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CONSTRUCTION OF INVARIANTS

By

Akihiko Gyoja

1. Introduction.

Let G be a connected reductive group defined over the complex number
field C, V a finite dimensional vector space and p: G—GL(V) a rational repre-
sentation of G. Such a triplet (G, p, V) is called a prehomogeneous vector space
if V has an open G-orbit, and called irreducible if p is an irreducible representa-
tion. A complete list of irreducible prehomogeneous vector spaces is given by
M. Sato and T. Kimura [12]. The purpose of this paper is to construct ex-
plicitly an irreducible relative invariant for every irreducible prehomogeneous

vector space. If (G, p, V) and (G’, p’, V') are in the same castling class, then
an irreducible relative invariant of (G, p, V) can be constructed from that of

(G, p’, V'). (See proposition 18 in [12, section 4].) Hence it is enough to con-
sider irreducible reduced prehomogeneous vector spaces. (See [12, section 2]
for the generalities concerning the castling transformations.) In the tables I

and II of [12, section 7], irreducible relative invariants are given except for the
following six cases;

(6) (GL(7), 45, V(35)),

(7) (GL(8), 4,5, V(56)),

(10) (SL(B)XGL(3), 4,4, V(1I0)QV(3)),

(20) (Spin (10)X GL(2), (half spin)®@4,, V(16)QV(2)),
(21) (Spin (10)XGL(3), (half spin)®4:, V(16)QV(3)),
(24) (GL(1)xSpin (14), (half spin), V(64)).

Irreducible relative invariants of (6) and (7) are constructed by T. Kimura [8],
and that of (20) is constructed by H. Kawahara [7]. (Concerning a construc-
tion of an invariant of (7), see the last section of the present paper.) Hence
our task is to construct irreducible relative invariants of (10), (21) and (24).
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2. Invariants of SL(5)XGL(3).

Let A*C® be the Grassmann tensor product of C® of the second order. If
{ei, -+, es} is a basis of C°, a general element x of A%C® is uniquely expressed
as

x= 2 Xxiei\e;.

15i<js6

In this section, we reserve the letters x, ¥, z, w and u for such elements. Their
coordinates are written as x;;, y;; etc. and we put x;;=—x,; etc. A general
element of the representation space V=(A’C®)QC® can be regarded as a triplet
(x, ¥, z) and the action p of G=SL(5)XGL(3) on V is given by

0(81, &2Xx, ¥, 2)=(8:1%, g1, £:12)-'&2

for (g, g.)G, where g,x etc. are the natural action of SL(5) on A*C®. Con-
sider the following polynomials ;

FiX)=Xo3X5— XasX g5+ Xo5X34
foX)=XgaX51— X3 X1+ X1 %45,
fo(X)=X4X12— X1 Xs2+ X g2 X515
FX)=%X51X03— X5 X135+ X55X 12,
Fo(X)=X12X84— X13XasF X 14X s -

REMARK 1. We introduced these polynomials by a representation theoretic
consideration as in [8], so that the property (3) below is satisfied.
Let D, . be the polarization which transforms a letter x to y [13], Inour

case
0
D””——xsigjssy”axu :
Let
gi(x: y)_—‘Dy.Ifl(x) ’
and

5
P(x, 3,2, w, u)= .glgi(x, )8z, wius,; .
By the definition of P,
(1) P(xy ¥y, 2z, w, u):P(y: X, z, W, u)=—P(z, w, x, Y, U).

Hence

(2) P(x, y, x, y,2)=0.
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LEMMA. The polynomial P is a relative invariant with respect to GL(5).
More precisely,
3 P(gx, 8y, gz, gw, gu)=(det g)*P(x, y, z, w, u)
for g=GL(5).
PROOF. Invariance with respect to the scalar action of GL(1) is obvious.
By the symmetry, it is enough to show the invariance with respect to the
matrix unit E;,. Note that —FE,, acts as the polarization which transforms 1

to 2. Hence —E,f,=—f, and E,,f;=0 for /#2. Hence —E,;g:=—g, and E,g;
=0 for 7+#2. Using this fact, we can easily show that E,P(x, v, z, w, u)=0. O

(4) If at most two Kkinds of letters appear among {x, ¥, z, w, u}, then
P(x, v, z, w, u)=0, e.g., P(x, x, x, ¥, )=0 etc.

PROOF. In such a case, P gives a relative invariant of (GL(5), 4.4,
V(10)V (10)) which is a prehomogeneous vector space without relative invariant

other than constants [12; p94]. This fact can also be shown by a representa-
tion theoretic consideration as in [8]. O

By 4), P(z, z, ¥, ¥, ¥)=0. By the polarization D, ,, we get
(5) 2P(z, z, x, ¥, ¥)+P(z, 2z, ¥, ¥, x)=0.
Hence by (1),
(6) 2P(z, 2z, x, 9, y)=P(y, v, 2,2, x).
By 4), P(y, v, », x, x)=0. By the polarization D, ., we get
™ P(y,», 9, %, 2+P,», 3,2 x)=0.
By (1) and (7),
(®) Py, 9, 9,2, x)=—P(, 9, 5, %, 2)=P(x, 5, 3, ¥, 2).
By multiplying the both sides of (6) and (8),
9) 2P(y, 3, 3,2, x)P(z, 2, x, 3, ))=P(x, 3, ¥, ¥, 2)P(3, ¥, 2, 2, x).
THEOREM 1. Put
F(x,y,2)=P(x, x, x, ¥, 2)P(y, ¥, 2z, z, x*+P(y, v, ¥, 2, x)P(z, 2, x, x, y)°
+P(z, z, z, x, y)P(x, x, , ¥, 2)°
—P(x, x, v, ¥, 2P(y, ¥, z, 2, x)P(z, z, x, x, y)
—4P(x, x, x, ¥, 2)P(y, v, v, z, x)P(z, z, z, x, J) .
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Then F is an irreducible relative invariant of (SL(5)XGL(3), A, A4,, V(10)RQV(3))
which corresponds to the character

(g1, &2) —> (det g,)°, (g1, 82)ESL(5)XGL(3).

PROOF. Since the degree of an irreducible relative invariant is known to
be 15 [12, section 7, Table I (10)], it is enough to prove the relative invariance
of F. The invariance with respect to SL(5)XGL(1) is obvious, where GL(1) is
the set of scalar matrices in GL(3). Hence it is enough to see the invariance
with respect to the actions of the matrix units E;;cLie (GL(3)) for 7. Since
x, ¥ and z appears symmetrically in F, it is enough to consider only one of
them. The action of {E;;|7#;} are nothing but the polarizations D, . etc.
Hence it is enough to show that D, ,F(x, v, 2)=0. By (2) and (4), we have

D, :F(x,y,2)=P(x,x,9,5,2)P(y,9,2,2, x){P(y,¥,2,2, x)—2P(z,2,x, ¥, ¥)}
+2P(z,z, x, x, Y){2P(y,,5,2, x)P(z2,2,x, 9, y)—P(x, 5,5, 9, 2)P(y,¥,2,2,x)}

+4P(x,x,y,y;Z)P(Z;Z,Z»xyy){P(x, y,y,y,z)—P(J’,y;y’Z, x)}
By (6), (9) and (8), the right hand side equals zero. [

REMARK 2. Let G be any reductive group and p: G—GL(V) any rational
representation. Let [v,]=V /G be a generic point, v, a point in the closed G-
orbit lying above [v,], G,, the isotropy subgroup of G at v,, T a maximal
torus of G,,, N the normalizer of T in G, VI={veV |tv=v, t=T}, C[V] the set
of polynomial functions on V, ¢ a rational character of G and

CLVI®?={f<=CLV]| f(gv)=¢(&)f(v), gEG}.

Define C[VT]¥-¢ in the same way. Then we have an isomorphism of Chevalley
type
C[V]¢¢=C[VT]VN: %,

which is given by the restriction. (See [11; Appendix 2].) For many prehomo-
geneous vector spaces (G, p, V), it is quite easy to give a non-zero element of
C[VT]¥.¢, Thus we can describe the restriction of an irreducible relative in-
variant in C[V]%¢ to V7. In our case, this description gave us enough infor-
mation to determine the explicit form of F in our theorem.

REMARK 3. In our case (G, p, V) has a unique split Z-form [3]. For this
Z-form, V(Z) may be identified with the lattice of V(C) generated by

(ei/\ej, 0, 0), (0, ei/\ej,v 0)7 (07 0} ei/\ej) ’
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where 1=:<j<5. Then *+2-5F(x, y, z) are the irreducible relative invariants
in Z[V].

In fact, since gi(x, x)=2fix), we can show that 2-2P(x, x, v, ¥, 2),
2-'P(y, v, ¥, z, x) etc. belong to Z[V]. If we take

(exNestesNey, e;/N\es+e /\es, e1/\eg+e;/\es)

as v, in remark 2, then we can take

{diag (1, ¢, 7, 2%, t-¥) X diag (¢t71, 1, )|t C—{0}}

as T. Then C=VT is the linear span of the following elements;

(esN\esy, 0, 0), (esNey, 0,0),

0, ez Aes, 0), (0, esNes, 0),

0, 0, esA\es), (0, 0, e2\es) .
An easy calculation shows that

27F(x, ¥, 2)le=—x1:x54Y2s V1523255 .

Hence 2-°F(x, y, z) is irreducible in Z[V]. Note that we have also shown that

Z[ V]G s=Z[VTIV:¢,
in our case.

3. Invariant of Spin (10)XGL (3).

The purpose of this section is to construct an irreducible relative invariant
of (Spin (10)X GL(3), (half spin)®A4,, V(16)RV(3)). In this section, we need the
theory of spinors. See [12; pp. 110-114] and for the generalities concerning
the spinor groups and spinor representations. Here we use the same notations
as in [12].

A general element x of the representation space V(16) of the even half spin
representation of Spin (10) can be written uniquely as

X=Xo+ 23 xy4eie,+ > Xijr1€i€jerey .
’ 151<js56 15i<j<k<lsh

In this section, we reserve the letters x, ¥, z and w for such elements. Their
coordinates are written as x,, y;; etc., and we put x;;=—x;; and
xp(i).p(j),p(k),p(l):Sign (P)xijkz

for any permutation p of i<j<k<l/. A general element of the representation
space V(16)®V(3) can be regarded as a triplet (x, ¥y, z) and the action p=p,Xp.
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of G=5Spin(10)XGL(3) on V is given by

0(&1, £2Xx, ¥, 2)=(p:(g1)x, p:(81)Y, 0:(€1)2)-p(g2)

for (g1, g:)G, where p, is the even half spin representation of Spin(10) on
V(16) and p, is the natural representation of GL(3) on V(3).
Consider the following polynomials;

Fi{x)=—2%12% 1545+ X 13X 1245— X 14X 1285+ X15X1234 »
Fo(X)=—2X23% 0451+ X 24X 2051— X 25X 2801+ X 21X 2345
Fo(X)=—Xs4Xss12+ X 36X 3412— X 91X 3452+ X 52X 3451 »
f4(x)="x45xuzs+xuxuszs'_x42x4513+x43x4512 ’
Fo(x)=— X1 %5084+ Xs2X5106— X 53X 5124+ X54 X 5128
Fe(X)=X0X 2845 X o3 X 45+ X 24 Xgs— X 25X 34
FoX)=XoXss1— X4 X 51+ XosXa1— Xa1%45
Fo(X)=XoXis12— X45X 12+ X1 X52— X 02%51
Fo(x)=X0X5128— X 51X 25+ X 52X 15— X53X 12,
J1o(X)=X0X1284— X 12X 84 X 13X 24— X 14X 05

gi(x: y)szyfi(x) ’
5
P(x: Y, 2, w)=i§ (gi(x) y)gi+5<z’ w)+gi+5(x’ y)gi(zy w))’
Then by the definition of P,

¢)) P(x, y, z, w)=P(y, x, z, w)=P(z, w, x, y).

The polynomials f; are known as spinor invariants [I]. Concerning the pro-
perties of the spinor invariants, what is necessary for our purpose is the fol-
lowing fact;

Fosgw)= ;a Xg)esf )

for g=Spin(10) and 1<7<10. Here X denotes the vector representation of
Spin (10) ([12]), and x(g):; denote the matrix components. Since the image of
X is the special orthogonal group which preserves the symmetric bilinear form

5
LZJ=1 (Gmm-m‘-émm) ’

the polynomial P is a Spin(10)-invariant, i.e.,
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3) P(gx, gy, gz, gw)=P(x, 3, z, w)

for g=Spin(10). Here we wrote gx etc. for p,(g)x etc. Of course, (3) can also
be shown by a direct calculation as in section 2. Since P(x, x, x, x) is an
(absolute) invariant of the non-regular prehomogeneous vector space (Spin(10),
half spin, V(16)) without relative invariants other than constants [12; section 7,
Table III (67)],

@ | P(x, x, x, x)=0.
Polarizing (4) by D, ., we get

5) P(x, x, x, y)=0.

(Here we used (1).) Polarizing (5) again by D,., we get
(6) P(x, x, y, »)+2P(x, ¥, x, y)=0.
Polarizing (6) by D,,, we get

) P(x, x, v, 2)+2P(x, y, x, 2)=0.

THEOREM 2 (H. Kawahara [7]). An irreducible relative invariant of
(Spin(10)xX GL(2), (half spin)®A4;, V(16)RV (2)) is given by Fyx, y)=P(x, v, x, y).

PrROOF. It is easy to see that Fy(x, y)#0. (See remark 4 below.) By (3),
the invariance with respect to Spin(10)XGL(1) is obvious, where GL(1) is the
set of scalar matrices in GL(2). By (1) and (5), we have

Dzsz(xf y)zP(x' X, X, y)+P(x: y) X, X):O.

Since Fy(x, y)=Fy(y, x), Fix, ¥) is a relative invariant with respect to Spin(10)
XGL(2). Since the degree of an irreducible relative invariant is known to be
4 [12; section 7, Table I (20)], F, is irreducible. O

REMARK 4. In the case treated in theorem 2, (G, p, V) has a unique split
Z-form [3]. For this Z-form, V(Z) may be identified with the lattice of V(C)
generated by the elements

(1, 0), (0, 1),
(eiej: 0); (0: eiej) ’ (1§Z<].§5) ’
(eiejerer, 0), (0, eiejerer), (1=i<j<k<I<5).

Then = F,(x, y) are the irreducible relative invariants in Z[V]. In order to

prove this, take
(14-e,e:eqe4, ¢1e5+25e50,05)



444 Akihiko GYOJA

as v, in remark 2. Then we can take as T the inverse image by (X Xidentity)
of the set of

dlag (ly tZy t3y th tg; 1; tEI’ t;l: Il’ t;z)Xdlag (t57 t;l)

where ¢,, ts, ts, t;=C—{0} and t,¢t,=1. Then C=V7T is the linear span of the
following 4 elements;

(1, 0), (e ezese4, 0), (0, e,e5), (0, esezeqes).
An easy calculation shows that
Fy(x, ¥)lc=X2%1534Y 152545 -
Hence F, is irreducible in Z[V]. We have also shown that
Z[V]e¢=Z[VT]N.¢
in our case.
THEOREM 3. An irreducible relative invariant of ((Spin(10)XGL(3),
(half spin)®4;, V(16)RQV(3)) is given by
Fyx,y,2)=P(x,x,y,9)P(x,y,z,2+P(y,y,2,2)P(y, 2, x, x)?
+P(z,z,x,x)P(z,x,y, y)*—P(x,x,5, V)P(y,9,2,2)P(z,2, x, x)
+2P(x,x,y,2)P(y,9,2,x)P(z,2,x, ).

PROOF. It is easy to see that Fy(x, y, z)#0. (See remark 5 below.) By (3),
the invariance with respect to Spin (10)XGL(1) is obvious, where GL(1l) is the
set of scalar matrices of GL(3). Since the degree of an irreducible relative in-
variant is known to be 12 [12; section 7, Table I (21)], it is enough to show
that D,,Fy(x, ¥, z)=0. By (1) and (5), we have

D.yFyx,y,2)=2P(x,y,2,2)P(x, x, y,2){P(x, x, ¥,2)+2P(x, 3, x, 2)}
+2P(x, x,2,2)P(x,z, 5, y){P(x, x, y,2)+2P(x, ¥, x, 2)}.
Hence by (7), D, Fyx,y,2)=0. O
REMARK 5. In the case treated in theorem 3, (G, p, V) has a unique split

Z-form [3]. For this Z-form, V(Z) may be identified with the lattice of V(C)
generated by

1,0,0), (0,1,0),(0,0,1),
(eiejr 0; O); (O, eiej’ O)y (0; 0, eiej) » 1§Z<]§5 >

(e:eexe1,0,0), (0,e:¢,e,e:,0), (0,0, e:e5eer), 1=i<j<k<ILS5.
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Then +2-*Fy(x,y,z) are the irreducible relative invariants in Z[V]. In fact,
since gi«x, x)=2f(x), we can show that 2-2P(x, x, v, y), 2*P(x, v,z,z) etc. be-
long to Z{V]. Hence 2-*Fy(x,y,z)Z[V]. If we take

(14+e1e00504, €105+ 05050405, €,05+0¢1050,05)

as v, in remark 2, then we can take as T the inverse image by (XXidentity)
of the set of

diag (1, (t:5)71, t1, ta, (F122) 725 1, tite, 171, 151, (Hit,)?) X diag ((£:85) 71, 1ty 1),

where ¢, t,C—{0}. Then C=VT is the linear span of the following 6 ele-
ments ;
(l; 0: 0)’ (91929394, 07 O) 3

(0, eye5,0), (0, ese5e4e5,0),
(0,0, e;ez), (0,0, e;e5e4e5) .
An easy calculation shows that
274 Fy(x, ¥,2)| = — X8 X 1234V 15 Y3452 1223 045 -
Hence 2-*Fy(x, y,z) is irreducible in Z[V]. We have also shown that

Z[V]GS¢=Z[VT]¥: ¢
in our case.

4. Invariants of (GL(1)XGL(7), AP A, V(E5)DV(T)).

The purpose of this and next sections are to construct an irreducible rela-
tive invariant of (GL(1)XxSpin(14), (odd half spin), V(64)), where GL(1) acts on
V(64) as scalars. First, we need to construct irreducible relative invariants of
(GLA)XGL(T), A A,, V(35)PV(7)), where GL(1) acts on V(7) as scalars. A
construction of the irreducible relative invariants of this prehomogeneous vector
space is given by T. Kimura. See [8; p. 96, Table A (14)]. Here we give
another construction.

Let {ey, ---, e;} be a basis of V(7). Then {e;Ne;Aex|1=i<j<k<LT} is a
basis of V(35). We write e¢;;, for e;Ae;jAex,. A general element of V=V(35)
BV (7) can be unigely expressed as

ki
x= 2 xijkeijk@zxiei-
15i<j<k ST i=1
Put x;;,=—x:; etc. If we take

(€125t 567+ Cras+Cosst€5a7) Dy
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as v, in remark 2, we can take

{diag (tly tZ) ta» 1! tily tEI’ t;l) l tlt2t3=l}

as the maximal torus T of G,,, where G=GL(1)XGL(7). (See remark 2 for the
notations.) Then C=VT is the linear span of the following 6 elements

€123, @567y €145 €246y €347, €4 «
The relative invariants of (N, VT) are products of
4.1) X3asXBerXE,
4.2) x%zsxgs':xusxusxsn ’

and scalars. Let J; and /; be the relative invariants of (G, V) whose restrictions
are [(4.1) and [(4.2) respectively.

THEOREM 4. (1) We have

Je=23" %223 %856 %3
—23Y x%25X 456X as1 X6 X7
—23) X 128X 124X 356 X 456X 7
+22’x123x124x856x457x6x7
423 X 129X 124X 356 X 567X 4 X 7
—433 X 128X 156X 246X 345X 5
—43Y X 129X 145X 246X 357X X7 ,

where 3 x23,3x3:6X5 etc. means the sum of distinct terms among

{x3w. 0. 0 X3, 000, pe X3 | PES,}.

The relative invariant J, corresponds to the character

(g1, g2) —> gi(det g,)?, (&1, 8)=GL()XGL(7).
(2) We have

Ji=>"% X123X124 X185 X 246 X 357 X 467 X 567
— 2 £ xT2sX 145X 246 X 357X 467 X 567
+2'+ x?zsxusxuexsnx'gm
+ 20 X 125X 124X 185X 256X 347 X 467 X 567

’
+>2'+ X123X124 X135 X 256 X 367 X 457X 467
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+ 23 £ X 123X 124X 156X 257X 346X 357X 467
—23) = X153%X 124X 156X 257X 345 X 367 X 467
—437 & X193X 246X 356X 257X 145X 167X 347 +

where 3+ X123X104.. etc. means the sum of distinct terms among
{sign (P)xpcwr. po. pew Xpcod, p83. peo>-.| PES7}.
The relative invariant J, corresponds to the character
(81, g2) —> (det £2)*, (&1, EIEGLXGL(T).

REMARK 6. The above formula for J, is already obtained by J. Igusa [5].
A different formula for J, is given in [2]. (See also [8].)
PrROOF OF (1). We write

(abC, def, Tty Z., ].’ "')
for the monomial
xabcxdef oes xixj ey,
and

plabe, ---)
for

(p(a)p(D)p(c), --),
where p is a permutation. Put
m,=(123, 123, 456, 456, 7,7) ,
m,=(123, 123, 456, 457,6,7) ,
ms=(123, 124, 345, 567,6,7) ,
m,=(123, 124, 356,456,7,7) ,
ms=(123, 124, 356, 457,6,7),
me=(123, 124, 356, 567, 4,7) ,
m,=(123, 156, 246, 345,7,7) ,
ms=(123, 145, 246, 357,6,7) .
By considering the invariance with respect to the maximal torus of GL(1)X

GL(7) and the permutation matrices in GL(7), we can show that J; is of the
form
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é ax(X'me),

with a,=1. Since (34)m;=—m;, >}'m;=0. So we may suppose that a;=0. Let
us consider the derivation D;; (:#7) such that

Dijixpim=02Xiim+0Xpim+0imXp1s (A=sk<Ii<m<T),
and
D,-,-x,,=5,-kxi (1§k.§7).

Since —D;; is nothing but the action of the matrix unit E};, it is enough to
determine a,’s so that

Dij 2:4 ax(X'my)=0.

If (57)=(76)
(123, 123, 456,457,7,7)
appears only in
D,,(123, 123, 456, 456,7,7)=D;em, ,

D,(123, 123,456, 457,6,7)=D,sm, ,
Hence 2a,+a,=0, a,=—2. If (z7)=(34),
(123, 123, 356, 456,7,7)

appears only in
D,,(123, 124, 356, 456,7, 7)=Dgm, ,

D, (123, 123, 456,456,7,7)=Dyym, .
Hence 2a1+ a4=0, a4:_2. If (Z])=(34),

(123, 123, 356,457, 6,7)
appears only in
D,,(123, 124, 356, 457,6, 7)=Dgms; .

D, (123, 123, 456,457,6,7)=Dgm, .
Hence as=——a,=2. If ({j)=(34),

(123, 123, 356, 567, 4, 7)

appears only in
D34(123, 124, 356, 567, 4, 7)=D34m6 ,

D,(123,123, 456,567, 4, 7)=D;,(46)m, .
Hence a,=—a,=2. If (i5)=(25),
(123,126, 246, 345,7,7)
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appears only in
D,5(153, 126, 246, 345, 7, 7)=— D,5(13)(25)m, ,

D,5(123, 156, 246, 345,7,7)=Dysm ,
D,5(123, 126, 546, 345, 7, 7)=— D,5(465)m, .
Hence a,=2a,=-—4. If (7)=(34).

(123, 135, 246, 357, 6,7)
appears only in

D, (124, 135, 246, 357, 6, 7)=D,,(124653)m; ,
D,,(123, 145, 246, 357,6, 7)=D3sms ,
D,,(123, 135, 246,457, 6, 7)=D,,(23)(45)m; .

Hence a;+a,+as=0, ag=—4. Thus we have completed the proof of (1).

REMARK 7. Let P,;={peS,|pm;=m;}. Then
P,=(&(123)&(456)) % <(14)(25)(36)> ,
P,=8&(123)x<(45), (67)>,
P,=<(12), (56), (15)(26)> x<(34)> ,
Py=<(12), (34X(67)> ,
P,=(&(12) x &(56)) x (15)(26)(47)> ,
P,=<(26)(35), (12)(45), (23)(56)> =&, ,
Py=<(24)(35), (23)(45)(67)> ,

where an isomorphism &,— P, is given by

(12) — (26)(35), (23) — (12)(45), (34) — (23)(56) .
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Hence the number of terms apearing in 3Y'm; (:=1,2,4,5,6,7,8) are 70, 210, 315,
1260, 630, 210 and 1260 respectively. Let fV=f=]J,. Then f“(grad)f**'=>b(s)f*

with a polynomial
5 7\2
b(s)=bo(s+1)(s+5)(s+ 5 ) (s+4)s+5)
[6]. Since b(0)=sV(grad)f=2°5*7%, b,=2°.
PROOF OF (2). We keep the conventions above. Put

m,=(123, 124, 135, 246, 357, 467, 567) ,
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By considering the invariance with respect to the maximal torus of GL(1)X
GL(7) and the permutation matrices of GL(7), we can show that J, is of the

form

with a,=1. Since (23)(67)m,=—m,, (45)m;;=my,, (56)m;=m,; and (12)m,=m,,,

we have

So we may suppose that a,=a,;=a,;;=a,;,=0. As in the proof of (1), let us
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m,=(123, 124, 134, 256, 357, 467, 567) ,
ms=(123, 123, 145, 246, 357, 467, 567) ,
m,=(123, 123, 145, 246, 347, 567, 567) ,
ms=(123, 124, 135, 256, 347, 467, 567) ,
me=(123, 124, 135, 256, 367,457, 467) ,
m,=(123, 124, 135, 267, 367, 456, 457) ,
mg=(123, 124, 156, 257, 346, 357, 467) ,
my=(123, 124, 156, 257, 345, 367, 467) ,
mo=(123, 246, 356, 257, 145, 167, 347) ,
my,=(123, 123, 123, 456, 457, 467, 567) ,
my,=(123, 123, 124, 345, 467, 567, 567) ,
m,s=(123, 123, 124, 356, 457, 467, 567) ,
mi1=(123, 123, 145, 245, 367, 467, 567) ,
ms=(123, 124, 125, 345, 367, 467, 567) ,
m=(123, 124, 125, 346, 357, 467, 567) ,

,,2 au(S £m),

D Em= tm=3"tmy=>2"+m;;=0.

determine the coefficients a, so that

If (57)=(34),

appears only in

Hence a,,=0.

D,; % a (X my)=0.

(123, 123, 123, 345, 467, 567, 567) ,

D4(123, 123, 124, 345, 467, 567, 567)=Dyym.,
If (5)=(34),
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(123, 123, 125, 345, 367, 467, 567)
appears only in
D,,(123, 124,125, 345, 367,467, 567)=Dgym;s ,

D,,(123,123, 125, 345, 467, 467, 567)= — D;,(45)m,, .
Hence a;s=—2a,,=0. If (75)=(34),

(123,123, 125, 346, 357, 467, 567)
appears only in

D, (123,124, 125, 346, 357, 467, 567)=Dgm,, ,
D, (123, 123, 125, 346, 457, 467, 567)=— D,,(45)m,; .
Hence a,,=—a,;=0. If (7/)=(54),

(123, 123, 145, 246, 357, 567, 567)
appears only in
D;,(123, 123, 145, 246, 347, 567, 567)=Ds.m, ,

D;,(123, 123, 145, 246, 357, 467, 567)= D3 m, ,
Hence a;=—a,=—1. If (7)=(34),

(123,123, 135, 246, 357, 467, 567)
appears only in

D;,(123, 124, 135, 246, 357, 467, 567)=2Dym, ,

D,;,(123, 123, 145, 246, 357, 467, 567)=Dgyms,

D44(123,123, 135, 246, 457, 467, 567)=— D;,(23)(45)m,; .
Hence a,+as—a;;=0, a,=1. If (7)=(34),

(123,123, 135, 256, 347, 467,567)
appears only in

D, (123,124, 135, 256, 347, 467, 567)=Dy,m; ,
D,, (123,123, 145, 256, 347, 467, 567)= — D,,(45)m;, ,
Hence a;+a;=0, a;=1. If (77)=(34),

(123, 123, 135, 256, 367, 457, 467)
appears only in

D, (123,124, 135, 256, 367, 457, 467)=D;,m; ,
D,,(123, 123, 145, 256, 367, 457, 467)=—D4,(12)(456)m;, ,
D,,(123, 123, 135, 256, 467, 457, 467)=D,,(23)(4567)m,, ,
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Hence a¢+as;+2a,,=0, a;=1. If (7/)=(34),

(123, 123, 135, 267, 367, 456, 457)
appears only in

D, (123,124, 135, 267, 367, 456, 457)=D,y,m. ,

D,(123, 123, 145, 267, 367, 456, 457)= D;,(123)(46)(57)m,. ,

D,,(123, 123, 135, 267, 467, 456, 457)= D,,(23)(457)m,3; .
Hence a,+a,;,—a,;=0, a,=0. If (¢/)=(34),

(123, 123, 156, 257, 346, 357, 467)
appears only in

D, (123, 124, 156, 257, 346, 357, 467)=D;,ms ,
D,,(123, 123, 156, 257, 346, 457, 467)=D,,(23)(46)m; .
Hence as+a,=0, ag=1. If (5)=(34),

(123,123, 156, 257, 345, 367, 467)
appears only in

D, (123, 124, 156, 257, 345, 367, 467)=D;,m, ,
D,,(123, 123, 156, 257, 345, 467, 467)=— D,,(4567)m, .
Hence ay+2a,=0, a,=—2. If (75)=(34),

(123, 236, 356, 257, 145, 167, 347)
appears only in

D,,(124, 236, 356, 257, 145, 167, 347)= — D,,(24573)m, .
D,,(123, 246, 356, 257, 145, 167, 347)=Ds,m,, ,
D, (123, 236, 456, 257, 145, 167, 347)= D,,(123)(4657)m, .

Hence —ay,+a,,—a,=0, a;,o=—4. Thus we have completed the proof of (2).

REMARK 8. Let P,={p=6&,| pm;=sign(p)m;}. Then
P,=<(1357642), (17)(26)3d)»=Z,X Z, ,
Py=<{(23)(45)(67)>=Z,,

P,=<(12)(56), (23)(67)> x {(17)(26)(35)> =S, x Z, ,
Py=<(23)(45)(67)>=Z,,
P,=<L(17)26)34)»>=Z,,

O
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Py={(156)(274)>=Z,,
Py=<(12)(67), (16)27)> X34 =Zix Z,,
P,=SL(Z,).

(Note that SLy(Z,) is of order 168 and is the automorphism group of the finite
projective plane over Z,.) Hence the numbers of terms appearing in >'+m;
(=1, 3,4,5, 6, 8,9, 10) are 360, 2520, 420, 2520, 2520, 1680, 630 and 30 respec-
tively. Let fV=f=],. Then f“(grad)f**'=b(s)f* with a polynomial

b(s) =bo(8+l)(s+2)(s+§)(8+3)(s+—;—)(5-1—4)(8+5)

[9]. Since b(0)=f(grad)f =2°357, by=2¢.

5. Invariant of GL(1)XSpin(14).

Our purpose here is to construct an irreducible relative invariant J; of the
odd half spin representation (Sipn(14), p, V(64)). Our method of construction
is similar to that of J. Igusa [4]. In this section, we use the same notations
as in [12].

A general element x of V(64) can be uniquely expressed as

x= 2} x4+ 2 Xt 2 xFeHi+xLer,
i i<j<k 1<Jj
where

eijr=e.ejey etc.,
€1=C1234567 »
e;;efi=ey .

Put fij_-:fifj etc. Xjik——Xijk etc. and xl...g...;..q:(—1)i+j“‘x;"j.

LEMMA. In general, put
(H(1+yrsfrs))(2 Xigligt 20 Xigigi,@igtyipT )

o<t 1<iy

- E Zzoezo+ Z 21.0111,2@1,01.112"1_
10<i 1<tz

Then

Zigiymigg— Xigiy- 12q+ E( 1)P- i2q+1§<12ppf(y1 13)2q<‘r ss2p " Xiguigy s

where Pf denotes the Pfaffian.
In fact,
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Zioil“'izqeioil"'i“’q

_p§1 mi2q+§,i2p(yi2q+li2q+2 yizp-lizp)(fizqﬂizqn fizp-lizp)

. xio...izpeto...,-zp

1 ,
:pgq 27-9(p—g)! ;(yi“ﬂli“l” "t Vigpertyp) Xiguig (1P 01504,

1

Ty uET 2 (¥ i " Vigp-1isg)
P2q G2q41<<izp2P U D —@q) | tiggrriap)=tagsr—dag ~ 2911°22%2 2p-1t2p

. Jeg+1 **° Jo2p pg
-Sign . xio...iijzq“...jzp(-—l) eio...izq
Zag+1 "t l2p

= >,  Pf *Xigeig (—1)P %1y, -
p§1 i2q+1%’"’<tzp (Vi 1)00<r 850 Xigein (— 1) 74y,

By the above lemma, we have

(5.1) (l;lé(l'l‘lex:‘sfn))x: iZ Zisi, 1 p Zig11i,@ 10400 XLOL,
r 0

19<i1<ig
where
21, =x7° {(__l)io-ltKZ(ie PE(x¥ i )isr, 856

(5.2) +il<§i4 PE(x¥, 1157, 854" Xegiyot,

+th§tzxfltzxioi,i2} + x4,

and

Zigii,= XL’ {(_1)i°+il+izi 2> ; Pf(x¥, 40)ssr. 556
6

(5.3) gL

—i§4x’fst‘xiotl---t4} + X484,

As is easily seen, every generic element of C"PA*C"/SL,(C) has a representative

of the form
w'e,+w(eizstesse) W €14+ Cosr+2g67)

(cf. [9; Prop. 2.14]). Hence if we put

Z2=2021,01,F 2024414581440, X 0L,
then

(5.4) P(g)zzw,e'1+w(9123+e456)+w_1(9147+9257+€ss7)+xLeL
with some w, w’ and g&SL(7)X(CSpin(14)). By theorem 4,

J@)=J{p(g)z)=w'w’?,
and )
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J&)=]J(p(g)z)=—w.

Here we regard J; and J, as polynomial functions on V(64) via the natural
projection V(64)—-C"@B(AC"). Hence

(5.5) w=—J(2), w=(J(2)](z)")".
Let U be the linear span of

{eq, €12, Cuses Cirans Cosry Csens €L} -

Since J; is invariant with respect to the action of {ITi_.(t:eif:+t3'fe:)|t:€C—
{0}} and deg J;=8 [12; section 7, Table I(24)], we can see that J5|y is of the form

2.2 .2 .2 2 .2
Ax7X123X 556X L+ bX325X 356X 147X 257X 367X L -

Since
(L4277 f 100427 f2sX1+27 f g6)(1+10(1+ €05 )(1+€56)
*(e7+e125teuset€ransse1)
=125+ Case 27 (Crurt €257t €s61) 201425567 »
we have

Je(ertestess—er)

= Js(e12stess6+27 (€147 €257+ €367)—2e1) .
Hence a=—b/4, and
(5.6) Jsl U=xgxfuxfssx%_‘lx?zaxfsex147x257xse7xL

up to non-zero scalar multiple. Thus

J(x)=Js(2), by
=Jo(w'es+w(einst o)+ W (CrirtCosrt+eser)+x2e), by
=wwxi—4dwx;, by
=J(2)x;+4] ()%, by

THEOREM 5. An irreducible relative invariant J; of (GL(1)XSpin(14),
(odd half spin), V(64)) is given by

Jx)=J(2)xi+4](2)xL
with

Z=2025,0i0F 2 ZigiyginCigigis T XLCL,

1<t 1<ty

where z;, and z;y,:, are given by and (5.3).
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REMARK 9. In the case treated in theorem 5, (G, p, V) has a unique split
Z-form [3]. For this Z-form, V(Z) may be identified with the lattice of V(C)
generated by

A

eioeil e,-“, 0z k§3, 1§Zo< <i2k§7.

!

Then =+ Ji(x) are the irreducible relative invariants in Z[V]. In fact, as is
seen from theorem 4, (5.2), (5.3) and theorem 5, J{(x)=Z[V, x7*INC[V]=Z[V].
As is seen from (5.6), J; is irreducible in Z[V]. If we take

e;+e1astesster

as v, in remark 2, then we can take as T the inverse image by X: Spin(14)—
S0O(14) of the set of

diag(tl’ t2) ta: t47 tEr ts’ 1; tIl} t;l) t§1, t:1; tgl’ tgly 1))

where t,t;=t,t5t,=1. Then C=VT is the linear span of the following 4
elements ;

€7, €123, @456, €L .
As is seen from (5.6),

Z[V]Ce=Z[VI]V¢
in our case.

By a direct calculation, we can show that
(grad log Js)(vo)=2v,.
As is seen from (5.6), Ji(vo,)=1. Hence Jy((gradlog J5)(vo))Js(ve)=2% and
Jo'(grad) J§t'=b(s)J§ with the polynomial
5 7 , 11 13
sor=tst (st 3)(s+ T+ 5515+ B s+ Yo

(cf. [11]).

6. Invariant of GL(3).

In [8; Remark 4.6], a construction of an irreducible relative invariant of
(GL(@8), A;, V(56)) is given. In order to write down this relative invariant
explicitly, we need to know the explicit form of polynomials

Fi}.._ign_z(x) (¢g=3, m=3)

appeared in [8; Example (II)]. It would be worth noting that, although the
explicit form of these polynomials are not given in [8], they can be constructed
immediately as follows: Let Ds; be the polarization 7—8, i.e., Dy iXap:=Xaps
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(ay ﬁiSJ 1—§-Z§_8). Then
Fi},iz ii’:Ds,i}Ds,i%Ds,i?f,

1

where f is an irreducible relative invariant of (GL(7), 4;,V(35)). In order to
see that these polynomials satisfy (4.7) and (4.8) of [8], it is enough to notice
that Ds; is nothing but the action of the matrix unit —E.
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