ON THE BRUN-TITCHMARSH THEOREM

By

Hiroshi MIKAWA

1. Introduction.

Let $\pi(x; q, a)$ denote the number of primes not exceeding x and being congruent to a modulo q. In 1936 P. Turán [6] showed that, under the extended Riemann hypothesis,

$$\pi(x; q, a) \sim \frac{x}{\varphi(q) \log x}$$
 as $x \to \infty$

for all $q \le x(\log x)^{-2-\varepsilon}(\varepsilon > 0)$ and almost-all reduced residue classes a modulo q. The terminology "almost-all" means that the number of exceptional reduced classes is $o(\varphi(q))$ as $q \to \infty$.

In 1972 C. Hooley [1] demonstrated that there holds the inequality

$$\pi(x; q, a) \le \frac{(4+\varepsilon)x}{\varphi(q)\log(x^2/q)}$$
 $(\varepsilon > 0, x > x_0(\varepsilon))$

for all $q \le x^{2/3}$ and almost-all a. Later Y. Motohashi [4] proved that the same is valid for $x^{2/3} < q \le x^{1-\varepsilon}$ as well. The purpose of this paper is to make an improvement upon this upper bound to large moduli.

THEOREM. Let ε be a small positive constant and assume $x > x_0(\varepsilon)$. If q be given and $x^{\varepsilon/7} \le q \le x(\log x)^A$ with A > 5, then we have

$$\pi(x; q, a) \leq \frac{(18+\varepsilon)x}{\varphi(q)\log(x^6/q)}$$

for almost-all reduced classes a modulo q.

REMARK. It is of some interest to note that, using the argument of H. Iwaniec [3, section 2], one may easily show that

$$\pi(x; q, a) \leq \begin{cases} \frac{(2+\varepsilon)x}{\varphi(q) \log(xq^{-3/8})} & \text{if } q \leq x^{5/6-\delta} \\ \frac{(1/2+\varepsilon)x}{\varphi(q) \log(x/q)} & \text{if } x^{5/6-\delta} \leq q \leq x^{6/7-\delta} & (0 < \delta < 1/200) \end{cases}$$

for almost-all a.

Received June 6, 1990

We use the standard notation in number theory. Especially, \bar{r} , used in either \bar{r}/s or congruence (mod s), means $\bar{r}r \equiv 1 \pmod{s}$. ε denotes a small positive constant and the constants implied in the symbols \ll and 0 may depend only on ε . For convenience, we write $n \sim N$ when $N \leq N_1 < n \leq N_2 \leq 2N$ for some N_1 and N_2 .

I would like to thank Professor S. Uchiyama for encouragement and careful reading of the original manuscript. I would also thank the referee for making the paper easier to read.

2. Lemmas.

We first state the inequality of Rosser-Iwaniec sieve [2, 5] in a simplified form that is sufficient for our present aim.

LEMMA 1. We have for any $\varepsilon > 0$ and all $x > x_0(\varepsilon)$

$$\pi(x; q, a) \leq \frac{(2+\varepsilon)x}{\varphi(q)\log D} + \sum_{(d,q)=1} \lambda_d(D)r_d(x; q, a)$$

where $D \ge 1$ is an arbitrary parameter;

$$r_d(x; q, a) = |\{n: n \leq x, n \equiv a \pmod{q}, d \mid n\}| - \frac{x}{ad};$$

the sieving weights $(\lambda_d) = (\lambda_d(D))$ have the following properties:

$$\lambda_d = 0$$
 if $d \ge D$, $|\lambda_d| \le \mu^2(d)$,

and for any M, $N \ge 1$, MN = D,

$$\lambda_d = \sum_{l \le \log D} \sum_{\substack{m \le M \\ d = mn}} \sum_{n \le N} a_m(l, M, N) b_n(l, M, N)$$

with certain sequences (a) and (b), $|a_m|$, $|b_n| \leq 1$.

LEMMA 2. Let $\phi(t)=[t]-t+1/2$. For H>2 we have

$$\phi(t) = \sum_{0 < |h| \le H} \frac{e(ht)}{2\pi i h} + 0\left(\min\left(1, \frac{1}{|H||t||}\right)\right)$$

where $e(x)=e^{2\pi i x}$ and $||x||=\min_{n\in\mathbb{Z}}|x-n|$. Moreover,

$$\min\left(1, \frac{1}{H||t||}\right) = \sum_{h \in \mathbf{Z}} C_h e(ht)$$

with

$$C_h \ll \min\left(\frac{\log H}{H}, \frac{H}{h^2}\right).$$

LEMMA 3. For any $\varepsilon > 0$, we have

$$\sum_{\substack{n \sim N \\ (n, cd) = 1}} e\left(b\frac{\overline{n}}{d}\right) \ll \tau(c)(b, d)^{1/2} d^{1/2+\varepsilon} \left(1 + \frac{N}{d}\right).$$

Lemma 2 is well known. Lemma 3 is the Hooley's version of bounds for incomplete Kloosterman sums [1].

3. Proof of Theorem.

Maintaining the notation introduced in Lemma 1, we put

$$E_a = \sum_{(d,q)=1} \lambda_d r_d(x; q, a).$$

We use the following lemma:

LEMMA 4. If $M = x^{4/3-4\epsilon}q^{-8/9}$ and $N = q^{7/9}x^{-2/3}$, then we have

$$\sum_{\substack{a=1\\ (a,a)=1}}^{q} |E_a|^2 \ll x (\log x)^3 + \frac{x^{2-\epsilon}}{q}$$

uniformly for $x^{6/7} \leq q < x$.

We postpone the proof of Lemma 4 until the final section. By Lemma 1, on choosing M and N as in Lemma 4, we have

(1)
$$\pi(x; q, a) \leq \frac{(18+99\varepsilon)x}{\varphi(q)\log(x^{6}/q)} + E_{a}.$$

We denote by \mathcal{E} the exceptional set of reduced classes modulo q, i.e.

$$\mathcal{E} = \Big\{ a : 1 \leq a \leq q, \, (a, q) = 1, \, \pi(x; q, a) > \frac{(18 + 99\varepsilon)x}{\varphi(q) \log(x^6/q)} \Big\}.$$

We shall show that $|\mathcal{E}| = o(\varphi(q))$, from which Theorem follows.

By (1) we see that $a \notin \mathcal{E}$ unless

$$E_a > \frac{\varepsilon x}{\varphi(q) \log(x^6/q)}.$$

We therefore get, by Lemma 4, that uniformly for $x^{6/7} \le q \le x(\log x)^{-A}$ with A > 5

$$|\mathcal{E}| \Big(\frac{\varepsilon x}{\varphi(q) \log(x^6/q)} \Big)^2 < \sum_{a \in \mathcal{E}} |E_a|^2 \le \sum_{\substack{a=1 \ (a,q)=1}}^q |E_a|^2 \ll x (\log x)^3 + \frac{x^2}{q} (\log x)^{-3}$$

$$|\mathcal{E}| \ll \varphi(q) \left\{ \frac{q(\log x)^5}{x} + (\log x)^{-1} \right\}$$
$$\ll \varphi(q) \left\{ (\log x^{5-A} + (\log x)^{-1} \right\}$$

as required.

4. Proof of Lemma 4, preliminaries.

In this section we reduce the proof of Lemma 4 to the estimation of R defined by (5) below. Since

$$E_a = \sum_{\substack{n \leq x \\ n \equiv a \ (q)}} \left(\sum_{\substack{d \mid n \\ (d,q)=1}} \lambda_d \right) - \left(\sum_{\substack{(d,q)=1}} \frac{\lambda_d}{d} \right) \frac{x}{q},$$

we have

(2)
$$\sum_{\substack{a=1\\ a=1}}^{q} |E_a|^2 \leq \sum_{a=1}^{q} |E_a|^2 = W - 2V + U$$

where

$$\begin{split} U &= \frac{x^2}{q^2} \Big(\sum_{(d,q)=1} \frac{\lambda_d}{d} \Big)^2 \\ V &= \sum_{n \leq x} \Big(\sum_{\substack{d_1 \mid n \\ (d_1,q)=1}} \lambda_d \Big) \Big(\sum_{(d_2,q)=1} \frac{\lambda_{d_2}}{d_2} \Big) \frac{x}{q} \\ W &= \sum_{\substack{n_1, n_2 \leq x \\ n_1 \equiv n_2(q)}} \Big(\sum_{\substack{d_1 \mid n_1 \\ (d_1,q)=1}} \lambda_{d_1} \Big) \Big(\sum_{\substack{d_2 \mid n_2 \\ (d_2,q)=1}} \lambda_{d_2} \Big). \end{split}$$

We first consider W. We interprete the congruence $n_1 \equiv n_2 \pmod{q}$ as $n_2 = n_1 + ql$. Changing the order of smmation we have

$$W = 2 \sum_{0 < l \leq x/q} \sum_{\substack{d_1 \\ (d_1 d_2, q) = 1}} \sum_{\substack{d_2 \\ d_2 = 1}} \lambda_{d_1} \lambda_{d_2} \sum_{\substack{n \leq x - ql \\ n = 0 \, (d_1) \\ n + ql \equiv 0 \, (d_2)}} 1 + \sum_{n \leq x} (\sum_{\substack{d \mid n \\ (d, q) = 1}} \lambda_{d})^2.$$

The simultaneous congruences $n \equiv 0 \pmod{d_1}$, $n+ql \equiv 0 \pmod{d_2}$ are soluble if and only if $(d_1, d_2)|l$, and, in case of $(d_1, d_2)|l$, reduce to the single congruence $n \equiv b \pmod{[d_1, d_2]}$ where

(3)
$$\begin{cases} b \equiv 0 \pmod{d_1} \\ b \equiv -ql \pmod{d_2^*} \end{cases}$$

with $d_j^* = d_j/(d_1, d_2)$, j=1, 2. Thus,

$$W\!=\!2\sum_{0< l\leq x/q}\sum_{\substack{d_1\\ (d_1d_2,q)=1}}\sum_{\substack{d_1\\ d_2=0}}\lambda_{d_1}\lambda_{d_2}\sum_{\substack{n\leq x-ql\\ n\equiv b\,([d_1,d_2])}}1\!+\!O(\sum_{n\leq x}\!\tau(n)^2)$$

$$=W_1+2R+O(x(\log x)^3)$$

where

$$W_{1} = 2 \sum_{0 < l \leq x/q} \sum_{\substack{d_{1} \\ (d_{1}, d_{2}, q) = 1 \\ (d_{1}, d_{2}) + l}} \lambda_{d_{1}} \lambda_{d_{2}} \frac{x - ql}{\left[d_{1}, d_{2}\right]}$$

and

(5)
$$R = \sum_{\substack{0 < l \le x/q}} \sum_{\substack{d_1 \\ d_1 d_2, q \ge 1 \\ (d_1, d_2) \mid l}} \lambda_{d_1} \lambda_{d_2} \Big(\sum_{\substack{n \le x - ql \\ n \equiv b \ ([d_1, d_2])}} 1 - \frac{x - ql}{[d_1, d_2]} \Big).$$

Leaving the estimation of R to the next section, we here carry out the summation over l in W_1 .

$$W_1 = \sum_{\substack{d \\ d_1 d_2, \ d_2 = 1 \\ d_1 d_2, \ d_2 = 1}} \frac{\lambda_{d_1} \lambda_{d_2}}{[d_1, d_2]} \sum_{\substack{l \le x/q \\ (d_1, d_2) \mid l}} 2(x - ql).$$

We may assume $(d_1, d_2) \le x/q$, otherwise the sum over l is empty. By an elementaty argument we see that the inner sum is equal to

$$\frac{x^2}{q(d_1, d_2)} + O(x).$$

Hence,

$$W_{1} = \sum_{\substack{d \ d_{1} \\ (d_{1}, d_{2}) \leq x/q}} \sum_{\substack{d \ d_{1} \\ (d_{1}, d_{2})}} \frac{\lambda_{d_{1}} \lambda_{d_{2}}}{[d_{1}, d_{2}]} \frac{x^{2}}{q(d_{1}, d_{2})} + O\left(\sum_{\substack{d \ d_{1} \\ (d_{1}, d_{2}) \leq x/q}} \sum_{\substack{d \ d_{1} \\ (d_{1}, d_{2})}} \frac{x}{[d_{1}, d_{2}]}\right)$$

$$= \frac{x^{2}}{q} \left(\sum_{(d, q) = 1} \frac{\lambda_{d}}{d}\right)^{2} + O\left(\frac{x^{2}}{q} \sum_{\substack{d \ d_{1} \\ (d_{1}, d_{2}) > x/q}} \frac{1}{d_{1}d_{2}}\right) + O(x(\log x)^{3})$$

$$= U + O(x(\log x)^{3}).$$
(6)

We turn to V. Since

$$\sum_{n \leq x} \left(\sum_{\substack{d_1 \mid n \\ (d_1, q) = 1}} \lambda_{d_1} \right) = \sum_{\substack{(d_1, q) = 1}} \lambda_{d_1} \left(\frac{x}{d_1} + O(1) \right)$$

$$= \left(\sum_{\substack{(d_1, q) = 1}} \frac{\lambda_{d_1}}{d_1} \right) x + O(D),$$

we have

$$V = \left\{ \left(\sum_{(d_1, q) = 1} \frac{\lambda_{d_1}}{d_1} \right) x + O(D) \right\} \left(\sum_{(d_2, q) = 1} \frac{\lambda_{d_2}}{d_2} \right) \frac{x}{q}$$

$$= U + O\left(\frac{x}{q} D \log D \right).$$

Combining this with (2), (4) and (6), we get

(7)
$$\sum_{\substack{a=1\\(a,a)=1}}^{q} |E_a|^2 \ll |R| + x(\log x)^3 + \frac{x}{q} D \log D$$

where R is defined by (5).

5. Proof of Lemma 4.

In this section we estimate R by appealing to Lemmas 2 and 3. We shall show that $R \ll x^{2-\epsilon}q^{-1}$, from which Lemma 4 follows by (7). We begin with expressing the innermost sum in (5) as

(8)
$$\phi\left(\frac{x-ql}{[d_1, d_2]} - \frac{b}{[d_1, d_2]}\right) - \phi\left(-\frac{b}{[d_1, d_2]}\right)$$

By the definition (3) of $b \pmod{[d_1, d_2]}$ and the relation

$$\frac{\overline{m}}{n} + \frac{\overline{n}}{m} \equiv \frac{1}{mn} \pmod{1} \quad \text{for } (m, n) = 1,$$

we have

(9)
$$-\frac{b}{\lceil d_1, d_2 \rceil} \equiv -\frac{b\bar{d}_2^*}{d_1} - \frac{b\bar{d}_1}{d_2^*} \equiv ql\frac{\bar{d}_1}{d_2^*} \equiv q\frac{l}{(d_1, d_2)}\frac{\bar{d}_1^*}{d_2^*} \pmod{1}$$

since $\mu^2(d_1) = \mu^2(d_2) = 1$ and $(d_1, d_2)|l$. Furtheremore we decompose (λ_{d_2}) by Lemma 1, getting

(10)
$$\lambda_{d_2} = \sum_{c \le \log M N} \sum_{r \ s = (d_1, d_2)} \sum_{m \ n = d_2^*} a_{r \ m}(c, M, N) b_{s \ n}(c, M, N).$$

In conjunction with (5), (8), (9) and (10) we may write

$$R = \sum_{\substack{\delta l \leq x/q \\ (\delta, q) = 1}} \sum_{(k, q) = 1} \lambda_{\delta k} \sum_{c \leq \log M N} \sum_{r s = \delta} \sum_{m} \sum_{n} a_{rm}(c, M, N) b_{sn}(c, M, N).$$

$$\cdot \left\{ \psi \left(\frac{x - q\delta l}{kmn} + ql \frac{\bar{k}}{mn} \right) - \psi \left(ql \frac{\bar{k}}{mn} \right) \right\}$$

(11)
$$\ll \sum_{\delta \leq x/q} \tau(\delta) \log x \sum_{K \leq M_0} \sum_{M \leq M_0} \sum_{N \leq N_0} \sup_{\alpha, \beta, \gamma} |R_1(\delta, K, M, N, \alpha, \beta, \gamma)|$$

with

$$\begin{split} R_1 &= R_1(\delta, K, M, N, \alpha, \beta, \gamma) \\ &= \sum_{\substack{k \sim K \\ (k, m, n) = 1 \\ (kmn, 0) = 1}} \sum_{l \leq L} \sum_{m \sim M} \sum_{n \sim N} \alpha(k) \beta(m) \gamma(n) \Big\{ \psi\Big(\frac{x - q\delta l}{kmn} + ql\frac{\bar{k}}{mn}\Big) - \psi\Big(ql\frac{\bar{k}}{mn}\Big) \Big\} \end{split}$$

where $M_0 = x^{4/3-4\varepsilon}q^{-8/9}$, $N_0 = q^{7/9}x^{-2/3}$; K, M, N's run through powers of 2; the supremum is taken over all sequences (α) , (β) , (γ) such that $|\alpha|$, $|\beta|$, $|\gamma| \le 1$; and $L = x/q\delta$. When $KMN \le x^{1-2\varepsilon}$, we trivially have

$$(12) R_1 \ll \frac{x^2}{a\delta} x^{-2\varepsilon}.$$

From now on we assume

We apply Lemma 2 to ϕ -function in R_1 , getting

$$(14) R_1 = R_2 + R_3$$

where

$$R_{2} = \sum_{\substack{k \sim K \\ (k, mn) = 1 \\ (kmn, q) = 1}} \sum_{\substack{n \geq N \\ (k, mn) = 1 \\ (kmn, q) = 1}} \frac{\alpha(k)\beta(m)\gamma(n)}{\delta kmn} \sum_{0 < |h| \leq H} e\left(hql\frac{\bar{k}}{mn}\right) \int_{0}^{x-q\delta l} e\left(\frac{ht}{\delta kmn}\right) dt$$

$$R_{3} \ll \sum_{j=1, 2} \sum_{\substack{k \sim K \\ j \leq 1, 2}} \sum_{\substack{k \sim K \\ j \geq 1, 2}} \sum_{\substack{k \sim K \\$$

with $x_1=0$ and $x_2=x-q\delta l$.

First we treat R_3 . By Lemma 2,

(15)
$$R_3 \ll \sum_{i,1,2} \sum_{h \in \mathbb{Z}} |C_h| |S_h|$$

where

$$S_h = \sum_{\substack{k \geq K \\ (k mn) = (mn, q) = 1}} \sum_{\substack{m \sim M \\ (mn, q) = 1}} e\left(\frac{h x_j}{\delta k m n}\right) e\left(hq l \frac{\bar{k}}{m n}\right).$$

We preced to the estimation of S_h . Trivially,

$$(16) S_h \ll KLMN.$$

For $h \neq 0$ we have, by partial summation and Lemma 3,

$$S_{h} \ll \sum_{\substack{l \ mn, q = 1}} \sum_{\substack{k \ge K \ (mn, q) = 1}} \left| \sum_{\substack{k \ge K \ (mn, q) = 1}} e\left(hql \frac{k}{mn}\right) \right| \left(1 + \frac{hx}{\delta Kmn}\right)$$

$$\ll \left(1 + \frac{hx}{\delta KMN}\right) \sum_{\substack{l \ (mn, q) = 1}} \sum_{\substack{m \ (mql, mn)^{1/2} \ (mn)^{1/2} + \varepsilon}} \left(1 + \frac{K}{mn}\right)$$

$$\ll x_{\varepsilon} \left(1 + \frac{hx}{KMN}\right) \sum_{\substack{l \ (mn, q) = 1}} \left(\sum_{\substack{m \ n}} \frac{(hl, mn)}{mn}\right)^{1/2} \left\{\left(\sum_{\substack{m \ n}} \sum_{\substack{m \ (mn)^{2}}} (mn)^{2}\right)^{1/2} + K\left(\sum_{\substack{m \ n}} \sum_{\substack{n \ (mn)^{2}}} 1\right)^{1/2}\right\}$$

$$\ll x^{\varepsilon} \left(1 + \frac{hx}{KMN}\right) \sum_{\substack{l \ (MN)^{3/2}}} \tau(hl) \left\{(MN)^{3/2} + K(MN)^{1/2}\right\}$$

$$\ll x^{\varepsilon} \left(1 + \frac{hx}{KMN}\right) \tau(h) L(\log x) (M_{0}N_{0})^{3/2}$$

$$\ll L x^{1-5\varepsilon} (\log x) \left(1 + \frac{hx}{KMN}\right) \tau(h),$$

since $M_0N_0 \le x^{2/3-4\varepsilon}$. Now we choose

$$H=\frac{KMN}{x^{1-3\varepsilon}}$$
;

then H>2 by (13). Thus, by (15), (16), (17) and Lemma 2, we have

$$R_{3} \ll (|C_{0}| + \sum_{|h| > H^{2}} |C_{h}|)KLMN + \sum_{0 < |h| \leq H^{2}} |C_{h}|Lx^{1-5\varepsilon}(\log x) \left(1 + \frac{hx}{KMN}\right)\tau(h)$$

$$\ll \left(\frac{\log H}{H} + \sum_{h > H^{2}} \frac{H}{h^{2}}\right)KLMN$$

$$+ Lx^{1-5\varepsilon}(\log x) \left\{\sum_{0 < h \leq H} \tau(h) \left(1 + \frac{Hx}{KMN}\right) \frac{\log H}{H} + \sum_{H < h \leq H^{2}} \tau(h) \left(1 + \frac{hx}{KMN}\right) \frac{H}{h^{2}}\right\}$$

$$\ll Lx^{1-2\varepsilon} + Lx^{1-5\varepsilon}(\log x) \cdot x^{3\varepsilon}(\log x)^{2}$$

$$\ll \frac{x^{2}}{a\delta} x^{-2\varepsilon}(\log x)^{3}.$$
(18)

We turn to R_2 . We have

$$R_{2} \leq 2 \int_{0}^{x} \sum_{\substack{k \sim K \\ (k, m) = (m, q) = 1}} \frac{|\alpha(k)\beta(m)|}{\delta k m N} \cdot \left| \sum_{0 < h \leq H} \sum_{l \leq (x - t)/q\delta} \sum_{\substack{n \sim N \\ (n, kq) = 1}} \gamma(n) \frac{N}{n} e\left(\frac{ht}{\delta k m n}\right) e\left(hql \frac{\bar{k}}{mn}\right) \right| dt$$

$$\ll \frac{x}{\delta K M N} \sup_{t, c} \sum_{k} \sum_{m} \left| \sum_{h} \sum_{k} \sum_{n} c_{n} e\left(\frac{ht}{\delta k m n}\right) e\left(hql \frac{\bar{k}}{mn}\right) \right|$$

where the supremum is taken over all sequences (c), $|c| \le 1$, and all $0 \le t \le x$. Thus,

(19)
$$R_2 \ll \frac{x}{\delta KMN} \sup_{t,c} (KM)^{1/2} (S(t,c))^{1/2}$$

where

$$S = S(t, c) = \sum_{\substack{k \geq K \\ (kq, m) = 1}} \sum_{\substack{n \sim M \\ (kq, m) = 1}} \left| \sum_{0 < h \leq H} \sum_{l \leq (x-t)/q\delta} \sum_{\substack{n \sim N \\ (n, kq) = 1}} c_n e\left(\frac{ht}{\delta kmn}\right) e\left(hql\frac{\bar{k}}{mn}\right) \right|^2.$$

We proceed to the estimation of S. Expanding the square and changing the order of summation, we have

$$S = \sum_{h_{1}, h_{2}} \sum_{l_{1}, l_{2}} \sum_{n_{1}, n_{2}} c_{n_{1}} c_{n_{2}} \sum_{k} \sum_{m} e\left(\left(\frac{h_{1}}{n_{1}} - \frac{h_{2}}{n_{2}}\right) \frac{t}{\delta k m}\right) e\left(h_{1}q l_{1} - \frac{\bar{k}}{m n_{1}} - h_{2}q l_{2} - \frac{\bar{k}}{m n_{2}}\right)$$

$$\leq \sum_{0 < h_{1}, h_{2} \leq H} \sum_{l_{1}, l_{2} \leq L} \sum_{\substack{n_{1}, n_{2} \sim N \\ (m n_{1} n_{2}, q) = 1}} \sum_{m \sim M}$$

$$\cdot \left| \sum_{\substack{k \sim K \\ (k, m n_{1} n_{2}) = 1}} e\left(\frac{(h_{1} n_{2} - h_{2} n_{1})t}{\delta k m n_{1} n_{2}}\right) e\left((h_{1} l_{1} n_{2} - h_{2} l_{2} n_{1})q - \frac{\bar{k}}{m n_{1} n_{2}}\right)\right|$$

Here, the contribution of the diagonal terms $h_1l_1n_2-h_2l_2n_1=0$ is at most

(20)
$$\sum_{h_1 l_1 n_2 = h_2 l_2 n_1} KM \ll KM \sum_{r \leq 2HLN} \tau_3(r)^2$$

$$\ll x^3 HK LMN$$

$$\ll x^{1-2\varepsilon} H^2 L.$$

By Lemma 3, the non-diagonal terms contribute to S at most

$$\begin{split} \sum_{\substack{h_1,h_2\\h_1l_1n_2 + h_2l_2n_1\\(mn_1n_2,q) = 1}} & \sum_{\substack{m\\h_1l_1n_2 + h_2l_2n_1\\(mn_1n_2,q) = 1}} & \sum_{\substack{m\\h_2l_1n_2 + h_2l_2n_1\\(mn_1n_2,q) = 1}} & \left(1 + \frac{Hx}{\delta KMN^2}\right) \Big| \sum_{\substack{k \sim K\\(k,\,mn_1n_2) = 1}} & e\left((h_1l_1n_2 - h_2l_2n_1)q \frac{\bar{k}}{mn_1n_2}\right) \Big| \\ & \ll \left(1 + \frac{Hx}{KMN}\right) \sum_{\substack{h_1,h_2\\h_1l_1n_2 + k_2l_2n_1\\(mn_1n_2,q) = 1}} & \sum_{\substack{m\\h_1l_1n_2 + k_2l_2n_1\\(mn_1n_2,q) = 1}} & x^{\epsilon}((h_1l_1n_2 - h_2l_2n_1)q,\,mn_1n_2)^{1/2} \\ & \cdot (mn_1n_2)^{1/2} \left(1 + \frac{K}{mn_1n_2}\right) \\ & \ll x^{4\epsilon} \sum_{h_1,h_2} & \sum_{l_1,l_2} \left(\sum_{\substack{m,n_1,n_2\\h_1l_1n_2 \neq h_2l_2n_1}} & \frac{(h_1l_1n_2 - h_2l_2n_1,\,mn_1n_2)}{mn_1n_2}\right)^{1/2} \\ & \cdot \left\{ \left(\sum_{m,n_1,n_2} (mn_1n_2)^2\right)^{1/2} + K\left(\sum_{m,n_1,n_2} 1\right)^{1/2} \right\}. \end{split}$$

Here we easily see

$$\sum_{\substack{m, n_1, n_2 \\ h_1 l_1 n_2 \neq h_2 l_2 n_1}} \frac{(h_1 l_1 n_2 - h_2 l_2 n_1, m n_1 n_2)}{m n_1 n_2} \ll x^{\varepsilon}.$$

Therefore, the contribution of the non-diagonal terms is

$$\ll x^{5\varepsilon} (HL)^2 \{ (MN^2)^{3/2} + K(MN^2)^{1/2} \}$$

 $\ll x^{5\varepsilon} H^2 L^2 M_0^{3/2} N_0^3$.

Combining this with (19) and (20), we have

$$R_{2} \ll \frac{x^{3\varepsilon}}{\delta H} \left\{ M_{0}^{2} N_{0} (x^{1-2\varepsilon} H^{2} L + x^{5\varepsilon} H^{2} L^{2} M_{0}^{3/2} N_{0}^{3}) \right\}^{1/2}$$

$$\ll \frac{1}{\delta} \left\{ \frac{x^{2}}{q} x^{4\varepsilon} M_{0}^{2} N_{0} + \left(\frac{x}{q}\right)^{2} x^{11\varepsilon} M_{0}^{7/2} N_{0}^{4} \right\}^{1/2}$$

$$\ll \frac{1}{\delta} \left\{ \frac{x^{2-4\varepsilon}}{q} \left(\frac{x^{4/3}}{q^{8/9}}\right)^{2} \left(\frac{q^{7/9}}{x^{2/3}}\right) + \left(\frac{x}{q}\right)^{2} x^{-3\varepsilon} \left(\frac{x^{4/3}}{q^{8/9}}\right)^{7/2} \left(\frac{q^{7/9}}{x^{2/3}}\right)^{4} \right\}^{1/2}$$

$$\ll \frac{x^{2}}{q\delta} x^{-3\varepsilon/2}.$$
(21)

In conjunction with (11), (12), (14), (18) and (21) we get

$$R \ll \sum_{\delta \leq x/q} \tau(\delta) (\log x)^4 \frac{x^2}{q\delta} x^{-3\varepsilon/2} \ll \frac{x^{2-\varepsilon}}{q}$$
,

as required.

This completes the proof of our Theorem.

References

- [1] Hooley, C., On the Brun-Titchmarsh theorem., J. reine angew. Math. 225 (1972), 60-79.
- [2] Iwaniec, H., A new form of the error term in the linear sieve., Acta Arith. 37 (1980), 307-320.
- [3] Iwaniec, H., On the Brun-Titchmarsh theorem., J. Math. Soc. Japan 34 (1982), 95-123.
- [4] Motohashi, Y., On some improvements of the Brun-Titchmarsh theorem., J. Math. Soc. Japan 26 (1974), 306-327.
- [5] Motohashi, Y., Sieve methods and prime number theory., Tata Inst. Lect. Math. 72, 1983.
- [6] Turán, P., Über die Primzahlen der arithmetischen Progression., Acta Sci. Math. Szeged. 8 (1936/37), 226-235.

Institute of Mathematics University of Tsukuba