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ON THE BRUN-TITCHMARSH THEOREM

By

Hiroshi MIKAWA

1. Introduction.

Let n(x; ¢, a) denote the number of primes not exceeding x and being
congruent to a modulo ¢. In 1936 P. Turan showed that, under the ex-
tended Riemann hypothesis,

n(x; q, a)~ X — o0

b
©(g) logx
for all g<x(logx)"*"%(¢>0) and almost-all reduced residue classes ¢ modulo g.
The terminology “almost-all” means that the number of exceptional reduced
classes is o(¢p(q)) as g—co.

In 1972 C. Hooley demonstrated that there holds the inequality

(4+4-¢e)x
©(g) log(x%/q)
for all ¢<x*?® and almost-all a. Later Y. Motohashi proved that the same
is valid for x**<¢g=<x'"¢ as well. The purpose of this paper is to make an
improvement upon this upper bound to large moduli.

n(x; q,a)= (>0, x>x4(¢))

THEOREM. Let ¢ be a small positive constant and assume x>x.e). If q be
given and x*"<qg<x(logx) 4 with A>5, then we have

(18+¢)x
¢(g) log(x°/q)
for almost-all reduced classes a modulo q.

n(x; q,a)=

REMARK. It is of some interest to note that, using the argument of H.
Iwaniec [3, section 2], one may easily show that

(24¢)x . — oree
ax: g ay< | P18 o=
S ROV RS R . ’
Ao ogleyqy T xTI=a=atT (0<6<1/200)

for almost-all a.
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We use the standatd notation in number theory. Especially, 7, used in
either 7/s or congruence (mod s), means 7»=1(mod s). & denotes a small positive
constant and the constants implied in the symbols € and 0 may depend only
on . For convenience, we write n~N when NN, <n<N,<2N for some N,
and N.,.

I would like to thank Professor S. Uchiyama for encouragement and careful
reading of the original manuscript. I would also thank the referee for making
the paper easier to read.

2. Lemmas.
We first state the inequality of Rosser-Iwaniec sieve [2, 5] in a simplified
form that is sufficient for our present aim.

LEMMA 1. We have for any >0 and all x> x,(¢)

@rer | s 2.(Dyralx; g, @)

. < LT
m(x; ¢, @)= o(@)logD D=1

where D=1 is an arbitrary parameter ;

ro(x; g, a)=|{n: n=<x, n=a(mody), d | n}l—qid;

the sieving weights (A4)=(44(D)) have the following properties:
A.=0 if d=D,
[Ae] = p*(d),
aud for any M, N=1, MN=D,
Aa= 2 X Baxl, M, N)b,(, M, N)

lslogDmsM nsN
d=mn
with certain sequences (a) and (b), |anl, (b2 =1.

LEMMA 2. Let (t)=[t]—t+1/2. For H>2 we have
B o(ht) . 1
$O=, 3. 1 Trih +0(min1, Hill )

where e(x)=e*"** and llxl[=milzllx—nl. Moreover,
ne

. 1
mll’l(l, m)zhgzche(ht)

with
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. flogH H
Cr<min(=5— 77)-

LEMMA 3. For any £¢>0, we have

5 e(b%)<<t(c)(b, d)1/2d1/2+s(1+5).

< d
(n,cd)=1

is well known. is the Hooley’s version of bounds for in-
complete Kloosterman sums [1].

3. Proof of Theorem!.
Maintaining the notation introduced in Lemma 1, we put

E.= 2 Aard(x; g, a).
d. =1
We use the following lemma:

LEMMA 4. If M=x*?"%q"%° and N=¢q"°x~**, then we have

2-¢

S | Ell*<x (log x )+ =

a=
(a,q)=1

uniformly for x*"<q<x.

We postpone the proof of Lemma 4 until the final section. By [Lemma 1|,
on choosing M and N as in Lemma 4, we have

(184-99¢)x

1 . < )
) (x5 ¢ @)= ¢(q) log(x°/q) ¢

We denote by & the exceptional set of reduced classes modulo ¢, i.e.

(184+99¢)x }
¢(g)log(x®/q) )"

We shall show that |&]|=0(¢(g)), from which follows.
By (1) we see that a &€ unless

e={a:1=a=q, (a, 9=1, (x5 g, &>

E. ikl .
- o(q) log(x°/q)

We therefore get, by that uniformly for x%"<¢g<x(log x)™4 with A>5

el - )2<E'Ea12ﬁ S 1E.*<x(og x)+ (log 1)
o(g) log(x°/q) dice = & q

(a,=1
or
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)5

PARLC); +(logx)"}

<Lo(@){(logx®4+(logx)™'}
as required.
4. Proof of Lemma 4|, preliminaries.

In this section we reduce the proof of to the estimation of R
defined by (5) below. Since

X
Ea: n?x ( E Xd —((d )= l_d_ 7’
n=a(Q) (d q) 1
we have
(2) 5 |Eal'S 3 | Eo*=W—2V+U
(a(fq—)1=1 a=1
where
__xz Zd 2
U__q—z(m%ﬂd
. ld b
v=3( 3 (3 d:)—q—

nsx dlln
d1, =1

=223t 3 L

23 dql ny
2 @ (@di,=1 (d2 Q=1

We first consider W. We interprete the congruence n,=n,(modq) as n.=n,+ql.
Changing the order of smmation we have

w=2 3 3 3 lds, T 1+3( 3 L)

<lsx d dg nsr—ql nsx din
D REAE £ PP+ 1Y n=0(d ) d, =1
n+ql=0(dg)

The simultaneous congruences n=0(modd,), n+¢/=0(modd,) are soluble if and
only if (d,, d,)|l, and, in case of (d,, d.)|/, reduce to the single congruence
n=b(mod [d,, d.]) where
b=0 (modd,)
|
b=—ql (modd?¥)
with d¥=d;/(d,, d.), j=1, 2. Thus,

w=2 3 3 z‘, Aade, 3 14+0(Dz(n))

o<lsx d x—
<tsz/e dy o Sl n=b(d,

4 =W,+2R+0(x(logx)*)

where
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x—ql
=2 B 8 F AereTa 4]
1d , =1
(dl,dz)ll
and
{
®) R= 2 2 Sl = 1-—0=
0<tsz/e éild oy, n=b&d %D [ds, d2]/7

Leaving the estimation of R to the next section, we here carry out the sum-
mation over [ in W,.

We may assume (d,, d,)<x/q, otherwise the sum over /[ is empty. By an ele-
mentaty argument we see that the inner sum is equal to

2

X
— = +0(x).
oy, dy O
Hence,
/Zd Zd xz
W= >} 1 +O
(fz%fl‘fi%’)‘éz?}q [ds, da] gldy, (dlldz)g-%/ [dy, d 2])
=X 5 AYi0(F 5 3 )+ 0Geogx))
q wio=1d q dl gzx/q d1d2
(6) =U+0(x(logx)®).

We turn to V. Since

X
ns.z'(( ci%fn_lzdl)_ 1§)=12d1(d_1 +O<1))

:( s A

o=t d,

)x+0(D>,

we have

V=l 5 e )erom)( 5 A

o=t d, wagmo=1 d2 / q
x
—U+O<—q—DlogD>.

Combining this with (2), (4) and (6), we get

(aq) =1

) i_} lEa|2<<IR[—‘;—x(logx)s—{——;iDlogD

where R is defined by (5).
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5. Proof of

In this section we estimate R by appealing to Lemmas 2 and 3. We shall
show that R« x?"¢¢~!, from which Lemma 4 follows by (7). We begin with
expressing the innermost sum in (5) as

—ql b b
(8) ¢([;1, 32] T Td., dz])—(p(_ [dy, dz])

By the definition (3) of &(mod [d,, d.]) and the relation

T‘JrzE—l—(modl) for (m, n)=1,
n m mn
we have

since p*(d,)=p*(d.)=1 and (d,, d;)|/. Furtheremore we decompose (44,) by
Lemma 1, getting

(10) ldzz 2 2 2= a,-m(C M N)bsn(c M N)

cs10g M N r8=(dy, dg) mn=d}
In conjunction with (5), (8), (9) and (10) we may write

R= SZ; 2 A 22D D aralc, M, N)bsa(c, M, N).

3 ( y)=1 CSIOEMN T8=0 m n
3,9

(11) K 2D t@@logx > X X sup |R(0, K, M, N, a, 8, 7)|

dsz/q KsMyMs<MyNsNya, B, 7

with

R1:R1(5; K, M; N, a’ ﬁ; 7)

= = 3 3 3 a@pmrm{p(Cr g ) g (L)

K | LSl i~ kmn mn mn
Gemn, ) =1

where My=x*/3"%¢¢~8%° N,=¢"°x7%%; K, M, N’s run through powers of 2; the
supremum is taken over all sequences (a), (B8), (7) such that |a], |8], |71<1;
and L=x/q0. When KMN<x'"%, we trivially have

2

(12) R g2 xee,
qo

From now on we assume

(13) KMN> x'~2,
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We apply to ¢-function in R,, getting

(14) R1=R2+R3
where
— a(k)Bm)y(n) k(e o ht
Rz—kgf(z%#)zﬂ anN okmn oo%sye(hql mn )go e(5kmn )dt
(kmn Q=1
R 2 2 3 = min(l ! _ )
ST 2R LSL M noy " H|(x;/0kmn)+ql(k/mn)|

with x,=0 and x,=x—qdl.
First we treat R,. By

(15) Ry« 2 X |1ChlISnl
J 1,2 heZ
where
. hJCj E
T ()50

We preceed to the estimation of S,. Trivially,
(16) S, KLMN.
For h+#0 we have, by partial summation and

s,i«2xz| 3 (hqz ){(1+ﬂ—)

(mn,g)=1 (&, mn) 5Kmn

hx 1/2 1/2+¢ K
<\(1+ 5KMN); 5 S\ (hat, mn)*mn) (1+ —

(mn, =1

i ) B ) gt g
<<x‘<1+ —_ Se(hADIMN )+ K (MN)"*}
<<x‘(1+—K}j—MxW>f(h)L(logx)(M0N0)3/2

(17) <« Lxt=(log x)(L+ e ) (),

since M,N,<x%*"*, Now we choose

KMN

- H
xl 3¢

H=

then H>2 by [I3). Thus, by [I5), [16), [I7) and we have

37
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hx
. 1-6¢
Re&UCl+ 8 ICADKLMN + =3 |Cal Lx'~*(og )1+ gy ) 7(h)
log H H
«(2=+ 3, hz)KLMN
. x \logH hx \H
+Leog 0, 2«1+ gyym) 0 s+ R i)

L Lx'"%+4 Lx'"%(log x)- x*(log x)*

2

(18) <=

70 x"%(log x)3.

We turn to R,. We have

LES .- la(k)Bm)|

0 k~K m~M 5kmN
(B, m)=(m,p=1

.!0<hEsHls(rz-Jt)/q5 nggzv lT(") (Bkmn) (h l—_—)ldt

ST ce(gpe)e(hai -5

<SRN SP DT

where the supremum is taken over all sequences (¢), |¢]<1, and all 0<¢=<x.
Thus,

19) Ry < somnrnr sup (KM )VA(S(t, e))'?

5KMN

where
S=S¢, )= =

k~K m~M
(kq, m)=1

ht
2, ene( G )bl
0<§Hls(§t)/q5 n~N né 5kmn
(n,kp =1

We proceed to the estimation of S. Expanding the square and changing the
order of summation, we have

B B
IQZI mn, _hquz mn2>

5= 5 5 enenDDe((B-

hi hely.lomy.ne

s 0km /¢
= 2 > > P

0<hy, hgsH Iy, lgsL nji,ng~N m~M
1 he 1. l2 cm 1§1n§q) -1

( (hyng—hyny)t
dkmnin,

mnk,nz )’

Here, the contribution of the diagonal terms A,/,n,—h.l,n,=0 is at most

‘ R~ K
(k, mnyng)=1

) ((hllln2'— halany)g

> KM KM > 74r)

hiling=hglon, Ts2HLN

K x*HKLMN
(20) Lx'"*H?L.
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By Lemma 3, the non-diagonal terms contribute to S at most

| HNx 2 ‘

= oY o _

hl%zz;-zzn%ﬁ(” 5KMN2>! & e((hubima—halamg mnlnz)
h(%;g%:’hqg)lz?l (k, mning)=1

Hx
s‘\ & . , 1/2
<(+ ), 8, 2, , B Dx (bina—halami)g, mnina)
hiling=kglan)
(mning,g)=1

-(mnlnz)”2<1+ S )

MniNg

—_ /
xS ( > (hidins—hslon,, mnin,) )1 2

hi,he l1,1g m,ni,ng mnins
hiling#halon

1/2
A( S mnng) K 3 100},

m, Ny, Ny m, Ny, Ny
Here we easily see

(hidins—holony, mnin,)

€
> Lx°.
m,ny, Ny mnin.
hiling=hglony

Therefore, the contribution of the non-diagonal terms is
Lx(HLP{(MN?®)?*4 K(MN?*)"?}
K xPH?LEM@P2Ny®.

Combining this with and we have

x3a

5H {M02N0(x1—2$H2 L+x55H2 LZ]\/[O}}/?NO:S)} 1/2

R,

s (e

<G G+ (G )t
2

A —sese
(21) & 70 x .

In conjunction with (11}, [12), [14), [18) and we get

2-¢

x? x
4 —-3¢e/2 d
R<<5§./q1'(5)(10g x) 70 x & .

as required.
This completes the proof of our [Theoreml
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