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DUALITIES AND DIMENSIONS OF ENDOMORPHISM RINGS

By

Angel del RIO and Manuel SAORIN 1

Introduction and Terminology

A duality between two categories $C$ and $\mathcal{D}$ is an equivalence of categories
between the dual category $C^{op}$ of $C$ and $\mathcal{D}$ . The idea of studying dualities
between full subcategories of module categories stems from Morita [6], who
tried to dualize his theorem for equivalences of categories. He showed that,

with a few conditions, every duality between full subcategories of R-Mod and
Mod-S was given by the functors $Hom_{R}(-, Q)$ and $Hom_{S}(-, Q)$ for a certain
bimodule $RQ_{s}$ . However, a classical result from Osofsky (see [1; lemma 24.7])

showed that there is no duality between $R$ –Mod and $Mod-S$ , for rings $R$ and $S$ .
This problem could be partially avoided by studying dualities between a

full subcategory $C$ of the category $R$ –TMod of topological left modules and a
full subcategory $\mathcal{D}$ of $Mod-S$ . These dualities, which extend the classical Pon-
tryagin and Lefschetz dualities, have been studied by some authors, for instance
([4], [7], [9], [11], [14], [15]). Similarly to the algebraic case, Zelmanowitz
and Jansen [15, Theorem 1.3] have proved that, under a few conditions, any
such duality is a restriction of the natural duality between the full subcategories
Ref$(RQ)$ and Ref $(Q_{S})$ of Q-reflexive modules of $R-TMod$ and $Mod-S$ , given by

the functors $CHom_{R}(-, Q)$ and $Hom_{S}(-, Q)$ , for a certain bimodule $RQ_{s}$ , such
that $RQ$ is a topological left module and any $s\in S$ defines a continuous R-
endomorphism (see [14]). On the other hand, in [4], [9] and [14] the authors
have given some particular cases where Ref$(Q_{s})=Cogen(Q_{S})$ . This is a very
interesting case, because, when $Q_{S}$ is faithful, Cogen $(Q_{s})$ contains all the free
right S-modules and is closed under submodules. Therefore the duality allows
to transport properties of $RQ$ to properties of $S$ (see [9]).

The main purpose of this paper is to give necessary and sufficient conditions
for having such nice dualities and apply them to the study of certain dimensions
of the ring of continuous endomorphisms of a topological module. In Theorem
1.4 we characterize when Ref$(Q_{s})=Cogen(Q_{S})$ and in Theorem 1.7 we do it for
Ref$(Q_{S})=Mod-S$ . In the last part of the paper we apply the foregoing technics
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to the study of the global and weak dimension of the ring $S=CEnd_{R}(Q)$ , for a
certain topological module $RQ$ .

We refer the reader to [1] and [10] for all the ring-theoretical notions
used in the text.

Throughout, $R$ will denote an associative ring with unit. Unless specific

mention we will consider $R$ endowed with the discrete topology and will denote
by $R$ –TMod the category of topological left R-modules and continuous R-
homomorphisms. We shall write $RM(resp. \Lambda f_{R})$ when we want to emphasize

that $M$ is a left (resp. right) R-module. If $M\in R$ -TMod, we will call topo-

logical submodules of $RM$ (resp. topological quotients of $RM$ ) to the submodules
of $RM$ (resp. quotient modules of $RM$ ) endowed with the relative (resp. quotient)

topology. If $\{M_{i}|i\in I\}$ is a family of objects of $R-TMod$ , the direct product

$\prod_{i\in I}M_{i}$ , endowed with its product topology, is called the topological product of

the $M_{i}\prime s$ . A topological submodule $L$ of $RM$ is said to be a topological direct
summand of $\lrcorner If$ if there exists another topological submodule $N$ of $RM$ such
that $\Lambda f$ is the topological product of $L$ and $\Lambda^{\gamma}$. If $M,$ $N\in R-TMod$ , then
$CHom_{R}(M, N)$ will denote the group of continuous homomorphisms from $M$ to
$N$. In particular, $CEnd_{R}(M)$ will denote the ring of continuous endomorphisms

of $RM$. For convenience homomorphisms will act opposite to scalars. Accord-
ingly the action of a composition of homomorphisms is evaluated from the
closest to the element to the furthest ( $i.e$ . $[g\cdot f](x)=g(f(x))$ for right modules
and $(x)[f\cdot g]=((x)f)g$ for left modules).

By a topological homomorphism (resp. monomorphism, epimorphism) we
shall mean a continuous homomorphism (resp. monomorphism, epimorphism)

open over the image.
Let us fix a bimodule $RQ_{s}$ such that $RQ$ is a topological module for which

any $s\in S$ defines a continuous R-endomorphism of $Q$ in the obvious way. There
are canonical contravariant functors $-*=CHom_{R}(-, Q):R-TMod\rightarrow Mod-S$ and
$-*=Hom_{S}(-, Q):Mod-S\rightarrow R$ -TMod (endowing $Hom_{S}(X, Q)$ with the relative
topology of the topological product $Q^{x}$ via the natural inclusion). We will use
the same notation $-**to$ denote each composition of these two functors. There

are canonical natural transformations $\sigma$ : $1_{R- TMod}\rightarrow-**$ and $\sigma$ : $1_{Mod-S}\rightarrow-**$

satisfying the equalities $\sigma_{M}^{*}\cdot\sigma_{M}*=1_{M}$ . and $\sigma_{X}..\sigma_{X}^{*}=1_{X^{s}}$ for each $M\in R$ –TMod

and XE $Mod-S$ (see [14]). It is also useful to notice that if $M^{\prime}\rightarrow M\rightarrow pM^{\prime\prime}\rightarrow 0$

is an exact sequence of continuous R-homomorphism and $p$ is open, then its

dual sequence $0\rightarrow M^{\prime\prime*}\rightarrow M^{*}\rightarrow M^{\prime*}$ is an exact sequence and if $X^{\prime}\rightarrow X^{p}-\succ X^{\prime\prime}$

$\rightarrow 0$ is an exact sequence in $Mod-S$ , then its dual $0\rightarrow X^{\prime\prime*}\rightarrow^{*}X^{*}-\succ px^{\prime}*$ is an
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exact sequence and $p*is$ a topological monomorphism (see [14; 1.2 and 1.3]).

A topological left R-module $M$(resp. right S-module $X$ ) will be called Q-

reflexive in case that $\sigma_{M}$ (resp. $\sigma_{X}$ ) is a topological (resp. algebraic) isomorphism.
We will denote by Ref$(RQ)(resp. Ref(Q_{S}))$ the full subcategory of $R-$TMod
(resp. $Mod-S$ ) whose objects are the Q-reflexive topological left R-modules
(resp. right S-modules). It is well-known [14; 2.1] that the $-*functors$ define
a duality between Ref$(RQ)$ and Ref $(Q_{S})$ . An $M\in R$ –TMod is said to be (finitely)

Q-copresented if there exists an exact sequence $0\rightarrow M\rightarrow fQ^{I}\rightarrow 0^{J}$ of continuous
homomorphisms, where $I$ and $J$ are suitable (finite) sets and $f$ is a topological
monomorphism. We will denote by Copres $(RQ)$ the class of Q-copresented

topoIogical left R-modules. Also $CEm(RQ)$ will denote the class of topological
left R-modules which are topologically isomorphic to closed topological sub-
modules of topological products of copies of $RQ$ .

If every continuous homomorphism from a topological submodule of $RQ$

(resp. $RQ^{I}$ for any set $I$ ) to $Q$ extends to a continuous endomorphism of $RQ$

(resp. a continuous homomorphism $Q^{I}\rightarrow Q$ ) we will say that $RQ$ is quasi-injective
(resp. $\Pi$-quasi-injective).

Let ME $R-TMod,$ $N\subseteqq M$ and $Y\subseteqq M^{*}$ . We will use the following notation:
$N^{\prime}=r_{M^{*}}(N)=\{f\in M^{*}|(N)f=0\}$ and $Y^{\prime}=l_{M}(Y)=\{x\in M|(x)Y=0\}$ . These opera-
tors define a Galois connection between the lattices of submodules of $RM$ and
$M_{S}^{*}$ . The elements in the image of $l_{M}$ (resp. $r_{M^{*}}$ ) will be called Q-closed sub-
modules of $RM(resp. M_{S}^{*})$ . Analogously, if XE $Mod-S$ , there is a Galois con-
nection between the lattices of submodules of $X_{S}$ and $Rx*$ . Let us denote
$C_{Q}(RM)={\rm Im}(t_{M})$ and $C_{Q}(M_{S}^{*})={\rm Im}(r_{M}.)$ . These are complete lattices, since they
are closed under intersection and the join of a family $\{N_{i}|i\in I\}$ in $C_{Q}(RM)$ or
in $C_{Q}(M_{S}^{*})is(\sum_{i\in J}N_{i})^{\prime\prime}$ .

If $A$ is an arbitrary ring and $K$ is a right A-module, we will denote by

Gen$(K_{A})(resp. Cogen(K_{A}))$ the class of K-generated (resp. K-cogenerated) right
A-modules. In the sequel, all full subcategories of a given category will be
assumed closed under isomorphic images.

1. Dualities

In order to characterize the dualities between $Mod-S$ and a subcategory
of $R-$TMod we give the following result whose proof is essentially the same
of [15; Theorem 1.3].

1.1. PROPOSITION. Let $R$ be a topological ring, $S$ an atbitrary one and
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$C\subseteqq R$ –TMod and $\mathcal{D}\subseteqq Mod-S$ two full subcategories such that $S\in \mathcal{D}$ . Let $C\leftarrow\rightarrow \mathcal{D}HH$

be a duality. Then, there exists an $RQ\in C$ such that $S\cong CEnd_{R}(Q),$ $H\cong CHom_{R}$

$($ –, $Q)$ . If, additionally, $Hom_{S}(\mathcal{D}, Q)\subseteqq C$ , then $H^{\prime}$ is naturally isomorphic to
$Hom_{S}(-, Q),$ $C\subseteqq Ref(RQ)$ and $\mathcal{D}\subseteqq Ref(Q_{S})$ .

1.2. LEMMA. Let $RQ$ be a topological module, XE Ref $(Q_{S})$ and $Y$ a Q-closed
submodule of $X_{S}$ . Then $X/Y$ is Q-reflexive if, and only if, every $\alpha\in Y^{;*}$ extends
to a continuous homomorphism $X^{*}\rightarrow Q$ .

PROOF. Let $j:Y^{\prime}\rightarrow x*$ the embedding map and $p:X\rightarrow X/Y$ the canonical
projection. Then $p^{*}:$ $(X/Y)^{*}\rightarrow x*$ induces a topological isomorphism $\Phi$ : $(X/Y)^{*}$

$\rightarrow Y^{\prime}$ such that $p^{*}=\Phi\cdot j$ . Thus, the following diagram is commutative

$X\underline{p}X/Y$

$\sigma_{X}\cong$ $\downarrow\sigma_{X/Y}$

$j^{*}$ $\Phi*$

$ x**-Y^{\prime*}\rightarrow(X/Y)^{**}\cong$

and $j^{*}$ is an epimorphism if, and only if, $\sigma_{X/Y}$ is an isolnorphism, because $X/Y$

is $Q_{s}$-cogenerated.

DEFINITION. Let $Q\in R-TMod$ .
(i) We will say that $Q$ has no small submodules in case there exists a

neighbourhood $U$ of $0$ in $Q$ that does not contain any non-zero submodule of $RQ$ .
(ii) A $Q\in R$ –TMod is called self-slender if the canonical S-homomorphism

$CEnd_{R}(Q)^{(I)}\rightarrow CHom_{R}(Q^{I}, Q)$ is an isomorphism, for every set $I$.
(iii) For $N$ and $M$ in $R-TMod$ , we say that $N$ is $C_{Q}-M$-injective if every

continuous homomorphism from a Q-closed submodule of $M$ to $N$ extends to one
in $CHom_{R}(M, N)$ . We will say that $Q$ is $C_{Q}-\prod$-quasi-injective if $Q$ is $C_{Q}-Q^{I}-$

injective, for every set $I$ .

Note that, by lemma 1.2, if $M\in Ref(RQ)$ , then $Q$ is $C_{Q}-M$-injective if, and
only if, every Q-cogenerated quotient of $M^{*}$ is Q-reflexive.

1.3. EXAMPLES. (1) A discrete or compact without small submodules quasi-
injective module is always $C_{Q}-\Pi$-quasi-injective [4; 3.9].

(2) A discrete $C_{Q^{-}}\Pi$-quasi-injective need not be quasi-injective [2]. Indeed,
if $R$ is a complete discrete valuation domain, then $CHom_{R}(-, R)$ and $Hom_{R}(-, R)$

define inverse dualities between $CEm(RR)$ and Cogen$(R_{R})$ and Theorem 1.4 below
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shows that it is $C_{Q}-\Pi$-quasi-injective. However, it is well-known that $R$ is
self-injective if, and only if, it is a field.

(3) A compact (self-slender) $C_{Q}-\Pi$-quasi-injective need not be quasi-injective.
To see this, we only have to take the Pontryagin dual of the group $Q_{Z}$ of
rational numbers and realize that $Hom_{Z}(Q, Q^{(I)})\cong Hom_{Z}(Q, Q)^{(I)}$ and every Q-

generated Z-submodule of $Q^{(I)}$ is injective.

Now, we characterize when Ref$(Q_{S})=Cogen(Q_{S})$ .

1.4. THEOREM. Let $RQ_{s}$ be a bimodule, such that $RQ$ is a topological module

for which any $s\in S$ defines a continuous R-endomorphism and $Q_{S}$ is faithful. The
following statements are equivalent:

(1) $S\cong CEnd_{R}(Q)$ canonically and $RQ$ is $C_{Q}-\prod$ -quasi-injective and self-slender.
(2) For every $X\in Mod-S,$ $\sigma_{X}$ is an epimorphism.
(3) Cogen$(Q_{S})=Ref(Q_{S})$ .
(4) The functor $CHom_{R}(-, Q)$ is a duality between Copres$(RQ)$ and Cogen$(Q_{S})$ .
If those conditions hold, then Ref$(RQ)=Copres(RQ)$ .

PROOF. (1) $\Rightarrow(2)$ Let $X\in Mod-S$ . If $S^{(Kerp)}\rightarrow S^{(X)}\rightarrow pX\rightarrow 0$ is the canoni-
cal presentation of $X_{S}$ , then its dual $0\rightarrow x*\rightarrow Q^{X}\rightarrow Q^{Kerp}$ is a Q-copresentation
of $Rx*$ , showing that $x*$ is a Q-closed submodule of $Q^{X}$ . If $\alpha\in X^{**}$ , then it
extends to a continuous homomorphism $\beta$ : $Q^{X}\rightarrow Q$ . Since $Q$ is self-slender,

the compositions $s_{x}=u_{x}\cdot\beta\in S(u_{x}$ : $Q\rightarrow Q^{X}$ the canonical injection in the $x^{th}$

component) are almost all zero. Then $(f)\alpha=(f)\beta=\sum_{x\in X}f(x)s_{x}=f(\sum_{x\in X}xs_{x})=$

$(f)[\sigma_{X}(\sum_{x\in X}xs_{x})]$ , for every $f\in X^{*}$ . Thus $\alpha=\sigma_{X}(\sum_{x\in X}xs_{x})\in{\rm Im}\sigma_{X}$ .
(2) $\Rightarrow(3)$ It is obvious.
(3) $\Rightarrow(1)$ If Cogen$(Q_{S})=Ref(Q_{S})$ , since SE Cogen $(Q_{S})$ , then every free right

S-module is Q-reflexive and hence every product of copies of $RQ$ is Q-reflexive.
Consequently, the dual of $Q^{I}$ is necessarily isomorphic to $S^{(I)}$ . This means
that $Q$ is self-slender. Let $\alpha\in M^{*}$ , with $M\in C_{Q}(RQ^{I})$ , and $Y=M^{\prime}$ . Since
$S^{(I)}/Y$ is Q-reflexive and $Y^{\prime}=M$, lemma 1.2 applies.

(1) $\Rightarrow(4)$ By (1) $\Rightarrow(3)$ , we only need to prove that Copres$(RQ)\subseteqq Ref(RQ)$ . If

$M\in Copres(RQ)$ and $0\rightarrow M\rightarrow Q^{I}j\rightarrow Q^{J}$ is an exact sequence with $j$ a topological
monomorphism, then, by the $C_{Q}-\Pi$-quasi-injectivity of $RQ,$ $j^{**}$ is a topological
monomorphism and so is $\sigma_{M^{\prime}}$ because $j\cdot\sigma_{Q^{I}}=\sigma_{M}\cdot j^{**}$ and $\sigma_{Q^{I}}$ is a topological
isomorphism. If $f:Q^{I}\rightarrow Q$ is a continuous homomorphism that vanishes on
$Itf$, then $f|_{M**}\in r_{M^{***}}(M)=r_{M*}(M)=0$ . Consequently, $M^{**}\subseteqq M^{\prime\prime}=M$.

(4) $\Rightarrow(3)$ Since $Hom_{S}(X, Q)\in Copres(RQ)$ for every $X\in Mod-S$ , the same
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argument of the proof of [15; Theorem 1.3] is valid to show that $Hom_{S}(-, Q)$

is an adjoint of $CHom_{R}(-, Q)$ , so that they are mutually inverse dualities be-
tween Copres$(RQ)$ and Cogen$(Q_{S})$ . Thus, by 1.1, Cogen$(Q_{S})\subseteqq Ref(Q_{S})$ . The
converse inclusion is well-known.

Whenever we have a general result involving a certain full subcategory $C$

of $R-TMod$ , we can consider the particular case where $C$ consists of Haus-
sdorf compact R-modules. In this situation, the Pontryagin Duality (see, $e.g.$ ,
[4; Ch. 5] for the details) allows us to dualize the result in order to find a
corresponding statement for a full subcategory of $Mod-R$ . As an example,
we do this with Theorem 1.4, while the dualization of the other propositions
and theorems are left to the reader.

In the following Theorem we denote by $CD(P_{R})$ the class of right R-modules
with P-codominant dimension $\geqq 2$ in the terminology of [8].

1.4 $TEEOREM$ . Let ${}_{S}P_{R}$ be a bimodule such that ${}_{S}P$ is faithful and $RQ_{s}=$

$Hom_{Z}(P, R/Z)$ its Pontryagin dual. Then, the following assertions are equivalent;
(1) $Hom_{R}(P, P^{(I)})$ is canonically isomorphic to $S^{(I)}$ , for every set $I$, and if

$P^{(I)}\rightarrow P^{(J)}\rightarrow fM\rightarrow 0$ is an exact sequence in $Mod-R$ and $\alpha\in Hom_{R}(P, M)$ ,

then there exists $\beta\in Hom_{R}(P, P^{(J)})$ such that $\alpha=f\cdot\beta$ .
(2) For every $X\in Mod-S$ , the canonical $X\rightarrow Hom_{R}(P, X\otimes {}_{S}P)$ is epic.
(3) Cogen$(Q_{S})=$ { $X_{S}|$ the canonical $X\rightarrow Hom_{R}(P,$ $X\otimes_{S}P)$ is $iso$ }.
(4) $Hom_{R}(P$, - $)$ is an equivalence between $CD(P_{R})$ and Cogen$(Q_{S})$ .

DEFINITION. We will refer to the following condition as the $(*)$ property.
$(*)$ For any continuous homomorphisms $f:Q^{I}\rightarrow Q^{J}$ and $\alpha:Q^{I}\rightarrow Q$ , with

$Kerf\subseteqq Ker\alpha$ , there exists a continuous homomorphism $\beta$ : $Q^{J}\rightarrow Q$ so that
$ f\cdot\beta=\alpha$ .

1.5. EXAMPLE. If $Q$ is $\Pi$-quasi-injective and every morphism $f:Q^{I}\rightarrow Q^{J}$

is open on its image, then $Q$ satisfies $(^{*})$ property. In particular, that is the
case when $Q$ is quasi-injective, compact with no small submodules or when $Q$

is quasi-injective, artinian and discrete. This last assertion is due to the fact
that a discrete artinian module $Q$ is strictly linearly compact and so every
topological product of copies of $Q$ is strictly compact. If $f:Q^{I}\rightarrow Q^{J}$ is con-
tinuous, then $Q^{I}/Kerf$ has a minimal topology and thus it is topologically iso-
morphic to ${\rm Im} f$ .

Nevertheless, the property of every continuous homomorphism $f:Q^{I}\rightarrow Q^{J}$

being open on its image does not imply $(^{*})$ property even if $RQ$ is self-slender
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and $C_{Q}$ $-\prod$ -quasi-injective. The example of this is due to M. Sato. There
exists a module $P_{R}$ such that $Hom_{R}(P$, - $)$ defines an equivalence of categories
between Gen $(P_{R})$ and Cogen$(K_{S})\neq Mod-S$ , where $S=End_{R}(P)$ and $K=Hom_{R}(P, E)$

for an injective cogenerator $E$ of $Mod-R(see[5])$ . Thus, if $RQ$ is the Pon-
tryagin dual of $P_{R}$ , then $CHom_{R}(-, Q)$ defines a duality between $CEm(RQ)$ and
Cogen$(K_{S})$ . By Proposition 1.1, Cogen $(K_{S})\subseteqq Ref(Q_{S})$ . But, if $X\in Ref(Q_{S})$ , then
$X^{*}\in CEm(RQ)$ , thus $X\cong X^{**}\in Cogen(K_{S})$ , showing that Ref$(Q_{S})=Cogen(K_{S})$ .
Thus $Q_{S}\in Cogen(K_{S})$ and so Cogen$(Q_{S})\subseteqq Cogen(K_{S})$ , which is in fact an equality.
By Theorem 1.4, $RQ$ is $C_{Q}-\prod$-quasi-injective and self-slender. Moreover, every
continuous homomorphism $f:Q^{I}\rightarrow Q^{J}$ is open on its image (since $Q$ is compact).

However, Theorem 1.7 below shows that $RQ$ does not have $(^{*})$ property.

DEFINITION. Let $RQ\in R-TMod$ . An $M\in R$–TMod is called Q-cogenerated
if there exists a continuous (non necessarily topological) monomorphism $\Lambda f\rightarrow$

$Q^{I}$ , for some set $I$ . We will say that $RQ$ is a self-cogenerator if every Haus-
sdorf topological quotient of $RQ$ is Q-cogenerated.

1.6. LEMMA. Let $f:M\rightarrow N$ be a continuous homomorphism and assume that
$N$ is Q-cogenerated. The following conditions are equivalent:

(a) ${\rm Im} f^{*}$ is a Q-closed submodule of $M_{S}^{*}$ .
(b) If $\alpha\in M^{*}$ and $Kerf\subseteqq Ker\alpha$ , then there exists $\beta\in N^{*}$ so that $ f\cdot\beta=\alpha$ .

PROOF. $({\rm Im} f^{*})^{\prime\prime}=$ { $\alpha\in M^{*}|(x)\alpha=0\forall x\in M$ such that $((x)f)\beta=0\forall\beta\in N^{*}$ }.
Since $N$ is Q-cogenerated, the last submodule equals $\{\alpha\in M^{*}|Kerf\subseteqq Ker\alpha\}$ .
Now the equivalence is evident.

1.7. THEOREM. Let $RQ_{s}$ be a bimodule such that $RQ$ is a topological left
R-module for which any $s\in S$ defnes a continuous R-endomorphism. The following
are equivalent:

(1) $S\cong CEnd_{R}(Q)$ and $RQ$ is self-slender, $C_{Q^{-}}\Pi$-quasi-injective and satisfies
$(^{*})$ property.

(2) Ref$(Q_{S})=Mod-S$ .
(3) The functor $CHom_{R}(-, Q)$ is a duality between Copres$(RQ)$ and $Mod-S$ .

PROOF. (2) $\Rightarrow(3)$ is obvious by taking the duality between Ref$(RQ)$ and
Ref $(Q_{S})$ and applying the last assertion in 1.4.

(1) $\Rightarrow(2)$ By 1.4 we know that Ref$(Q_{S})=Cogen(Q_{S})$ . Let $X$ be a right S-

module and $S^{(J)}\rightarrow vS^{(I)}\rightarrow pX\rightarrow 0$ a free presentation of $X$ . Then, $0\rightarrow x*\rightarrow^{*}Q^{I}p$

$v^{*}$

$\rightarrow Q^{J}$ is an exact sequence with $p^{*}$ a topological monomorphism. There exists
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a commutative diagram

$S^{(J)}\underline{v}S^{(I)}X-0\underline{p}$

$\cong\sigma_{**}\cong S^{(J)}S^{(I)**}\underline{v^{**}}\downarrow\sigma\underline{p**}\chi**-0\downarrow\sigma$

where the bottom sequence is exact since $Q$ is $C_{Q}-Q^{I}$ -injective and $Q$ has $(^{*}\rangle$

property. We conclude that $X_{S}$ is Q-reflexive.
(3) $\Rightarrow(1)$ We can use 1.4 to see that $S\cong CEnd_{R}(Q)$ canonically, $RQ$ is self-

slender and $C_{Q}$ $-\Pi$-quasi-injective and $Hom_{S}(-, Q)$ is the inverse functor of
$CHom_{R}(-, Q)$ . On the other hand, let $f:Q^{I}\rightarrow Q^{J}$ and $\alpha$ : $Q^{I}\rightarrow Q$ be continuous
with $Kerf\subseteqq Ker\alpha$ . Since $S^{(I)}/{\rm Im} f^{*}$ is $Q_{S}$-cogenerated, then ${\rm Im} f^{*}$ is a Q-closed
submodule of $S^{(I)}$ and lemma 1.6 applies.

REMARKS. (1) The equivalent conditions of the foregoing theorem are
satisfied by the quasi-injective compact modules with no small submodules.
But example 1.3.3 shows that those conditions are general because, for instance,

the Pontryagin dual of QZ has small submodules (see [4; Corollary 4.12]) and,

however, satisfies the conditions of the above theorem.
(2) The dualization of the foregoing theorem for the case of $RQ$ being

Haussdorf compact yields [12; Theorem 2.1].

1.8. EXAMPLE. Theorem 1.7 allows us to give another example of a quasi-
injective discrete module that has $(^{*})$ property. Let $R$ be the upper triangular

matrix ring with indices in $Z$ and entries in a field $k$ and $Q$ the set of finite
columns matrices with indices in $Z$ and entries in $k$ . $Q$ is canonically a left
R-module with the matrix product. It is easy to see that $RQ$ is quasi-injective,
$End_{R}(Q)\cong k$ and the submodules of $RQ$ are of the form $Q_{m}=\{x=(x_{n})_{n\in Z}|x_{n}=0$

for every $n\geqq m$ }, thus $-*induces$ a duality between Copres$(RQ)$ and Cogen$(Q_{k})$

$=Mod-k$ . By theorem 1.7, $RQ$ satisfies $(^{*})$ property and is clearly not artinian,

in fact it is neither finitely cogenerated nor linearly compact.

1.9. COROLLARY. Let $RQ$ be a Haussdorf linearly topological ?nodule which
is a self-cogenerator. The following statements are equivalent:

(1) Ref$(Q_{S})=Mod-S$ .
(2) $RQ$ is discrete, quasi-injective and satisfies $(^{*})$ property.

If the above conditions hold, then $RQ$ must be finitely cogenerated.
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PROOF. (1) $\Rightarrow(2)$ The quasi-injectivity is a consequence of theorem 1.4 and
the fact that $C_{Q}-\Pi- quasi- injective+self$-cogenerator implies quasi-injectivity.
The discreteness can be proven as in [15; 2.3]. By Theorem 1.7, $(^{*})$ property

also holds.
(2) $\Rightarrow(1)$ By [4; Theorems 2.9], $Q$ is $\prod$-quasi-injective and, in particular,

$C_{Q}$ $-\Pi$-quasi-injective. Now, Theorem 1.7 applies.
1

The last assertion is a consequence of $S_{S}$ being finitely generated, so that
$C_{Q}(RQ)$ ($which$ is the whole lattice of submodules of $RQ$ ) has the finite intersec-
tion property.

REMARKS. (1) Note that if the condition of $RQ$ being a self-cogenerator
is dropped, then, as example 1.8 shows, both conditions in the foregoing corol-
Iary may occur without $RQ$ being finitely cogenerated.

(2) In [15; Theorems 2.3 and 3.1] the authors show that the two conditions
below are equivalent for a linearly topological left R-module $Q$ with $S=CEnd_{R}(Q)$ .

(i) Ref$(Q_{S})=Mod-S$ and every Q-quotient (see op. cit for the definition)

of $RQ$ is Q-reflexive.
(ii) $RQ$ is a discrete Iinearly compact finitely cogenerated quasi-injective

self-cogenerator.
The condition (2) of our Corollary 1.9 together with the previous hypothesis

of $RQ$ being a self-cogenerator are strictly weaker than condition (ii) of Zel-
manowitz and Jansen. Indeed if, in our situation, $RQ$ were linearly compact,
then $Q_{S}$ would be an injective cogenerator (see, $e.g.$ , [4, Theorem 5.10]).

However, there are examples of discrete quasi-injective self-cogenerators satisfy-
ing $(^{*})$ property which are not injective over their endomorphism rings (see,

$e.g.,$ $[13,3.1]$ ).

2. Applications

In what follows, we assume that $RQ$ is a topological module and $S=$

$CEnd_{R}(Q)$ . The main goal of this part is to study the global and weak di-
mensions of $S$ , by using the results obtained in part 1. For all concepts and
terminology about those dimensions, we refer the reader to [10, Ch. 9]. Let
us start with some previous results.

2.1. LEMMA. Let $Jf$ and $Q$ be topological left R-modules. Assume that $Q$

is $C_{Q}-M$-injective and let $L\subseteqq N\subseteqq RM$ be topological submodules. If $L$ is Q-closed

in $RN$ and $N$ is Q-closed in $RM$, then $L$ is Q-closed in $RM$. Consequently, $Q$ is
$C_{Q}-N$-injective for every Q-closed submodule $N$ of $RM$.
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PROOF. Let $L$ be a Q-closed topological submodule of $RN$, where $N$ is a
Q-closed topological submodule of $RM$. Let $m\in l_{M}r_{M^{*}}(L)$ and $f\in r_{N^{5}}(L)$ . Then
the $C_{Q}-M$-injectivity of $Q$ entails that $f$ extends to a $g\in r_{M}(L)$ , so that $(m)g$

$=0$ . Since $l_{M}r_{M*}(L)\subseteqq N$, because $N$ is Q-closed in $RM$ and contains $L,$ $(m)f=$

$(m)g=0$ and hence $m\in l_{N}r_{N}(L)=L$ .

2.2. PROPOSITION. Let $M,$ $Q$ be topological left R-modules, being the second
one self-slender, $S=CEnd(RQ)$ and let us consider the following assertions:

(1) $RM$ is a topological direct summand of some topological product of copies
$of_{R}Q$ .

(2) $M\in Ref(RQ)$ and $M_{S}^{*}$ is projective.
(3) $RM$ is Q-reflexive and $C_{Q}-Q^{J}$-injective for every set $J$.
(4) $M\in Ref(RQ)$ and is a topological direct summand of any Q-reflexive left

R-module containing $\Lambda f$ as a Q-closed submodule.
(5) $RM$ is an injective object of Ref$(RQ)$ .
Then (5) $\Rightarrow(4)\Rightarrow(1)\Leftrightarrow(2)$ and, when $Q$ is $C_{Q}-\Pi uasi- inective,$ (1)

$,$
(2)

$,$

$(3)$

and (4) are equivalent. If, moreover, $Q$ satisfies $(*)$ property, then the five asser-
tions are equivalent.

PROOF. The equivalence of (1) and (2) is a consequence of the additiveness
of the dual functors (–)* and the fact that topological products of copies of
$RQ$ correspond to direct sums of copies of $S_{S}$ , and viceversa, by means of those
functors.

(5) $\Rightarrow(4)$ is obvious.
(4) $\Rightarrow(1)$ Since any Q-reflexive left R-module is topologically isomorphic

to a Q-closed submodule of a topological product of copies of $RQ$ , the implica-
tion is clear.

Let us consider now that $RQ$ is also $C_{Q}-\Pi$-quasi-injective. Then:
(1) $\Rightarrow(3)$ Since $Q$ is $C_{Q}-Q^{J}$ -injective, for any set $J$ , we only have to show

that a topological product of $C_{Q}-Q^{J}$-injective R-modules and a topological direct
summand of a $C_{Q}-Q^{J}$-injective R-modules are again $C_{Q}-Q^{J}$ -injective. This can
be done by using standard arguments (see, $e.g.,$ $[1$ , Proposition 16.10]).

(3) $\Rightarrow(4)$ Assume that $M$ is a Q-closed topological submodule of $N\in Ref(RQ)$ .
Since $N$ is topologically isomorphic to a Q-closed submodule of $Q^{N*}$ , the previous
lemma tells us that il $f$ is $C_{Q}-N$-injective and hence a topological direct sum-
mand of $N$.

When, moreover, $RQ$ satisfies $(^{*})$ property, the duality between Ref$(RQ)$ and
Ref$(Q_{S})=Mod-S(1.7)$ gives the equivalence between (2) and (5).
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REMARKS. (a) The above condition (3) is not equivalent to (1) and (2)

when $RQ$ is not $C_{Q}-\Pi$-quasi-injective. Indeed in that case $M=Q$ satisfies (1)

and (2) and does not satisfy (3).

(b) The $(*)$ property is needed in order to ensure that (5) is equivalent to

the other assertions. Indeed if $Q=R$ is a complete discrete valuation domain
and $x\neq 0$ is a non-invertible element of $R$ , then the multiplication by $x$ provides

a topological monomorphism $f:R\rightarrow R$ whose cokernel $R/Rx$ satisfies that
$CHom_{R}(R/Rx, R)=0(I)$ . If $R$ were an injective object of Ref$(RR)$ , then $f$ would
be a split monomorphism and this contradicts (I). However $R$ is $C_{Q}-\Pi$-quasi-
injective (see Example 1.3 (2)) and hence $C_{Q}-R^{J}$ -injective, for every set $J$ .

DEFINITION. Let $RQ$ be self-slender. A sequence in $R$ –TMod

$...-M_{n-1}M_{n}M_{n+1^{-}}\underline{f_{n}}\underline{f_{n+1}}\ldots$

is said to be Q-exact when $({\rm Im} f_{n})^{\prime\prime}=Kerf_{n+1}$ (as submodules of $M_{n}$ ), for every
$n\in Z$. A Q-resolution of $M\in Copres(RQ)$ is a sequence of continuous homomor-

phisms $ 0\rightarrow M\rightarrow E_{0}fo\rightarrow E_{1}f_{1}\rightarrow\ldots\rightarrow E_{n}f_{n}\rightarrow\ldots$ such that $f_{0}$ is a topological mono-
morphism with ${\rm Im} f_{0}=Kerf_{1},$ $E_{n}$ is a topological direct summand of some
topological product of copies of $RQ$ , for any $n\geqq 0$ , and $ E_{0}\rightarrow E_{1}\rightarrow\cdots\rightarrow E_{n}\rightarrow\cdots$

is a Q-exact sequence.
We will say that Q-codimension of $M\in Copres(RQ)$ is $\leqq n(n\in N)$ if there

exists a Q-resolution $E$ of $M$, as above, such that $E_{k}=0$ for every $k>n$ . We
denote by $Q-cd(RM)$ the minimum $n\in N$ (if it exists) such that the Q-codi-

mension of $M$ is $\leqq n$ . We call self-codimension of $RQ$ to the supremum of the
set $\{Q-cd(RM)|M\in Ref(RQ)\}$ (note that in general Ref$(RQ)$ need not be equal to
Copres$(RQ)!)$ and denote it by $scd(RQ)$ , assuming that $scd(RQ)=\infty$ if that su-
premum does not exist.

NOTATION. If $C:$ $\rightarrow M_{n-1}\rightarrow M_{n}\rightarrow M_{n+1}\rightarrow\cdots$ is a co-chain complex in
$R-TMod$ , then we will denote by $c*:$ $\rightarrow M_{n+1}^{*}\rightarrow M_{n}^{*}\rightarrow M_{n-1}^{*}\rightarrow\cdots$ the dual
chain complex in $Mod-S$ and viceversa.

2.3. PROPOSITION. Let $RQ$ be a self-slender topological module. The fol-
lowing assertions are equivalent:

(a) $RQ$ is $C_{Q}$ $-\Pi$-quasi-injective and satisfies $(^{*})$ property.
(b) The dual of any Q-exact sequence of Q-copresented left R-modules is

exact in $Mod-S$.
(c) The dual of each Q-resolution of an $M\in Copres(RQ)$ is a projective re-
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solution of $M_{S}^{*}$ .
(d) For every exact sequence $0\rightarrow M\rightarrow fQ^{I}\rightarrow Q^{J}$ , with $f$ a topological mono-

morphism, the dual sequence $S^{(J)}\rightarrow S^{(I)}\rightarrow M^{*}\rightarrow 0$ is exact.

PROOF. $(a)\Rightarrow(b)$ Let $M:$
$\rightarrow M_{n-1}\rightarrow M_{n}M_{n+1}fn\underline{fn+1}\rightarrow\cdots$ be a Q-exact

sequence, with each $M_{n}$ Q-copresented, and consider its dual sequence in $Mod-S$

$M^{*}:...$
$\rightarrow M_{n+1}^{*}\rightarrow M_{n}^{*}f_{n+1}^{*}\rightarrow\Lambda f_{n-1}^{*}f_{n}^{*}\rightarrow\ldots$

Since Ref$(Q_{S})=Mod-S,$ ${\rm Im} f_{n+1}^{*}$ is a Q-

closed submodule of $M_{n}^{*}$ so that, in order to prove the exactness of $M^{*}$ , we
only have to see that $Kerf_{n}^{*}\subseteqq({\rm Im} f_{n+1}^{*})^{\prime\prime}$ , for any $n\in Z$. Let us fix $n$ and take
$\alpha\in Kerf_{n}^{*}$ and $x\in({\rm Im} f_{n}^{*})^{\prime}$ . We shall prove that $(x)\alpha=0$ and this will end the
proof of this implication. Let us notice that, by the choice of $\alpha$ and $x,$ $f_{n}$ .
$\alpha=0$ and $(x)(f_{n+1}\cdot\beta)=0$ for every $\beta\in M_{n+1}^{*}$ . From the fact that $M_{n+1}$ is Q-

copresented (hence, in particular, Q-cogenerated) follows that $(x)f_{n+1}=0,$ $i.e.$ ,

$x\in Kerf_{n+1}$ . But $({\rm Im} f_{n})\alpha=0$ , thus $\alpha\in({\rm Im} f_{n})^{\prime}$ , and the Q-exactness of $M$ entails
that $({\rm Im} f_{n})^{\prime}=(Kerf_{n+1})^{\prime}$ . Consequently, $(x)\alpha=0$ as desired.

$(b)\Rightarrow(c)$ It is a direct consequence of the definition of Q-resolution and

the use of 2.2.
$(c)\Rightarrow(d)$ If $0\rightarrow M\rightarrow fQ^{I}\rightarrow gQ^{J}$ is an exact sequence in $R-TMod$ , then it

can be extended to a Q-resolution $E$ of $M$ by taking $E_{0}=Q^{I},$ $E_{1}=Q^{J},$ $f_{0}=f$

and $f_{1}=g$ and defining $E_{n}$ and $f_{n}$ , for $n>1$ , by induction: if $f_{n-1}$ and $E_{n-1}$

have been defined, then there exists a continuous monomorphism $\lambda_{n}$ from
$E_{n-1}/({\rm Im} f_{n-1})^{\prime\prime}$ to a certain topological product $E_{n}$ of copies of $RQ$ . Then we
put $f_{n}=p_{n- 1}\cdot\lambda_{n}$ , where $p_{n-1}$ is the canonical projection from $E_{n- 1}$ onto $E_{n-1}/$

$({\rm Im} f_{n-1})^{\prime\prime}$ . Now (c) can be applied to this Q-resolution to get (d).

$(d)\Rightarrow(a)$ If $M$ is a Q-closed submodule of $Q^{I}$ , then $M$ is the kernel of a

continuous homomorphism $g:Q^{I}\rightarrow Q^{J}$ and hence $0\rightarrow Mc_{\rightarrow}^{j}Q^{I}\rightarrow gQ^{J}$ is an exact
sequence. Thus its dual sequence is exact and this implies that $Q$ is $C_{Q}-\Pi-$

quasi-injective. If $f:Q^{I}\rightarrow Q^{J}$ and $\alpha:Q^{I}\rightarrow Q$ are continuous homomorphism

with $Kerf\subseteq Ker\alpha$ , then $0\rightarrow Kerfc_{\rightarrow}^{J}Q^{I}\rightarrow fQ^{J}$ is an exact sequence and $\alpha\in$

$Kerj^{*}={\rm Im} f^{*}$ .

2.4. THEOREM. Let $RQ$ be a self-slender topological module and $S=CEnd_{R}(Q)$ .
Then the right global dimension $rD(S)$ of $S$ is greater or equal than the self-
codimension of $RQ$ .

If, in addition, $RQ$ is $C_{Q}-\Pi- quasi- in$] $ective$ and has $(^{*})$ property, then $rD(S)=$

$scd(RQ)$ and it can be characterized as follows.
The following statements are equivalent for a natural number $n$ :
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(a) $rD(S)\leqq n$ .
(b) For every Q-resolution $ 0\rightarrow M\rightarrow E_{0}f_{0}\rightarrow f_{1}\ldots$ of an $M\in Copres(RQ),$ $Kerf_{n+1}$

is topological direct summand of $E_{n}$ .
(c) For every $M\in Copres(RQ)(resp. M\in C_{Q}(RQ))$ there exists a Q-resolution

of the form
$f_{0}$ $f_{1}$ $f_{n-1}$

$0-M-Q^{I_{0}}-Q^{I_{1}}-\cdots-Qn^{I}n-1-E_{n}-0$ .
$gn$ $g1$ $g0$

PROOF. Let $M\in Ref(RQ)$ . Let $P:0\rightarrow P_{n}\rightarrow\cdots\rightarrow P_{0}\rightarrow M_{S}^{*}\rightarrow 0$ be a pro-

jective resolution of $M_{S}^{*}$ . We are going to prove that $E:0\rightarrow M\rightarrow E_{0}fo\rightarrow f_{1}$
$\rightarrow f_{n}$

$E_{n}\rightarrow 0$ , where, $E_{k}=P_{k}^{*}(k=0,1,2, \cdots n),$ $f_{0}=\sigma_{M}\cdot g_{0}^{*}$ and $f_{k}=g_{k}^{*}$ for any $k=1$ ,

2, $\cdots,$ $n$ , is a Q-resolution of $M$. First, $E_{n}$ is a topological direct summand of
some topological product of copies of $RQ$ , for every $k=0,1,$ $\cdots,$ $n(2.2)$ . Clearly,
${\rm Im} f_{k}\subseteqq Kerf_{k+1}$ ( $k=1,2,$ $\cdots$ , n) and so $({\rm Im} f_{k})‘‘\subseteq Kerf_{k+1}$ , because $Kerf_{k+1}$ is Q-

closed in $E_{k}$ . On the other hand, if $\alpha\in Kerf_{k+1}$ and $x\in({\rm Im} f_{k})^{\prime}$ , then $\alpha\cdot g_{k+1}=0$

so that $Kerg_{k}={\rm Im} g_{k+1}\subseteq Ker\alpha$ and, for every $\beta\in P_{k-1}^{*},$ $\beta(g_{k}(x))=((\beta)f_{k})(x)=0$ .
But, since $P_{k-1}$ is Q-cogenerated, $g_{k}(x)=0$ and thus $\alpha(x)=0$ . We conclude that
$Kerf_{k+1}\subseteq({\rm Im} f_{k})^{\prime\prime}$ . Finally, $f_{0}$ is a topological monomorphism and $Kerf_{1}=1mf_{0}$ .
We have then proved that $Q-cd(RM)$ is smaller or equal than the projective
dimension of $M_{S}^{*}$ and thus $scd(RQ)\leqq rD(S)$ .

If $RQ$ is $C_{Q}-\prod$-quasi-injective and has $(^{*})$ property as well, then any Q-

resolution of every ME Copres$(RQ)$ tranforms in a projective resolution of $M_{S}^{*}$

by $-*(2.3)$ . Thus the projective dimension of $X_{S}\cong X^{**}$ is smaller or equal

than $Q-cd(RX^{*})$ so that $scd(RQ)\geqq rD(S)$ .
We are going to prove the equivalence between the last assertions for $n\geqq 1$ .

The case $n=0$ is very easy to see.
$(a)\Rightarrow(b)$ Let $ E:0\rightarrow M\rightarrow E_{0}fo\rightarrow f_{1}\ldots$ be a Q-resolution. Then its dual $P=$

$E^{*}:$
$\rightarrow P_{0}91\rightarrow M^{*}\rho 0\rightarrow 0$ is a projective resolution of $M_{S}^{*}(2.3)$ . Consequently,

$Kerg_{n-1}={\rm Im} g_{n}$ is projective, and hence $Kerg_{n}$ is a direct summand of $P_{n}$ . But
$Kerg_{n}=({\rm Im} f_{n})^{\prime}$ and, therefore, $({\rm Im} f_{n})^{\prime\prime}$ is also a direct summand of $E_{n}$ .

$(b)\Rightarrow(c)$ It is easy to construct a Q-resolution of any $M\in Copres(RQ)$ of

the form $ 0\rightarrow M\rightarrow Q^{I_{0}}Jo\rightarrow Q^{I_{1-\rightarrow}}f_{1}\ldots$ (see the proof of $(c)\Rightarrow(d)$ in Proposition 2.3),

and the hypothesis implies that $({\rm Im} f_{n-1})^{\prime\prime}=Kerf_{n}$ is a topological direct summand
of some topological product of copies of $RQ$ .

$(c)\Rightarrow(a)$ It is obvious that, when condition (c) holds, $scd(RQ)\leqq n$ and (a)

is a consequence of the second paragraph of this proof.
The case $n=1$ does not need the hypothesis of $Q$ satisfying $(^{*})$ property.
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We need the following previous definition.

DEFINITION. A contionuous R-homomorphism $f:M\rightarrow N$ is said to be a Q-
epimorphism if $({\rm Im} f)^{\prime\prime}=N$.

2.5. PROPOSITION. Let $RQ$ be a self-slender $C_{Q}-\Pi$-quasi-injective topological
module and $S=CEnd_{R}(Q)$ . The following conditions are equivalent:

(a) $S$ is right hereditary.
(b) For every Q-epimorphism $f:Q\rightarrow M$, with M Q-reflexive, $M$ is a topo-

logical direct summand of a topological product of copies of $RQ$ .
(c) For every continuous homomorphism $f:Q-*Q^{I},$ $({\rm Im} f)^{\prime\prime}$ is a topological

direct summand of $Q^{I}$ .

PROOF. Let us consider two homomorphisms, $f:Q\rightarrow Q^{I}$ in $R$ –TMod and
$g:S^{(I)}\rightarrow S$ in $Mod-S$ . If they are dual one of each other, then $({\rm Im} f)^{\prime}=Kerg$

so that $({\rm Im} f)^{\prime\prime}$ is a topological direct summand of $Q^{I}$ if, and only if, $Kerg$ is a
direct summand of $S^{(I)}$ . From this observation the equivalence $(a)\Leftrightarrow(c)$ be-
comes clear.

$(b)\Rightarrow(c)$ If $f:Q\rightarrow Q^{I}$ is a continuous homomorphism, then we get (c) by

applying (b) to $M=({\rm Im} f)^{\prime\prime}$ and the canonical homomorphism $f;Q\rightarrow M$, bearing

in mind 2.2.
$(c)\Rightarrow(b)$ Let $Q\rightarrow fM$ be a Q-epimorphism, with $M$ Q-reflexive. Since $M$ is

Q-copresented (1.4), it can be viewed as a Q-closed topological submodule of

some $Q^{I}$ . If we apply (c) to the composition $Q\rightarrow fM\rightarrow jQ^{I}$ , where $j$ is the in-
clusion, then we get (b).

REMARK. The assumption of $RQ$ having $(^{*})$ property cannot be avoided in
order to characterize, by means of injective Q-resolutions, when $S$ is semisimple.
For instance if $RQ$ is an infinite dimensional vector space, then every submodule
of $RQ$ is a direct summand of it. However $S$ is not semisimple.

In order to study the weak dimension of $S$ we must study which topological

left R-modules have a flat dual. To do this, we give the following proposition

that leans upon the well-known result of D. Lazard [3, Th\’eor\‘eme 1.2] stating
that a module $X$ is flat if, and only if, any homomorphism from a finitely

presented module to $X$ factors through a free module of finite rank.

2.6. PROPOSITION. Let $RM$ be a topological module. The following asser-
tions are equivalent:
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(a) $M_{S}^{*}$ is flat.
(b) Given a continuous homomorphism $f:M\rightarrow N$, with $N$ finitely Q-copre-

sented, there exist, for some $k\geqq 1$ , continuous homomorphisms $u:M\rightarrow Q^{k}$

and $v:Q^{k}\rightarrow N$ such that $u\cdot v=f$.

PROOF. $(a)\Rightarrow(b)$ Let $f:M\rightarrow N$ be a continuous homomorphism and $ 0\rightarrow$

$N\rightarrow jQ^{n}\rightarrow gQ^{m}$ be a finite Q-copresentation. By applying the functor $-*$ we
get a homomorphism $f^{*}:$ $N^{*}\rightarrow M^{*}$ . Let $p:Q^{n*}=S^{n}\rightarrow X=S^{n}/{\rm Im} g^{*}$ be the
canonical projection. There exists a homomorphism $h:X\rightarrow N^{*}$ such that $j^{*}=$

$h\cdot p$ . Since $M_{S}^{*}$ is flat, there exist homomorphisms $u:X\rightarrow S^{k}$ and $v:S^{k}\rightarrow M^{*}$

such that $v\cdot u=f^{*}\cdot h$ . Now, we have the following commutative diagram with
exact rows:

$0-N\rightarrow^{j}Q^{n}Q^{m}\underline{g}$

$\sigma_{N}\cdot h^{*}p*$

$\downarrow\cong g^{**}$
$\downarrow\cong$

$o-x*-Q^{n**-}Q^{m**}$

Thus $\sigma_{N}\cdot h^{*}$ is a topological isomorphism. Finally, $f\cdot\sigma_{N}\cdot h^{*}=\sigma_{M}\cdot f^{**}\cdot h^{*}=\sigma_{M}$ .
$v^{*}\cdot u^{*}$ and hence $f$ factors through $Q^{k}$ .

$(b)\Rightarrow(a)$ Let $f:X\rightarrow M^{*}$ be a homomorphism and $S^{n}-\succ gS^{m}\rightarrow pX\rightarrow 0$ a finite
presentation of $X_{S}$ . Then, by applying the functor $-*$ we get that $Rx*$ is
finitely Q-copresented and there exist continuous homomorphisms $u:M\rightarrow Q^{k}$

and $v;Q^{k}\rightarrow x*$ such that $\sigma_{M}\cdot f^{*}=u\cdot v$ . Thus $ u^{*}\cdot v^{*}\cdot\sigma_{X}=\sigma_{M}^{*}\cdot f^{**}\cdot\sigma_{x}=\sigma_{M}^{*}\cdot\sigma_{M}*\cdot$

$f=f$ .

DEFINITION. We will say that $RM\in R$–TMod is Q-coflat when it satisfies
condition (b) in the above proposition. A Q-coflat resolution of $RM$ is a sequence

of continuous homomorphisms $C:0\rightarrow M-+f_{0}C_{0}\rightarrow f_{1}.$ . where $C_{n}$ is Q-coflat for
every $n\geqq 0,$ $f_{0}$ is a topological monomorphism with ${\rm Im} f_{0}=Kerf_{1}$ and the se-
quence $ C_{0}\rightarrow C_{1}\rightarrow\cdots\rightarrow C_{n}\rightarrow\cdots$ is Q-exact.

2.7. LEMMA. Let $f:M\rightarrow N$ be a continuous homomorphism of topological

left R-modules and assume that, for every $\alpha\in M^{*}$ such that $Kerf\subseteqq Ker\alpha$ , there
exists $\beta\in N^{*}$ so that $ f\cdot\beta=\alpha$ . Then $f$ induces a canonical isomorphism $f$ . $N^{*}/$

$({\rm Im} f)^{\prime}\rightarrow(M/Kerf)^{*}$ .

PROOF. Note that $Kerf^{*}=({\rm Im} f)^{\prime}$ . We shall prove that ${\rm Im} f^{*}={\rm Im} p*$ , where
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$p:\lrcorner 1f\rightarrow J/[/Kerf$ is the canonical projection. This will end the proof. If $\alpha\in$

${\rm Im} f^{*}$ , then $\alpha=f\cdot\beta$ , for some $\beta\in N^{*}$ , and thus $(Kerf)\alpha=0$ and there exists a
unique homomorphism $\gamma:M/Kerf\rightarrow Q$ such that $ p\cdot\gamma=\alpha$ and is necessarily con-
tinuous. Conversely, if $\alpha=p^{*}(\gamma)=p\cdot\gamma$ , for some $\gamma\in(M/Kerf)^{*}$ , then $Kerf\subseteqq$

$Ker\alpha$ and the hypothesis implies that $\alpha\in{\rm Im} f$ .

2.8. LEMMA. Let $Y\leqq X_{S}\in Mod-S$ . There exists a topological isomorphism
between $(X/Y)^{*}$ and $Y^{\prime}=l_{X}.(Y)$ .

PROOF. The canonical short exact sequence $0\rightarrow Y\rightarrow JX\rightarrow pX/Y\rightarrow 0$ induces

an exact sequence of continuous homomorphisms $0\rightarrow(X/Y)^{*}-\rightarrow X^{*}p\cdot\rightarrow Y^{*}J$ and $p*$

is a topological monomorphism. Thus $p*$ induces a topological isomorphism
between $(X/Y)^{*}$ and $Kerj^{*}=Y^{\prime}$ .

2.9. THEOREM. Let $RQ$ be a self-slender $C_{Q}-1I$ -quasi-injective topological

module which satisfies $(^{*})$ property. Then the following assertions are equivalent

for a natural number $n$ :
(a) $wD(S)\leqq n$ .
(b) For every Q-coflat resolution $ 0\rightarrow M\rightarrow C_{0}f_{0}\rightarrow f_{1}\ldots$ , with $C_{k}\in Ref(RQ)$ for

any $k\in N,$ $Kerf_{n+1}$ is Q-coflat.
(c) For every $M\in Copres(RQ)(resp. 1tf\in C_{Q}(RQ))$ there exists a Q-coflat resolu-

tion of the form
$f_{0}$ $f_{1}$ $f_{n-1}$ $f_{n}$

$0-M-Q^{I_{0}}-Q^{I_{1}}-\cdots-Q^{I_{n-1}}-C_{n}-0$

$u\}ithC_{n}\in Ref(RQ)$ .
(d) For every $M\in Copres(RQ)$ (resp. $M\in C_{Q}(RQ)$), there exists a Q-coflat

resolution $ C:0\rightarrow M\rightarrow C_{0}\rightarrow\cdots$ with $C_{k}\in Ref(RQ)$ for any $k\in N$ and
$f_{k}=0$ for any $k>n$ .

PROOF. $(a)\Rightarrow(b)$ Let $ C:0\rightarrow M\rightarrow C_{0}fo\rightarrow f_{1}\ldots$ be a Q-coflat resolution with

$C_{k}\in Ref(RQ)$ for any $k\in N$ Then its dual sequence $F=C^{*}:$ $\rightarrow F_{0}-\succ g1g0M^{*}\rightarrow 0$

is a flat resolution of $M_{S}^{*}$ (2.3 and 2.6) and thus $Kerg_{n-1}$ is flat. But $Kerg_{n-1}=$

$({\rm Im} f_{n-1})^{\prime}=({\rm Im} f_{n-1})^{\prime\prime}\cong(C_{n-1}/({\rm Im} f_{n-1})^{\prime\prime})^{*}=(C_{n-1}/Kerf_{n})^{*}$ and, therefore, $(C_{n-1}/$

$Kerf_{n})^{**}$ is Q-coflat (2.6). But $({\rm Im} f_{n})^{\prime\prime}\cong(C_{n}^{*}/({\rm Im} f_{n})^{\prime})^{*}\cong(C_{n-1}/Kerf_{n})^{**}(2.7)$ .
$(b)\Rightarrow(c)$ can be proved as $(b)\Rightarrow(c)$ in 2.4, when we realize that, for every

set $I,$ $Q^{I}$ is Q-coflat (2.6).

$(c)\Rightarrow(d)$ is trivial.
$(d)\Rightarrow(a)$ is a direct consequence of 2.6 and $2_{\vee}^{Q}$ .
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REMARK. (1) For $n=0$ , the foregoing theorem gives a characterization of
when $S$ is regular von Neumann. However, the hypothesis may be weakened.
For instance, self-slenderness of $RQ$ may be avoided and the other two condi-
tions can be replaced by the condition that $-*preserves$ exact sequences of

the type $0\rightarrow M\rightarrow jQ^{n}\rightarrow Q^{m}$ , with $j$ a topological monomorphism. This is due
to the fact that $S$ is regular von Neumann if, and only if, every finitely pre-
sented right S-module is flat.

(2) For $n=1$ , the hypothesis of $RQ$ being self-slender and having $(^{*})$ pro-
perty can be deleted and the condition of $RQ$ being $C_{Q}$ $-\Pi$-quasi-injective can
be changed for the weaker condition that $Q$ is $C_{Q}-Q^{n}$ -injective for every $n\geqq 1$ .
Under this condition, every finitely generated right ideal of $S$ is Q-reflexive (It

can be proved in a manner similar to that of (1) $\Rightarrow(2)$ in Theorem 1.7). Now,
$wD(S)\leqq 1$ if, and only if, for every continuous homomorphism $f:Q\rightarrow Q^{n},$ $({\rm Im} f)^{\prime\prime}$

is Q-coflat. This is due to the fact that $wD(S)\leqq 1$ if, and only if, every finitely

generated right ideal is flat.

The results obtained in this section may be used to get, by means of the
Pontryagin Duality, corresponding results on the endomorphism ring of a module
$P_{R}$ that satisfies suitable conditions as, for instance, those of [12].
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