U$.

THEOREM 2. Let $p\geqq 2$ . If $f(z)\in A_{p}$ and suppose that

(2) $|f^{(p)}(z)-p!|<2(p!)$ in $U$.

Then $f(z)$ is p-valent in $U$.

PROOF. Let us put

$p(z)=\frac{f^{(p-1)}(z)}{p!z}$ , $(p(0)=1)$ .

By an easy calculation and from (2), we have

(3) $|p(z)+zp^{\prime}(z)-1|=|\frac{f^{(p-1)}(z)}{p!z}+z(\frac{zf^{(p)}(z)-f^{(p-1)}(z)}{p!z^{2}})-1|$

$=|\frac{f^{(p)}(z)}{p!}-1|<2$ in $U$.

From (3) and Theorem 1, we have

$Re\frac{f^{(p-1)}(z)}{p!z}>0$ in $U$.

This shows that
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$Re\frac{f^{(p-1)}(z)}{z}>0$ in $U$.

From Lemma 2, we have $f(z)$ is $p$-valent in $U$.

REMARK. For the case $p\geqq 2$ , it is very interesting that $f(z)\in A_{p}$ continues
to be $p$-valent in $U$, even if $f^{(p)}(z)$ takes negative real value in $U$.

THEOREM 3. Let $p\geqq 2$ . If $f(z)\in A_{p}$ and suppose that

$|f^{(p+1)}(z)|<2(p!)$ in $U$.
Then $f(z)$ is p-valent in $U$.

PROOF. We easily have

$|f^{(p)}(z)-p!|=|\int_{0}^{z}f^{(p+1)}(t)dt|$

$\leqq\int_{0^{r}}\underline{}$

for $z\in U$ and $|z|=r<1$ .
From Theorem 2, we have $f(z)$ is $p$-valent in $U$. This completes our proof.
For the case $p\geqq 2$ , Theorem 3 is a more excellent result than Theorem A

[4, Theorem 1].
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