SOME PROPERTIES OF CERTAIN MULTIVALENT FUNCTIONS

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Ву

Hitoshi Sагтон

1. Introduction

Let A_p be the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{n=n+1}^{\infty} a_n z^n \qquad (p \in \mathbb{N} = \{1, 2, 3, \dots\})$$

which are analytic in the unit disk $U=\{z: |z|<1\}$.

A function $f(z){\in}A_p$ is said to be in the class $R_p(\alpha)$ if it satisfies

(1.2)
$$\operatorname{Re}\{f^{(p)}(z)\} > \alpha$$

for some $\alpha(0 \le \alpha < p!)$ and for all $z \in U$. Let the functions F(z) and G(z) be analytic in the unit disk U. Then the function F(z) is said to be subordinate to G(z) if there exists a function w(z) analytic in U, with w(0)=0 and $|w(z)| < 1(z \in U)$, such that $F(z)=G(w(z))(z \in U)$. We denote this subordination by F(z) < G(z).

For $f(z) \in \mathbf{R}_p(\alpha)$, Saitoh has proved that

$$(1.3) f(z) \in \mathbf{R}_p(\alpha) \Longrightarrow \frac{f^{(p-1)}(z)}{z} < 2\alpha - p! - \frac{2(p! - \alpha)}{z} \ln(1-z).$$

This is a generalization of the result for p=1 by Owa, Ma and Liu [5]. Let $S_p(\alpha)$ be the subclass of A_p consisting of functions which satisfy

$$(1.4) f^{(p)}(z) < p! + (p! - \alpha)z (z \in U)$$

for some $\alpha(0 \le \alpha < p!)$. Then, it is easy to see that

$$S_n(\alpha) \subset R_n(\alpha)$$
 $(0 \le \alpha < p!)$

and that $f(z) \in A_p$ is in the class $S_p(\alpha)$ if and only if

$$(1.5) |f^{(p)}(z)-p!| < p!-\alpha (z \in U)$$

for some $\alpha(0 \le \alpha < p!)$.

Received May 10, 1990, Revised July 16, 1990

2. Some properties of the class $S_p(\alpha)$

We begin with the statement of the following lemma due to Jack [1] (also, due to Miller and Mocanu [4]).

LEMMA 1. Let w(z) be regular in U with w(0)=0. If |w(z)| attains its maximum value in the circle |z|=r at a point $z_0 \in U$, then we can write

$$z_0w'(z_0)=kw(z_0)$$
,

where k is real and $k \ge 1$.

An application of the above lemma leads to

THEOREM 1. If $f(z) \in A_p$ satisfies

$$(2.1) |\beta f^{(p)}(z) + (1-\beta)z f^{(p+1)}(z) - p!\beta| < p! - \alpha (z \in U)$$

for some $\alpha(0 \le \alpha < p!)$ and $\beta(0 \le \beta \le 1)$, then $f(z) \in S_p(\alpha)$.

PROOF. We define the function w(z) by

(2.2)
$$w(z) = \frac{f^{(p)}(z) - p!}{p! - \alpha}.$$

Then w(z) is regular in U and w(0)=0. Since

(2.3)
$$z f^{(p+1)}(z) = (p! - \alpha)zw'(z),$$

we have

(2.4)
$$\beta f^{(p)}(z) + (1-\beta)z f^{(p+1)}(z) - p!\beta = (p! - \alpha)\{\beta w(z) + (1-\beta)zw'(z)\}.$$

If there exists exists a point $z_0{\in}U$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1,$$

then Lemma 1 gives

$$z_0 w'(z_0) = k w(z_0)$$
 $(k \ge 1)$.

Therefore, noting that $w(z_0)=e^{i\theta}$, we obtain that

$$(2.5) |\beta f^{(p)}(z_0) + (1-\beta)z_0 f^{(p+1)}(z_0) - p!\beta|$$

$$= (p! - \alpha)(\beta + (1-\beta)k)$$

$$\geq p! - \alpha,$$

which contradicts our condition (2.1). Thus |w(z)| < 1 for all $z \in U$, that is,

$$(2.6) |w(z)| = \left| \frac{f^{(p)}(z) - p!}{p! - \alpha} \right| < 1 (z \in U).$$

This completes the proof of Theorem 1.

Letting $\beta = 0$ in Theorem 1, we have

COROLLARY 1. If $f(z) \in A_p$ satisfies

$$(2.7) |zf^{(p+1)}(z)| < p! - \alpha (z \in U)$$

for some $\alpha(0 \leq \alpha < p!)$, then $f(z) \in S_p(\alpha)$.

Further making $\beta=1/2$, Theorem 1 leads to

COROLLARY 2. If $f(z) \in A_p$ satisfies

$$(2.8) |f^{(p)}(z)+zf^{(p+1)}(z)-p!| < 2(p!-\alpha) (z \in U)$$

for some $\alpha(0 \leq \alpha < p!)$, then $f(z) \in S_p(\alpha)$.

Next, we prove

THEOREM 2. If f(z) is in the class $S_p(\alpha)$, then

(2.9)
$$\operatorname{Re}\left\{e^{i\beta}\frac{f^{(p-1)}(z)}{z}\right\} > 0 \quad (z \in U),$$

where

$$(2.10) |\beta| \leq \frac{\pi}{2} - \operatorname{Sin}^{-1} \left(\frac{p! - \alpha}{p!} \right).$$

PROOF. It follows from the definition of the class $S_p(\alpha)$ that

$$f(z) \in S_p(\alpha) \iff |f^{(p)}(z) - p!| < p! - \alpha \quad (z \in U)$$

$$\iff \operatorname{Re}\{e^{i\beta}f^{(p)}(z)\} > 0 \quad (z \in U)$$

$$\iff \operatorname{Re}\{e^{i\beta}f^{(p)}(z) - ip! \sin\beta\} > 0 \quad (z \in U).$$

Defining the function w(z) by

(2.11)
$$e^{i\beta} \frac{f^{(p-1)}(z)}{z} - ip! \sin\beta = p! \cos\beta \cdot \frac{1 + w(z)}{1 - w(z)} \qquad (w(z) \neq 1),$$

we see that w(z) is regular in U with w(0)=0. Since $\cos \beta > 0$,

(2.12)
$$e^{i\beta} f^{(p-1)}(z) - ip! \sin\beta \cdot z = p! \cos\beta \cdot \frac{1 + w(z)}{1 - w(z)} z,$$

and

(2.13)
$$e^{i\beta} f^{(p)}(z) - ip! \sin\beta = p! \cos\beta \left\{ \frac{1 + w(z)}{1 - w(z)} + \frac{2zw'(z)}{(1 - w(z))^2} \right\},$$

we have

(2.14)
$$\operatorname{Re}\left\{e^{i\beta}f^{(p)}(z)-ip!\sin\beta\right\} = p!\cos\beta\cdot\operatorname{Re}\left\{\frac{1+w(z)}{1-w(z)} + \frac{2zw'(z)}{(1-w(z))^2}\right\} > 0.$$

Suppose that there exists a point $z_0 \in U$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1 \qquad (w(z_0) \ne 1).$$

Then, applying Lemma 1, and letting $w(z_0)=e^{i\theta}$, we obtain

(2.15)
$$\operatorname{Re}\left\{e^{i\beta}f^{(p)}(z_0) - ip!\sin\beta\right\} \\ = p!\cos\beta\cdot\operatorname{Re}\left\{\frac{1 + e^{i\theta}}{1 - e^{i\theta}} + \frac{2ke^{i\theta}}{(1 - e^{i\theta})^2}\right\} \\ = p!\cos\beta\cdot\frac{k}{\cos\theta - 1} \\ < 0,$$

which contradicts (2.14). Therefore, |w(z)| < 1 for all $z \in U$, which implies that

(2.16)
$$\operatorname{Re}\left\{e^{i\beta} \frac{f^{(p-1)}(z)}{z} - ip! \sin\beta\right\}$$

$$= \operatorname{Re}\left\{e^{i\beta} \frac{f^{(p-1)}(z)}{z}\right\}$$

$$>0.$$

Taking $\alpha=0$ in Theorem 2, we have

COROLLARY 3. If f(z) is in the class $S_p(\alpha)$, then

(2.17)
$$\operatorname{Re}\left\{\frac{f^{(p-1)}(z)}{z}\right\} > 0 \quad (z \in U).$$

3. A Subclass $F_{p,b}(\alpha)$

Let $G(\alpha)$ be the class of functions g(z) of the form

$$(3.1) g(z)=1+\sum_{n=1}^{\infty}g_nz^n$$

which are analytic in U and satisfy

(3.2)
$$\operatorname{Re}\{g(z)\} > \alpha \quad (z \in U)$$

for some $\alpha(0 \le \alpha < 1)$. Further, let $G_b(\alpha)$ be the subclass of $G(\alpha)$ consisting of functions g(z) of the form (3.1) satisfying

(3.3)
$$g_1 = 2b(1-\alpha) \equiv g'(0)$$
 $(0 \le b \le 1)$.

For the above class $G_b(\alpha)$, McCarty ([2], [3]) has shown that

LEMMA 2. ([2]). If $g(z) \in G_b(\alpha)$, then

(3.4)
$$\left| \frac{g'(z)}{g(z)} \right| \le \frac{2(1-\alpha)}{1-r^2} \left\{ \frac{b+2r+br^2}{1+2b(1-\alpha)r+(1-2\alpha)r^2} \right\} (r=|z|<1).$$

LEMMA 3 ([3]). If $g(z) \in G_b(\alpha)$, then

(3.5)
$$\operatorname{Re}\left\{\frac{zg'(z)}{g(z)}\right\} \ge \begin{cases} \frac{-2(1-\alpha)r(b+2r+br^2)}{(1+2\alpha br+(2\alpha-1)r^2)(1+2br+r^2)} & (R' \le R_b) \\ \frac{2\sqrt{\alpha A_1} - A_1 - \alpha}{1-\alpha} & (R' \ge R_b), \end{cases}$$

where

$$(3.6) R_b = A_b - D_b,$$

(3.7)
$$A_b = \frac{(1+br)^2 - (2\alpha - 1)(b+r)^2 r^2}{(1+2br+r^2)(1-r^2)},$$

(3.8)
$$D_b = \frac{2(1-\alpha)(b+r)(1+br)r}{(1+2br+r^2)(1-r^2)},$$

and

$$(3.9) R' = \sqrt{\alpha A_1}.$$

Let $F_{p,b}(\alpha)$ be the subclass of $R_p(\alpha)$ consisting of functions $f(z) \in R_p(\alpha)$ satisfying

(3.10)
$$a_{p+1} = \frac{2b(p!-\alpha)}{(p+1)!} \equiv \frac{f^{(p+1)}(0)}{(p+1)!},$$

where $0 \le \alpha < p!$ and $0 \le b \le 1$.

Now, we have

THEOREM 3. If $f(z) \in \mathbf{F}_{p,b}(\alpha)$, then

(3.11)
$$\left| \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \right| \leq \frac{2(p!-\alpha)r}{1-r^2} \left\{ \frac{b+2r+br^2}{p!+2b(p!-\alpha)r+(p!-2\alpha)r^2} \right\}$$

$$(r=|z|<1),$$

PROOF. Note that $f(z) \in \mathbf{F}_{p,b}(\alpha)$ implies

$$(3.12) \qquad \frac{f^{(p)}(z)}{p!} = 1 + 2b\left(1 - \frac{\alpha}{p!}\right)z + \cdots$$

and $0 \le b \le 1$, $0 \le \alpha < p$!. It follows from (3.12) that $f(z) \in F_{p,b}(\alpha)$ if and only if $f^{(p)}(z)/p! \in G_b(\alpha/p!)$. Therefore, (3.11) follows Lemma 2.

Also, using Lemma 3, we have

THEOREM 4. If $f(z) \in \mathbf{F}_{p,b}(\alpha)$, then

(3.13)
$$\operatorname{Re}\left\{\frac{zf^{(p+1)}(z)}{f^{(p)}(z)}\right\} \ge \begin{cases} \frac{-2(p!-\alpha)r(b+2r+br^{2})}{(p!+2\alpha br+(2\alpha-p!)r^{2})(1+2br+r^{2})} & (T' \le T_{b}) \\ \frac{2\sqrt{p!\alpha B_{1}}-p!B_{1}-\alpha}{p!-\alpha} & (T' \ge T_{b}), \end{cases}$$

where

$$(3.14) T_b = B_b - C_b$$

(3.15)
$$B_b = \frac{p!(1+br)^2 - (2\alpha - p!)(b+r)^2 r^2}{p!(1+2br+r^2)(1-r^2)},$$

(3.16)
$$C_b = \frac{2(p! - \alpha)(b+r)(1+br)r}{p!(1+2br+r^2)(1-r^2)},$$

and

$$(3.17) T' = \sqrt{\frac{\alpha B_1}{p!}}.$$

4. Generalization of Saitoh's result

Finally, we give the generalization theorem of (1.3) which was recently proved by Saitoh [6].

THEOREM 5. If $f(z) \in A_p$ satisfies

(4.1)
$$\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\} > \alpha \qquad (z \in U)$$

for some $\alpha(0 \le \alpha < p!/(p-j)!)$, then

(4.2)
$$\frac{\int_0^z \frac{f^{(j)}(t)}{t^{p-j}} dt}{z} < 2\alpha - q - \frac{2(q-\alpha)}{z} \ln(1-z),$$

where $1 \le j \le p$ and q = p!/(p-j)!.

PROOF. Let define F(z) by

(4.3)
$$F'(z) = \frac{f^{(j)}(z)}{qz^{p-j}} = 1 + c_1 z + c_2 z^2 + \cdots.$$

It is easy to see that

(4.4)
$$\operatorname{Re}(F'(z)) > \beta \qquad \left(\beta = \frac{\alpha}{a}, \ 0 \le \beta < 1\right)$$

and

(4.5)
$$F(z) = \frac{1}{q} \int_0^z \frac{f^{(j)}(t)}{t^{p-j}} dt.$$

Therefore, applying the result by Owa, Ma and Liu [5], we have

(4.6)
$$\frac{\int_0^z \frac{f^{(j)}(t)}{t^{p-j}} dt}{qz} < 2\beta - 1 - \frac{2(1-\beta)}{z} \ln(1-z),$$

or

(4.7)
$$\frac{\int_0^z \frac{f^{(j)}(t)}{t^{p-j}} dt}{z} < 2\alpha - q - \frac{2(q-\alpha)}{z} \ln(1-z).$$

REMARK.

- (i) Letting j=p in Theorem 5, we have the result (1.3) by Saitoh [6].
- (ii) Letting j=p=1 in Theorem 5, we have the result by Owa, Ma and Liu [5].

References

- [1] Jack, I.S., Functions starlike and convex of order α , J. London Math. Soc. (2) 3 (1971), 469-474.
- [2] McCarty, C.P., Functions with real part greater than α , Proc. Amer. Math. Soc. 35 (1972), 211-216.
- [3] ——, Two radius of convexity problem, Proc. Amer. Math. Soc. 42 (1974), 153-160.
- [4] Miller, S.S. and Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
- [5] Owa, S., Ma, W. and Liu, L., On a class of analytic functions satisfying $Re\{f'(z)\}\$ > α , Bull. Korean Math. Soc. 25 (1988), 211-214.
- [6] Saitoh, H., Some properties of certain analytic functions, to appear.

Department of Mathematics Gunma College of Technology Toriba, Maebashi, Gunma 371 Japan