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VANISHING OF HOCHSCHILD'S COHOMOLOGIES
HY(A®A) AND GRADABILITY OF A LOCAL
COMMUTATIVE ALGEBRA 4

By

Qiang ZENG

0. Introduction.

In [8] Nakayama conjectured that a finite dimensional algebra R with an
infinite dominant dimension is selfinjective. As such an algebra R is isomorphic
to an endomorphism ring of a generator-cogenerator over an algebra A, Tachi-
kawa [10] has shown that the Nakayama’s conjecture is reduced to the follow-
ing conjectures (i) and (ii): For a finite dimensional algebra A over a field KX,

(i) A is selfinjective if Hochschild’s cohomological groups HY(A®x A)=
Exti(D(A), A)=0 for /=1, where D(A)=Homx(A, K).

(ii) An A-module X is projective if A is selfinjective and if Exti(X, X)=0
for /=1.

It is to be noted here that the Nakayama’s conjecture is true if and only
if both the conjectures (i) and (ii) are true.

For the conjecture (ii) there have been already several interesting results
by Hoshino [6] and Schulz [9]. In [7] Hoshino applied Wilson’s therem to
settle the conjecture (i) for algebras A’s with cube zero radicals, because in
this case both A’s and the corresponding endomorphism rings R’s are positively
Z-graded.

This paper concerns with the conjecture (i) for local commutative algebras.
In §1 we provide a theorem that for a local (not necessarily commutative)
algebra A, R=End (ADD(A)) is positively Z-graded if and only if so is A. It
is proved in §2 that local algebras with quartic zero radicals such that they
are homomorphic images of polynomial ring K[x,y] over an algebraically
closed field K are positively Z-graded, and applying Wilson’s theorem we can
prove that conjecture (i) is true for such algebras. In §3 we shall give,
however, a not positively Z-graded commutative local algebra, which is a homo-
morphic image of the polynomial ring K[x, y,z] with quartic zero radical.
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1. Preliminary
Let R be an finite dimensional algebra over a field K. Let
0—R—E —E,— - —>FE, —> (1)

be a minimal injective resolution of the right R-module R.

In [2] Auslander and Reiten introduced the generalized Nakayama conjecture :
Every simple R-module appears as a submodule of some E, in (1). We shall
say dom dim Rr=n (resp.=o) if E; are projective R-modules for all j<n-1
(resp. all 7>0) in (1).

In [8] Nakayama conjectured that R is selfinjective if dom dim Rg=oo.
The Nakayama conjecture is true if the generalized Nakayama conjecture is
true, because the injective envelope of any simple right R-module S is projective,
if dom dim Rp=oco.

In [11] Wilson proved that the generalized Nakayama conjecture is true
for positively Z-graded algebras.

Suppose dom dim Rr=2. It is well known that there exists a minimal
faithful left R-module which is a projective and injective left ideal Re for an
idempotent e. Further R=End.g.Re and Re is a generator-cogenerator as a
right eRe-module. Cf. [10]. Conversely for any algebra A and for a generator-
cogenrator X,, dom dim End,X=2. This connection between A and End X
plays an important role in this paper. In our context End,X is selfinjective iff
A is selfinjective.

A graded algebra is an algebra A together with a vector space decomposi-
tion A=@ezAr such that A;A;C A

Since A is a finite dimensional algebra, A,=0 for | £|>0. We will consider
positively Z-graded algebras, that is, graded algebras with A4,=0 if £<0. We
will further assume rad A=P;:; Ar. Thus we will write A=P ;. A,.

A graded right A-module is a module M together with a vector space de-
composition M=P,ezM, such that M;A;CM,,;. Notice that we are allowing
negative gradings on our modules. If L= ,czL, is another graded A-module,
we define a degree 7 morphism to be an A-homomorphism f: M—L such that
(M) Ly, It is to be noted that for a graded A-module M the degrees of
morphisms make End,M be a (not necessarily positively) Z-graded algebra (see
4, §2D.

The -th shift (G} M) of M=@,czM; is defined to be a graded A-module
L=@ezL: such that L,=M,_,.

THEOREM 1.1. Let A be a local algebra, D(A)=Homg(A, K) the injective
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cogenerator as a right A-module and R the endomorphism ring of APD(A).
Then R is positively Z-graded iff so is A. Here it is to be noted that the grad-
ing of A is one induced from the grading of R and the grading of R is one
induced by the degrees of morphisms in End (APD(A)).

PROOF. “Only if” part. Let R=p, R, and ¢ a projection : ADD(A)—A. Since
rad R=@g,R,, there is an idempotent f of R such that f=e and we have
that A=eRe is isomorphic to a positively Z-graded algebra fRf=@BL(fRf):
with (fRf)z=SR.f.

“If” part. Let A=@pr,A. Then D(A) is gradable such that D(A)_,=D(A;)

ﬁ ﬁ) and R

). So we may assume that A is not selfinjective.

for n2k=0. If A is selfinjective, i.e. A=D(A), then Rz(
Ak Ak
A, A,
By using the n-th shift ¢(n) we obtain a new grading of D(A) such that
D(A)=(D(A)B(D(A))D---B(D(A))a, where (D(A));=D(An_;), 0=Zi<n.
Now

has a grading with ng(

Homy(A4, A) Hom4(D(A), A)
RzEndA(AG}D(A))z( )

Homu(A, D(A)) Hom(D(A), D(A))

and it is clear that Homu(A, A)=Hom(D(A), D(A))= A, Homu(A, D(A))=D(A)
and degrees of morphisms define naturally non-negative Z-gradings of Hom(4, A4),
Hom(D(A), D(A)) and Homu(4, D(A)) which are respectively identical with A,
A and D(A).

Next for the Z-grading Homy(D(A), A)=DiezHomg 4 (D(A), 6o(—i)A), we
want to notice here that the degree of any morphism from D(4) to A is at
least one. This fact will be proved by induction on n as follows: If n=1,
then A=APA, and (D(A)y=D(A,), (D(A)),=D(A,). Hence it is clear that
—1=degree of ¢=<1 for g=Homu(D(A), A). But since D(A,) is the socle of
D(A) and A is not selfinjective, ¢ is not a monomorphism and the degree ]
must be 1. Assume that for any grading B=B,DB,D --- @B, r<n, the degree
of ¢=1 for p=Hompz(D(B), B) and suppose the degree of 9=i<0 for ¢c<=
Hom4(D(A), A). In the case i=0,05¢(D(A))C A, and A, is considered to be a
division algebra. = Hence @(D(A),)DH(D(A)An)=A¢An=A, and ¢ must be a
monomorphism. Then similarly as in n=1 this contradicts to that A4 is not
selfinjective. Next assume 7<—1. Then 0=¢(D(A))=¢(D(A,)). Hence ¢ is
considered to be a homomorphism of D(A,.,PAnD - PA,) to A and A,_.P
AnoD --- PA, can be cosidered as a grading of A/A,. Let o: D(A/A)—A/A,
be the composition of ¢ and the canonical homomorphism from A to A/A,.
Then we know that the degree of p<—1 but this contradicts to the assumption
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of induction.
Let us denote the gradings of Hom (A, A), Hom4(D(A), D(A)), Hom (A, D(A))
and Hom,(D(A), A) by

Hom(A, A)=P1_E&Y,  Homu(D(A), D(A)=P1_EH?,
Homu(A, D(A)=@2,E#» and Homa(D(A), A=D1 E>.

Now we can introduce a positive Z-grading of R by

E,ﬁ"” 0 0 E“ 2)
Rzk:( ), R2k+1:( )
0 Eg» Eg&Y 0

ELPEF> 0 E 0
0 E(z 1)E(1 2) - E

Because

R2k+1sz+1:( ):R2(k+j+l):

(2,2)
Bt5+1

0 E(l 1)E(1 2) é}i' le
RZkR2j+1=( C( ! :Rz(k+j)+1
EI§2,2)E‘§2,1) E
and
0 E(l 2)E(2 2) Ek+,7+l
R2k+1sz:( - 1 ) ( 2 )ZRz(k+j)+1~
Ek . )E; D ( l)
Since a commutative algebra is a direct sum of local algebras we have
immediately

COROLLARY 1.2. Let A be a commutative algebra. Then End(ADD(A)) is
positively Z-graded if and only if so is A.

THEOREM 1.3. Let A be a positively Z-graded local algebra. If Exti(D(A), A)
=0 for all i=1, then A is selfinjective.

PROOF. Suppose that A, is not selfinjective and Exti(D(A), A)=0 for all
i=1. Let
0 —> ADD(A) —> By —> Ey —> o —> Ey —> -

be a minimal injective resolution of APD(A) as a right A-module. Denote
End (ADD(A)) by R. Since E;=Add-D(A), D(A) is a direct summand of
APD(A) and since Exti(D(A), A)=0 for all /=1, we have the following in-
jective resolution of Rg:

0—R—-H—H —-—H,—> -,

where H,=Hom(z(ADD(A))4, E;) and H; are projective and injective right
R-modules.
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On the other hand, by Theorem 1.1 R is positively Z-graded. Hence by
Wilson’s theorem R is selfinjective. However this implies that A is selfinjective
and a contradiction.

PROPOSITION 1.4. Let A be a positively Z-graded local algebra and R the
endomorphism ring of vight A-module ADD(A). Then Nakayama conjecture is
true for R.

§2. Local Commutative Graded Algebras

Throughout this section K is assumed to be an algebraically closes field of
characteristic zero. The following Lemma 2.1 and Proposition 2.2 are well
known, cf. [1] and [4, V. 3.9.5], but for the sake of reader’s convenience, we
shall write elementary proofs.

LEMMA 2.1. A commutative K-algebra A is local if and only if A isa
homomorphic image of K[x1, x5, -, xn]/I"™, where I is the ideal of the polynomial
ring K[x, x5, -, xn] of variables x,, x5, -+, Xm, which is generated by xi, Xa,

oy Xome

ProoOF. Let J be the radical of a local commutative algebra A and J*=0.
Then there are ring-homomorphisms a: K[X,, X,, -, Xn]—A and B: A-A/T
=K. Put Ba(X;)=a;. Then Ba(X;—a;)=0 and hence a(X;—a;)=]. Therefore
a((X;—a)")=(a(X;—a:)"=0 and hence (X;—a;)"=Kera. Now we can take
x;=X;—a;.

For f(x, y)€K[x, y] we shall denote by f,(x, y) the homogeneous term
of f(x, y) of degree ¢.

PROPOSITION 2.2. Let f(x, y) be a polynomial in K[x, y] such that f(x, y)=
2ez2 fo(x, y) with the non-zero homogeneous term fy(x, y)=ax*+bxy-+cy?* of degree
2, I=(x, y) and A=K[x, y]/I", f(x, y)), n=3. Then A is isomorphic to a local
algebra K[X, Y]/(L*, g(X, Y)) such that L=(X, Y) and g(X, Y)=XY or X?—
Ye, p>2.

PROOF. Assume a#0. Then ax’+bxy+cy*=a(x—ay)x—pBy) for some a, B
cK.

Case (1): a+#f. As we can consider x—ay and x—fy as new parametess
of K[x, y] we can take f,(x, y)=xy. On the other hand, in the case (2): a=
B, by replacing x—ay with x we can take f,(x, y)=x% Further it is easily
seen that the above context for f(x, y) are valid even if a=0.
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At first we shall proceed the proof for the Case (1) by induction on n: we
can replace xy with f(x, v)—xy mod I™ and after repetitions of such rearrange-
ments we obtain an expression of f(x, y) which excludes terms x%y/, 7, j=1 and
ij>1. So if n=4 we may assume that f(x, y)=xy+ax’+by’. Put X=x+by*
and Y=y+ax’. Then XY=xy+ax’+by* mod ‘. Since X and Y &radA~rad’4,
we can take X and Y as new parameters and we have A=K[X, Y]/
(X, Y)Y, XY).

Assume n>4. Applying the assumption of induction to K[x, y1/(I""*, f(x, ¥))
we can take f(x, y)=xy+ax""'+by*"* mod I". Similarly as in the case n=4,
putting X =x+by""? and YV =y+ax""? we can take X an Y as new parameters
and we conclude A=K[X, Y]/(L*, XY).

Now we shall begin the proof of the Case (2). First we can replace x°
with f(x, y)—=x® mod I*, which is a sum of homogeneous terms of degrees >2.
And by repetitions of such rearrangements we may assume that terms x'y,
i>1, >0 do not appear in f(x, y). Hence if n=4, f(x, y)=x"-+ay’+bxy* mod I*.
Then f(x, y)=(x-+(1/2)by*)*+ay® mod I'. So replacing parameters x and y with
X=x+(1/2)by* and Y=-—a'/’y respectively, we have A=K[X, Y]/(X, YV,
A2—Y3).

Assume n>4. Applying the assumption of induction to K[x, y1/(I"7,
f(x, y)) we can take f(x,y)=x—yP+ay" '+bxy" % 3<p<n. Then flx, y)=
(x+(1/2)by™ 22 —(y—(1/p)ay”?)? mod I* and we can replace parameters x and
y with X=x-+(1/2)by""? and Y=y—(1/p)ay"~? respectively. Therefore A=
K[X, Y]/(L", X*—Y?). This completes the proof.

It should be noted that K[x, y1/((x, ¥)", x¥), n=3, is biserial in the sense
of Fuller [3]. On the other hand, K[x, y1/((x, ¥)%, x*—y*) has a unique maximal
serial ideal, i.e., a serial ideal which contains every non-simple serial ideal.

PROPOSITION 2.3. Let A be a local commutative algebra as in Proposition
2.2. Then A is positively Z-graded.

Proor. Denote by # the residue class of K[x, y]/({(x, y)*, xy) (resp.
Klx, y1/((x, y)*, 2*—»?) which contains u=KT[x, y]. It is easily seen that
K[x, y1/((x, »)*, xy)=PB721A;, where A,=K and A,=Kx'+Ky', i>0, gives a
positive Z-grading. On the other hand, according to p(p<n) is odd or even
we have the following positive Z-gradings of K[x, y1/((x, ¥)*, x*—y?)) res-
pectively :

K[x, y1/((x, ¥)*, x*—yP))=BD D= Bp+2D D15 By,

where By=K, Byin=Kxy* and B,;=Ky’, and
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Klx, y1/((x, y)*, x*—y?)=B® D5 BD D¢ Bo+sP Dizr-o Bu
where p=2q, Bo=K, B;=Ky*, Bys;=Kxy+ Ky and B,=Ky*.
If p=n, K[x, y]/{(x, »)*, x*)=&72z5 C; where Co=K and C;=Kxy" '+ Ky,
>0, gives a positively Z-grading.

COROLLARY 2.4. A homomorphic image of K[x, y1/(x, v)* is positively Z-
graded.

ProoF. K[x, y1/(x, ¥)'=KPEx+EKy)D EKx+Ky» P (Kx+Ky) is a posi-
tive Z-grading of K[x, v[/(x, ). I glx, y)=2_1g:(x, y) with g.(x, y)#0,
then K[x, v]/((x, )*, g(x, y)) is uniserial and clearly its homomorphic image
is positively Z-graded. Therefore by Proposition 2.3 it is enough to consider
homomorphic images of K[x, y1/((x, v)%, f(x, ¥)), where fo(x, y)=/,i(x, y)=0
and fo(x, y)+fox, ¥)=xy, x>—3* or x2. However if b0 in the below, the
ideal of K[x, v1/((x, ¥)', x2—»*) (resp. K[x, v1/((x, ¥), x*)) generated by
(axy-+by*+cxy*+dy®) contains (x, v =rad¥(K[x, y1/{(x, y)!, x*— y*) (resp.
rad®(K [x, y1/((x, »)!, x%))). Hence K[x, y1/((x, »)', x*—»° axy+by*+cxy’+
dy®) (resp. K[z, y1/((x, 3)', x% axy+by*+cxy*+dy*)) with b+#0 has a cube
zero radical and consequently is positively Z-graded. Similarly, if ab+0, the

ideal generated by @ x*+by>+cx°+dy° contains (x, y)’=rad*(K [x, y]/(x, ¥)*, x¥)).
Hence K[x, v1/((x, ¥)!, xy, ax*-+by*+cx*+dy®), with ab+#0, has a cube zero
radical and consequently positively Z-graded. Further positive Z-gradings of
Klx, v1/(x, ¥), xy, ax*+by?), 3=i=2,3=j=2, are induced by one of
K[x, y1/(x, ), xy), if ab=0. Also a positive Z-grading of K[x, y1/((x, v),
%y, ax*+by*), ab+0, is induced by ome of K[x, y1/((x, »)*, xy). Since both
K[x, v1/(x, ¥)% xy, ax®*+ex*+dy*?) and K[x, y1/(x, ), xy, by*+cx’+dy°)
are isomorphic to K[x, y1/((x, )%, x*—y*, a’xy), a’=K, we return to check
the positive Z-gradability of K[x, y1/((x, ), x*—3°, axy*—by®), 2=zi=1. But
in the case 7=1 and ab+0, it is isomorphic to K[x, v1/((x, ¥)*, b'xy, x*—y?)
with b'(0)< K because axy—by*=(ax—by?)y and we can take ax—by® and y
as new parameters. So the grading is induced by one of K[x, y1/((x, 3)',
x2—9%). Further in the case /=2 and ab=0, the grading is induced by
K[x, y1/(x, 3% x*=y%. For K[x, y1/((x, )', x*— % axy*—by*) with ab=+0,
by taking X=x—(a/2b)y* and Y=y as new parameters we have K[x, y]/
Ux, M) x2—y% axy*—by )= K[X, Y1/(X, Y, X?, aXY*—bY?) and so the
grading of A is induced by K[X, Y1/((X, V), X®)=K®KX+KYPBKXY+KY*
GKXYEFKY®. For homomorphic images of K[x, y1/((x, )%, x*) it remains to
check the positively Z-gradability of K[x, y1/((x, ¥)*, axy—>by®) with b=+0, but
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it is isomorphic to a positively Z-graded algebra K[x, y1/(x, y)!, %% axy).
Now by the analogous discussion we know that the grading of any homomor-
phic image of all local algebra considered above is induced by one of K[x, y]/
((x, )% x3), K[x, y1/((x, )", x*—y*) or K[x, y1/((x, ), x*). This completes
the proof.

By Theorem 1.3 we have immediately

THEOREM 2.5. The conjecture (i) is true for homomorphic images of
K [x, y] with quartic zero radicals.

Similarly we know that the conjecture (i) is true for local algebras
Klx, y1/((x, )", f(x, »)), where n=4 and f(x, y)=ax’+bxy+cy’+dx’+-,
provided at least one of a, b, ¢ is nonzero. It seems to be of interest that
those local algebras correspond to Arnol’d’s normal forms A,, t<#, of functions
in the neighborhood of a simple critical point. We are indebted to Drs. K.
Watanabe and M. Tomari for drawing our attention to these facts. (cf. [17]).

§3. Example of Local Commutative Algebra Which Is Not Gradable

As our proof in §2 is effective for positively Z-graded local algebras it is
important to assure the existence of a local commutative algebra which is not
positively Z-graded. The following Proposition provides the example.

PROPOSITION 3.1. Let A=K [x1, %2, %3]/ ((X1, X2, Xs)*, X1X2— X3, Xota— 3, X321 — x3).
Then A is not positively Z-graded.

PROOF. Suppose that A=APAPAD --- PA, is a positive Z-grading such
that rad A=A,BAD - DA, Let us denote by F(x, v, z) an element of A
which is the residue class containing f(x, y, 2)©K[x, y, z]. Then A=K1=
Kz +KZo+ KXo+ Kii+ Kij+ KR+ Kei+ Kxi+ K73, rad A=Kz, + K%,+ Kz, + K72
+ K3+ KX+ Kii+ Kxi+ Kx3, rad?A = K2+ Kii+ Ke2+ Kt - Kz + Kz and
rad’ A=socA=Kx{DKz}PKzx3. Since dimg(radA~rad®A)=3, there exists a;=
radA~rad®4, /=1, 2, 3 and positive integers n,, n,, n, such that a1 E4,,, a,s
Anyy @€ Ay, with ny<n,<n, and a,, i=1, 2, 3, are K-linearly independent. For
the simplicity we shall abbreviate from now %; to x;, i=1, 2, 3.

Then we have

a; X1 x} x}

ay |=(a;)| x. |+ (bis)| x3 4+ (cij)| x3 , Qig bijy ¢ €K,

a, Xy x5 x3
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7, =1, 2, 3 and d=det (a;;)+#0.
At first we shall notice that n,=n,=n; is impossible. Let n=n, and

’

a; 441
a; |=(a;;)"'| a» |. Then ajeA,, i=1,2,3, and aj=x;+a’ with a/Srad®4,
a; a3

i=1, 2, 3. Therefore O#ajas=x1x+cxi+dx} with ¢, d=K. However alajc
Agn but xixp+cxd+dai=x3+tcxi-+dxis Ay, because ai*=zxl, =1, 2,3, this is a
contradiction.

Now assume that n,<n,<m;. It is clear that 0+aic A3, CsocA, i=1, 2, 3.
Since dimgx socA=3 and A} ,CAsn,, i=1, 2,3, A} DA;,DA;,=socA. By the
assumption it holds that 3n,<n,+2n;<n,+2n,<3n; and 3n,<3n,<n,+2n,<3n,.

Further we make an assumption (a): n,+2n,#3n,. Since An AR, CAn vang N
socA and A, A} CAn,ien,S0CA, @@= 101,05xiS An A2,=0 and asai=
2 anaiixis An, A%, =0. It follows that a,03;=a,0a5=0, /=1, 2,3. Further
from 3n,<2n,+n,<3n, we similarly obtain aja,=A% A,,=0 and consequently
ala,,=0, i=1, 2, 3. Therefore a,,#0 implies a;;=as;;=0. Also a,;#0 implies
a;;=0. Then (a;;) must be a monomial matrix because d=det (a;;)#0. So we
have O0#a,a,=cai=soc A for some c=K. But this implies 0+A4,,4,,NASC
Anyn,MAgn,. But ny+n,=3n, contradicts to n;<<n,<n,.

Now we make another assumption (b): n,+2n,=3n,. In this case it holds
that 3n,<2n,4+n,<2n,4+ns<ny+2n,<3ny, 2n,+n,<3n,<n,+2n,<3n, and 2n,+
ns#3n, because n,+2n,=3n, and n,<n,<n,. Then A%lAnzCA2n1+nZUsoc A,
An An,CAsn in,Ns0c A, and An, A%, CAn,ien,s0c A and they induce ala,=ala,
=ala,=a,a5=0. Hence we have a}a,;=aliasi=a.0%=0,i=1, 2,3, and we
arrive at the same contradiction as in the case (a).

Assume now that n,<n,=n,. And at first assume further a} and «? are
Klinearly independent. Then it holds that 3n,<2n,4+n,--22,<3n, and ny,@D
AR An, DA AL DAR,Csoc A, So it follows that A} A,,=A, A2, =0 and hence
a%iay,=ay;a%;=0, 1=1,2,3. If a,;#0, then a,;=a,=0.

Further suppose one of a;, or a,, is nonzero. Then 4=0. Therefore g,,=

Aoz Qa3
Qsy Q33

a5:=a;;=a,*=0 and j +0.

So we have
0(1:aux1+b11x%+b12x§+b13x§+,8{ s
azzazzxz+az3x3+b21xf+bzzx§+b23x§+,Bé
and
A=A X+ a:ssxa’l"bmx%‘i‘b32x§+b33x§+ﬁ§ s

where Bicrad®4, /=1, 2, 3.
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Then we have x.=dswa,+dssa;+x; and x;=dgpa,+da,-+x5 with x5, xj<
Aas Qo3
A3z QAgs
because aifai=x,x,S A7, and (des@st+daos@s)(dste+dssas)= A2, and x4y(dss+dosers)
+(dszaz+dsaaa)x§€KxZ@KXEZAiz-

However either @i =010y x3+(015020011005) %34 (011G0s+b15005)x% O @@=

rad®’4 and (di,)=( >—1, i, j=2,3 and hence 0+A4; NAZ, and 3n,=2n,

a11b31 13+ (B1205:+a11055)x3+(A11a55+ b13a55)xE 1S nonzero, for otherwise a;;=0 and it
contradicts to our assumption. As they belong to both A, A,, and soc A=
A3 BA3,, we have n,+n,=3n,, i. e. n,=2n,. But this is also impossible because
3n,=2n,. As in the case where a,,#0 or a,;,#0 we arrive at a similar con-
tradiction. We can proceed our proof to the next case where aj and a} are K-
linearly dependent. Then since a3,/a},=a3,/a3,=al;/al,, we have a;,=w.as1, Q5=
Wy, and Ay =m30:5, Where w;, 1=1, 2, 3, are cube roots of unit. (It is to be
noted that this case does not occur if the characteristic of K is 3).

Now the inequality 3n,<2n;+n,<n,;+2n,<3m, induces either AZ A,,=0 or
A, A%,=0. Then according to them we have either a}ia,1=a%a,,=a},a,;=0 and
soc A=A, A% DAL DAR,, or a1103,=01,05=0a,,05,=0 and soc A=AZ A.,DAS DAZ,.

Assume a;;#0. Then a,;=0. And both a,, and a,;=0; otherwise, a,,#0
or a;;#0 implies 4=0. Therefore we have a;=a,,x,+7], @y=asXs+assXs+ 74
and ;=X +W4a0s5%5+75, Where rierad®A, i=1,2,3. Then similarly as in
123} Aoy
Wo039 W30A23
2n,=3n,, and either a,a,#0 or a;a;#0. The later fact induces that A, A,,N
(A AL DAY DAL)+0 or Ay An,N(AZ AR,DAL BAS,)+0, and it follows that
n,+n,=3n,, but this contradicts to 2n,=3n,. In the case where a,,=0 or a,;#0,

the preceding case, from the assumption a,,#0 and =0 we have

we also arrive at a similar contradiction.

Now it remains to prove thae n,—=n,<n; does not occur. In this case
A} BAY,=socA and af and of are K-linearly independent, and the inequality
3n,<2ny+ns<n;+2n;<3n, implies A7 A,,=0 and A, A},=0. Thus we have
atay=akhans=ala:;=0 and a,;ai,=a,,a%,=a,;a2,=0. Then similarly as in the
case where n,<\n,=n; and a3 and «f are K-linearly independent, we arrive at
a similar contradiction.

It is to be noted that for this example our conjecture (i) is true.
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