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§0. Introduction.

The notion of homological dimension was introduced by P.S. Alexandroff
in the later 1920’s. The further contribution to the development of homological
dimension theory on compact metric spaces was made by L.S. Pontrjagin [2],
K. Borsuk [3], M.F. Bokshtein [4], V.G. Boltynanski [5], E. Dyer [6], Y.
Kodama [7, 8], V.I. Kuz’minov and others. New achievement of the theory
are surveyed in [10]. In this paper we do not consider homological dimension
theory out of compact metric spaces. Moreover everywhere in this paper coho-
mological language is used instead of homological one, and therefore a dual
notion of cohomological dimension is considered.

A compact metric space X has cohomological dimension with respect to an
abelian group G equal or less than n (written, c-dimg X <n) iff for an arbitrary
closed subset AC X and an arbitrary integer k=n, the inclusion A—X induces
an epimorphism of k-dimensional Cech cohomology groups with coefficients.

ALEXANDROFF THEOREM [11]. For every finite-dimensional compact metric
space, we hold the equation c-dimz X =dim X.

As justifiably L. Rubin remarks in [13], we do not have enough information
about infinite-dimensional spaces to determine a theory. In this paper a notion
of generalized cohomological dimension ¢-dimg for some class of spectra d={FE}
is introduced. For all E<¢&, those dimensions ¢-dimg coincide with the covering
dimension dim for finite dimensional compacta. Namely, they are distinguished
in the class of infinite-dimensional compacta.

In §1, the inequalities

c-dimz X <c-dimg X £dim X
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are considered. By Z we will denote the Eilenberg-MacLane spectrum {K(Z, n)}
as well as the additive group of integers. In the case of sphere spectrum S
one gets the notion of stable cohomotopical dimension. In §2, an example
which distinguishes ¢-dimz and ¢-dimg is constructed. Also, in §2, a strongly
infinite-dimensional compactum X with ¢-dimz X =3 is constructed.

The following theorem is well-known.

THEOREM [11]. For a compact metric space X the following conditions are
equivalent :

1) dim X<n,

2) for an arbitrary closed subset AC X and any map ¢ : A—S™, there exists
a continuous extension ¢: X—S" of ¢.

Such a space S™ is called a test space for dimension n. A kind of test spaces
was considered in [14]. In §3, the following statement is proved:

The space S™U,B"**+! is a test space for dimension n for any ac=m, (S")
and k>0.

Here S™\U,B"**¥*! is the space obtained from S™ by attaching a cell B"**+! by
a representation 9B*+*+1=S8"+*S" of a.

§1. Definition of cohomological dimension by spectra.

The suspension of a space X is denoted by X X. A spectrum E [15] is a
sequence of CW-complexes {E,: n=Z}(with base points) and embeddings e,:
2E,—E,,,. Given a spectrum FE defines a generalized cohomology theory by
the formula:

E"X)=lim[X*X, Ep+:].

Here [X, Y] is the set of all homotopy classes of maps (preserving the base
points) from X to Y. There is a group structure on the set [ X, Y] in the case
of X=237 for some space Z. Let 2X be the loop space on X. We define the
space

Q°Ei=lim{Q*E .y ; Q*en},

where 2*X=0Q(R2---(2X)---) is the k-iterated loop space and &,: E,—QFE,,, is
the adjoint map of ¢,. Then we have

EX)=[X, 2F ).

It can be shown that any generalized cohomology theory which satisfies
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some axioms can be obtained by the above way from a suitable spectrum E [15].

DEFINITION 1. A compact metric space X has cohomological dimension with
respect to a spectrum FE equal or less than n (written, ¢-dimgz X =n) if for an
arbitrary closed subset AC X, the inclusion A—X induces an epimorphism of
cohomology groups E™ for m=n.

In other words, ¢-dimg X <n iff for an arbitrary closed subset ACX and
any map ¢: A—02%FE .., there exists a continuous extension ¢: X—02%FE i«
for m=n.

If we choose G={K(G, n) for n=0 and a singleton for n<0} as a spectrum
E, we get the notion of the ordinal cohomological dimension with respect to G
as the coefficient group. Not every dimension with respect to G as the coef-
ficient group. Every generalized cohomology theory can not define a proper
dimension theory because it is periodic. This is a reason why we use some
restriction on a class of spectra.

A spectrum FE is called connected [15] if for every n,

lkim Tirw(Ensr)=0 for every i<nm.

DEFINITION 2. A connected spectrum E is called perfectly connected for
every n=0, the (n+1)-skeleton E&+Y of the CW-complex E, is a n-dimensional
sphere and for every n<0, E, is the singleton.

ExaMPLES. 1) The sphere spectrum S={S™ for n=0 and the singleton
for n<0} is perfectly connected.

2) The Eilenberg-MacLane spectrum Z:=={K(Z, n) for n=0 and the single-
ton for n<0} is perfectly connected.

3) The Eilenberg-MacLane spectrum Z,={K(Z,, n) for n=0 and the single-
ton n<0} is connected but not perfectly connected.

Following K. Kuratowski, by XzY, we denote the condition: every map f :
A-Y from a closed subset A of X toY admits a continuous extension f: X—Y.
Then we note the following equivalences.

1. XrS" = dimX<n.

2. XtK(G, n)= c-dimg X <n.

3. A XtQ%FE e &= c-dimg X <.

mzn
Moreover, by Xz*Y, we denote the following condition: for every closed subset
ACX and every map f: Z*A-->Y, there is a continuous extension f: J*X—-Y
of f.
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Let &,: E,—QF,,, be the adjoint map of ¢, in a spectrum E. A spectrum
E is called Q-spectrum if for every n, the map é, is a weak homotopy equi-
valence. Let E be an Q-spectrum. Then it is easy to see that the condition
X7E, implies the condition Xz*E,,.. Moreover the implication X7E,=
X7E 4, can be proved by S. Ferry’s method [17, Appendix]. On the other
hand, there is a weak homotopy equivalence w,: E,—Q2%E, ... Since both E,
and 2<FE,... are absolute neighborhood extensors for the class of compact metric
spaces, the map w, induces an equivalence [X, 2*F,..]—[X, E,] for every
compactum X. Thereby the equivalence 3 can be simplified for an @-spectrum
E: cdimg X<neXE,.

We remark that every spectrum E is weak homotopy equivalent to an £2-
spectrum. Consequently, every generalized cohomology theory can be defined
by some 2-spectrum.

LEMMA 1. Suppose that a spectrum E be perfectly connected. Then dimX=
c-dimg X.

PROOF. The case of dimX=o is trivial. Hence, suppose that dimX=m<
< oo, By the definition, it suffices to verify the condition Xz*FE,,, for all £ and
n=m. Let A be an arbitrary closed subset of X and let f: 2*A—FE,., be a
map. Since dimY*A<m-+ £k, there exists a map g: Y*¥*A—E,,; such that
g(Z*A)CEM® and g is homotopic to f (written, g=f). By the perfect con-
nectedness of E, we have

singleton if n>m

J— k). —
E;,T_;k)—(E;;ﬁ:};k.{-l))(m*- )_{ . .
Sm+ if n=m.

In both cases there exists a continuous extension g: 2*X—E{}®». Hence there
exists a continuous extension f: J*X —E{™{® of the initial map f.

Let C(X, Y) denote the space of all maps from X to Y. There exists the
natural embedding 5 of Y into C(X, Y) given by

J(0)=(x, ¥).

Then the embedding s induces an embedding j’': Y—>C(X, XAY). In the case
of X=S* the embedding ;' induces the natural embedding :: Y Q% 3*Y,

LEMMA 2. Let i: S"—>Q%3*S™ be the natural embedding. Then for every
map f: X—>Q¥3*S"™ of an (n41)-dimensional compactum (=compact metric space)
X, there exists a homotopy H: X X [->2*¥X*S™ such that

(i) Ho=f,
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(i) Im H,C(S™),
(1) fIFGES™)=H.l fE(S™)).

PROOF. It is a consequence of the fact that the embedding : induces an
isomorphism of the /-dimensional homotopy groups for /[<n.

THEOREM 1. Let E be a perfectly connected spectrum and let X be a finite-

dimensional compactum. Then dimX=c-dimg X.

PRrROOF. In view of Lemma 1, it is sufficient to prove the inequality dimX <
¢c-dimg X. Assume the contrary: dimX=m+1 and ¢-dimg X<m. Let A be a
closed subset and let f : A»E{*Y=S™ be a map. By the inequality c¢-dimzy X<
m, there exists a map f: X—Q%F ... such that f|A=f. Then there exists
an integer £2=0 such that f(X)CR*E.... Then the map f associates a map
¢: XXS*E ;. Since dimX=m++1, there exists a map ¢: X X S*—E3#D
=Smk=FEEm+D = JkSm guch that

¢=¢ maps from (XX S*, AXS¥) to (¥*S™, S™).
The map ¢ associates a map &: X—02*3*S™ such that
§~f in Q*E,,, and &|A=f|A=f in S™.
Moreover, by Lemma 2, we have a map 5: X—S™ such that
n=& rel. A.

Hence the map f has a continuous extension f: X—S™. Therefore dimX<m.
But it is a contradiction.

THEOREM 2. Let E be a perfectly connected Q-spectrum. Then c-dimz X<
c-dimg X for any compactum X.
The proof of Theorem 2 needs the following notion.

DEFINITION 3. Let L be simplicial complex. A map f: X—|L| is called
an E,-modification of L if

1) for each simplex o= L, the space f~'(|al) is homotopy equivalent to a
finite product of E, and f~'(|e]|)=ANR(Comp),

2) for each simplex o= L, the inclusion f~'(|00|)Sf(le]) induces an
epimor phism

H*f-*(le|; Z)—> H™(f(|0c]; 2).

Here we denote by |L| a geometric relization of a simplicial complex L,

and by do¢ the boundary of a simplex ¢. The one-point space is regarded as a
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0-multiple product of E,.

LEMMA 3. Let E be a perfectly connected 2-spectrum and let n be an integer
>1. Then every simplicial complex L has an E,-modification.

PROOF OF THEOREM 2. Suppose that ¢-dimg X=1. It is easy to see that
there exists a retraction r: E,—E®=S! This implies the condition XzS*
which is equivalent to ¢-dimz XX1.

Assume that ¢-dimg X=n>1. Clearly, the condition X7E, implies the con-
dition Xr(E,X---XE,). Let ACX be an arbitrary closed subset of X and let
¢: A—K(Z, n) be an arbitrary map. Then there exists a compact polyhedron
L and maps ¢: X—L, ¢: q(A)—K(Z, n) such that ¢p=¢-q|A. Without loss of
generality one can regard g(A) as a subpolyhedron of L. Choose a sufficiently
small triangulation ¢ of L. By [Lemma 2, we have an E,-modification f: Y —
lz|=L. Then by the condition 2) of E,-modifications, there is a continuous
extension g: Y—K(Z, n) of ¢of. By the condition 1) of E,-modifications, one
can construct a map n: X—Y with the following properties: if g(x)E ||, then
fenp(x)e|a| for each simplex ¢&7. Then

glA=fen|A in g¢(A).
Hence we have that

gnlA=¢defon|A=geg|A=0.

Therefore there is a continuous extension @: X—K(Z, n) of ¢. It follows that
c-dimz X £ n.

LEMMA 4. For every map ¢: S*—8RX the following diagram is commutative
up to homotopy:

§P————> s

0| |¢
2X — 2X
PROOF. Let us consider the standard n-dimensional sphere S"={XcE"*!:
| x| =1} in the (n+1)-dimensional Euclidean space. Let s: S®—S" be the sym-
metry in E™*! with respect to the hyperplane E?=>{0}. Then the map s has
degree =-—-1. A map ¢: S"—0QX associates with the adjoint map ¢: 2S"—X.
We regard that the suspension 2'S™” is naturally realized in E**'X E'=E"** and
¢ carries the base-point meridian of 2'S™ into the base point of X.
The map (—1)e¢p: S*—>2X induces a map ¢-7v, where r=idgn+1X(—1):
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E™' X E' - E™*' % E' is the symmetry. The map ¢°(—1) induces a map
¢o(sXidg). The maps r and sXidgp are homotopic because the hyperplane
E™'% {0} can be continuously removed in E"** to the hyperplane E}XE".
Thus the maps (—1)o¢ and ¢(—1) are carried into the same homotopy class
by the adjoint correspondence [S”, X ]—[XS", X]. Thereby (—1)cp=¢-(—1).

We need the following results from the infinite-dimensional manifold theory.

THEOREM A [19, 20]. Let A be a compactum and let M be an [,-manifold.
Suppose that F: AXI—M is a homotopy such that each of F, and F, is an em-
bedding of A into M as a deficient set. Then there exists a homeomorphism h:
M —M such that h|F(A)=F;-(F,| A)™".

Recall that A is a deficient set in an [,-manifold M if there is a homeomor-
phism w: M —M X[, such that w(A)CMx{0}.

THEOREM B. Let f: M—M be a homotopy equivalence of an l,-manifold M.

Then the map f is homotopic to a homeomorphism.
A proof of B can be derived from a proof of [2I], Theorem 7.3.

DEFINITION 3. An embedding XgY is called a symmetric embedding if
every homeomorphism h: X—X can be extended to a homeomorphism h:Y—Y.

LEMMA 5. Let E, be a countable locally finite CW-complex and let i: S"—E,
be an embedding, where n>1. Suppose that g: E,—R2X is a weak homotopy
equivalence. Then the embedding i'=iXid«,: S®X{0}>E,X/{; is symmelric.

PROOF. Let ¢p: S"—S™ be a homeomorphism. Suppose that deg ¢=1. In
this case there exists a homotopy F: S*XI—E,X[,=M between i’ and ¢'~¢.
Since M is a [,-manifold, by A, there exists a homeomorphism /% :
M —M such that hli’(S™)=i"o¢pes’ .

Next, suppose that deg ¢=—1. Let consider the diagram:

QX —1 2X
gl K
E, - L s En

Since g is a weak homotopy equivalence and E, is a CW-complex, there exists
a map f: E,—E, such that (—1).g=g-f. It is easy to check that f isa weak
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homotopy equivalence. Hence f is a homotopy equivalence. Hence, by [Theorem
B, there exists a homotopy H: M XI—M such that H,=fXid,, and H, is a
homeomorphism. On the other hand, by Lemma 4, (—1)ogei~geis¢p. Since g
is a weak homotopy equivalence and S™ is a polyhedron, fe7=i-¢). Hence
H,°i'=i'-¢p. Therefore, by [Theoreml B, there exists a homeomorphism & : M —M
such that A|¢’-¢)(S™")=(H,°7')°(¢’>¢p)"'. Then the homeomorphism ¥=h"'-H,:
M—M is an extension of ¢.

PROPOSITION. For every symmetric embedding j: S®™—E, there exists a
Sfunctor @ : Smp—Homrop from the category Smp of simplicial complexes to the
category Homrep 0f maps between topological spaces which carries monomorphisms
into monomorphisms and satisfying the following conditions for each simplicial
complex K:

1) the image Im @(K) is a geometric realization | K| of K,

2) for each simplex =K, the space ®(K) '(|a|) is homotopy equivalent to
a finite product EX---XE.

PrROOF. The full subcategory of Smp consisting of simplexes of dimension
<m is denoted by Smp,. We define @ by the induction on m=n. For m=n,

we define
O(K)=id k.

Let ¢,.+, be an (n+1)-dimensional simplex. Fix a homeomorphism A : |a{%,
—S". The diagram

joh

loi| <——— E

~_ |¢

pt
. wd, ) .
means the morphism jeh —— ¢ in the category Homtep. Here a morphism
of maps
a
X X’
f l lg
Y 8 Y
in Homrep is denoted by
(a, B)

(a,B): f——>g or f—>g.
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Let M: Homrop— Top be the mapping cylinder functor. It is easy to see that
M(c) is naturally homeomorphic to |6,::|. We define

B(0,1)=M(id, P).

Let @: 6,+1— 0,4+, be an isomorphism in Smp. Since j is a symmetric em-
bedding, there exists a commutative diagram :

r
E > E

joh \¢‘ ‘¢/ l]‘ah

pt —> pt
£ PN
2% al — | o™y
a

In the language of the category Homrep it means the following commutative
diagram :

) (lal, 1)
Jeh > joh
(id, §) | | Gd, ¢
c — C
(lal, id)
Hence the functor M gives the following commutative diagram :
, M(lal, 1) ,
M(j-h) > M(j-h)
07,1 | | 9o
M(c) > M(c) .
lal

Therefore we define
O(a)=(M(lal, ), |a]).

For an arbitrary (n-+1)-dimensional simpiicial complex K, the map @®(K) is
constructed by pasting maps @(¢) for all c= K.

Suppose that the functor @ is defined on Smp,, where m>#n. Now we
define @(gn+,) for an (m-+1)-simplex o,4:. Let F={0n+1—0n} be the family
of all surjective simplicial maps. By F' we denote the family {g|o{: ¢§m—
on|g<EF}. By Af we denote the diagonal product

af .
D,(0%) — > w{Di(on)| FED(F)},

here by @,(L) and @,(L) we denote the domain and range of the map @®(L),
respectively. For each map a: L—K, ®(a) means the following commutative
diagram: ’
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¢1(a)
O (L) — P (K)
¢(L)l | o

o, (L) W O.(K) .

The diagram

af
¢1(0'$n"f+)x 7!'01(0'";)
0oy | 1

o] p > pt

induces the map
D(Opmir): MUS)—> M()=|0mil .

Any isomorphism «: 6my1 — Onm+: induces a bijective correspondence A:
&,(F)—>®,(F). The correspondence A induces a homeomorphism

a: t{@(on) fED(F)-n{DP () fED(F))

which commutes the following diagram:

700 m) — > 1D(am)

] o

D,(ai™y) W D,(ai%)

where a’=a|o{™;,. A commutative diagram

4f (Di(a’), a) . Af

l l

(lal, id)

induces the diagram
M(®y(a’), a)

M4f) ’ > M(4f)
¢(0m+x)l 1 D(Oms1)
[Oms1l > | Omsr] .

|e|
We define

P(a)=(M(Dy(a’), @), |a]): P(Om+1) —> P(Tms1).

For an arbitrary surjective morphism a: 6,+,—0,, there is a commutative
diagram:
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Tyrer

Mf) > D,(0n)

¢<0‘m+x)l \ D,(a ™ / l¢(0‘m)

||

| O mrl l > |Oml

~__ L A

| o mh

where r is the deformation retraction of the mapping cylinder M(4f) onto the
image 7®,(¢,) and w;: 1P,(0,)~>P:(d,) is the projection on the factor &D(on)
with an index f=®,(a’). Hence we define

O(a)=(zser, |a]): ®(Ons1) —> P(on).
For any morphism a: Gnm+1—0:, Where k<m, we define
D(a)=D(B)P(a'): P(Oms1) —> P(T4),

where a=pf-a’ and a’: gp+1—0, is a surjective simplicial map. [t is easy to
check that @(a) does not depend on a decomposition of a into B-a’.

For an arbitrary (m-1)-dimensional simplicial complex K, the map @(K)
is defined by pasting corresponding maps @(g) for all s=K.

REMARK 1. If j: S*—E induces an epimorphism of n-dimensional coho-
mology groups, then the following statement is true:

3) the inclusion ®(c)"*(|0a|)-B(a)*(ia|) induces an epimorphism of n-

dimensional cohomology groups.

PROOF OF LEMMA 3. We regard that E, is a locally finite countable CW-
complex for every n. By [emma 5, the inclusion E{*VX{0}GELX/, is a
symmetric embedding. In view of Remark 1, ®(L) is an E,-modification of L.

REMARK 2. In the case that E, is not a countable CW-complex one must
consider, in Cemma 5, Y -manifold instead of an /,-manifold with some suitable
Y, for example Y =R".

§2. Cohomological dimension of strongly infinite-dimensional compacta.

A space X is strongly infinite-dimensional if it contains an essentaial family
{(A;, By)li=1, 2, ---} : this means that each (A;, B;) is a disjoint pair of closed
subsets in X and if C; is a closed subset of X separating A; and B;, :=1, 2, -,

then fm\ C,#+@. In other words, there exists an essential map f: X—I> from
i=1
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X onto the Hilbert cube I~: this means that for each n, the relative map
Wao f 1 (X, f (wz01)) — (I, oI™)

is essential, where w,: I*—I"=IX .- XI is the projection.

—_—
n times

DEFINITION 4. Let f: X—L be a map and let L be a polyhedron with a
triangulation z. We shall write ¢-dimz(f, r)<n if the following condition is
satisfied : for every subpolyhedron ACY with respect to 7, the image of the
homomorphism (f| f-'(A)*: H(A; Z)—»H"(f-'(A); Z) is contained in the image
of the homomorphism j*: H"(X Z)—AH"(f (A); Z), where j: f~Y(A)<. X is the
inclusion.

LEMMA 6 [10]. Let XCI* be a compactum in the Hilbert cube 1° and sup-
pose that X=1im{X;, pi*'}, where each X;CI” is a compact polyhedron with a
Jfixed triangulation t;, such that hm mesh (,)=0 and llmpl—-zdx Assume that

c-dimz(pi*!, 7)< n for infinitely many i. Then also c- dlszSn

The following is actually proved in [10, 12]:

LEMMA 7. For any prime number p, a finite simplicial complex K and given
finite nonzero elements a; S K¥(|K |, | L:|; Zp), where L; is a subcomplex of K,
there exists a compact polyhedron M and a map f: M—|K| such that

1) edimz(f, K)=3,

2) f*a)#0 for all i.

THEOREM 3. There exists a strongly infinite-dimensional compactum X with
c-dimz X =3.

PrROOF. Let S={I?, wi*'} be the standard inverse sequence for I*. We
shall construct an inverse sequence S’={X;, ¢i*'}, where each X; is a compact
polyhedron with a triangulation r;, and a morphism between inverse sequences
{fi}: S"—>8.

Define X,=1I and f,=id,.

Suppose that the following part of the sequences S’ is constructed:
2 3

q q ) .
X, - X, L < Xn, and a family {f;: X;—1*};_1.,..» is defined such that

1) c-dimgz(gi*?, 7,)<3,
2) (qrz)* f’f(,uz);ko for i=1, 2, ---, n, where #tg_K (Ii aIi p) isa generator,

3) Xiclyx - ><I°f><{0}><{0}><---c:iI=III°;:I°°, and

4) mesh(r;)<1/: with respect to a fixed metric on I*.
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for 7, and (g1)*= [H(p)E K& Xa, (@D F7O); Z,), i=1,2, -, n,
gives us a compact polyhedron Y, and a map g.: Y,.—|7r,| =X, with the pro-
perties: ¢-dimz(gr, 7,)=3 and g¥(g?)*ef¥(p:)#0 for all 7=1, 2, ---, n. Define

Xn+1:Yn><I; fn+1:(fn°gn)><2'd1, and qg“—_—gn"vn;

where v, : ¥V, xI-Y, is the projection on the first factor. Embed X,,, into
ITX XI5+ X {0} X+ as the graph of ¢2*'. Then it is easy to see that c-dimgz
(gn*!, Ta)=3.

We choose a triangulation 7,4, of X, with mesh(t,+1)<<1/n+1.

Kiinneth formula implies that f¥%,.(z.)#0. Since v} is an isomorphism,
(@) i p)=vE g% (gD [i(p)#0, =1, 2, -, n.

Define X=limS'CI* and f=lim{f,}: X—I*. For each nxl, the homo-
morphism (w5 f)*: K&(1", 01" ; Z,)—» KX X, (wg-f)~*(d1"*); Z,) is not trivial be-
cause (wyo f)*(pa)=(g5)* f£(u.)#0. Hence the map f is essential, and thereby
X is strongly infinite-dimensional. On the other hand, by Lemma 6, we have
that c¢-dimz X <3. The converse inequality ¢-dimz X =3 is trivial by the con-
struction of Lemma 7.

THEOREM 4. There exists a compactum X with the dimensions c-dimz X =3
and c-dimg X =oo0.

Proor. In [10, 12], for any n, a compactum X, with c¢-dimz X,=3 and a
map fn: X,—S" with f*+0, where f¥: 1?5“(5"; Zp)—J?C*(Xn; Z,) is induced
by fa. Then the suspension map 2*f, is essential for every 2. Hence n?(X,)
#0. Then ¢-dimg X,=n. Therefore X:a(ﬁ;? X,) is desired compactum, where

a( X,) is the one point compactification of the topological sum & X,.

PROBLEM 1. Does there exist a strongly infinite-dimensional compactum X
with finite stable cohomotopy dimension ¢-dimg X <co?

PROBLEM 2 (S. Nowak). Is it true that dim X =c¢-dimgX for everv com-
pactum X?

§3. The dimension dim,.
LEMMA 8. Let X be a compactum and let K be a CW-complex. Then the
condition XtK implies the condition XrX K.

ProoF. Let ACX be a closed subset and let ¢: A—2XK be a map. By
the definition, YK =con,K\Ucon,K, where con;KNcon,K =K and each con;K,
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1=1, 2, is a cone over K. Denote A;=¢ '(con,K), i=1,2. Then there is a
map f: A—R with the properties:

f(A))CR*, f(A,)CR-, and [ (0)=A,NA,.

Let 7: X—R be a continuous extension of f. Define Fi=F"'R*) and F,=
F-Y(R-). From the condition XK, there exists a map ¢: Fi\NF,—K such that
Pl AiNA,=¢p|ANA,. Since con,K is an absolute extensor for compacta, there
exists a continuous extension ¢;: Fi—»con;K of ¢Ugp|A;, i=1,2. Then the
union ¢,\U¢, is a desired extension of ¢ over X. Thus, XrJK.

Let a=&7m,.x(S™) is an element of the (n+ k)-dimensional homotopy group
of the n-sphere. Define

Ba:SnUfDn+k+1 ,

as a complex obtained from the #n-sphere S™ by attaching an (n-+k£-+1)-cell
D****! using an attaching map f: dD"***'»S™ from the homotopy class a.
It is easy to see that if f=f’: dD"**+*'>S" the spaces S™\U,D"**+! and
S™Uys; D****! are homotopy equivalent. Moreover, it can be seen that the spaces
By, and 2(B,) are homotopy equivalent.

DEFINITION 5. The dimension dim,X of a compactum X is defined as

follows :

dimX<m if m<n
dim, X =m & {
Xt2™ "B, if m=n.

In view of Lemma 8, the definition is correct.
THEOREM 5. dim, X=dim X for every compactum X.
PROOF. The implication dim X <m=dim, X<m is trivial.

Suppose that dim, X<m and m=n. It is sufficient to prove the inequality
dim X=m. Let ¢: A—S™ be an arbitrary map from a closed subset A of X
to the m-sphere S™. By the condition dim, X <m, there exists a continuous
extension ¢,: X->S™Usm-nyD™*** of ¢, where f=acsn,.,(S*). Choose an
(m+k+1)-cell B™**+'CInt D™***! and define a retraction

ri: SmUZm—nfDm+k+l—Inth+k+l —_— Sm’

Denote A,=¢7'(0B™***'). From the condition XzX™-"**B, ¢,|A, has a con-
tinuous extension

@ (p;l(Bm"'k“) 5 Sm+kU2m—n+kDm+2k+1

Choose an (m—+2k-+1)-cell B™*2*+1Int D™+*¥+! and define a retraction 7, and
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A, and so on.

By the construction, r;|0B™* i+l Jm-n+-Dkf ;=1 2 .... By the nipotency
theorem for the ring =n$[22], there exists a number [/ such that §=rcrso --- o
ri|0B™+#+1 is null-homotopic. Consequently &-¢,|A; has a continuous extension

7): go?l(B"““”‘“) 5 Sm_

The finite stratificatification Z,CZ,.,C---CZ,CZ,=X 1is defined by Z;=
e (B™R+) for =1, 2, ---, [. Define

¢|Zo_21:7’1°901,
95'21"‘22:7’1"7’2"902,

Gl 211 —Zi=¥1°F3° - o¥ioqy,
¢lZi=7.

Then it is easy to see that ¢: X—S™ is well-defined and continuous, and @ is
an extension of ¢. Thus, dimX =<m.

REMARK 3. The sequence of spaces

pt if m<0
En,=4 S™ if 0m<n
>™-*B, if m=n

defines a spectrum FE(a). Then Theorems 1 and 5 imply the inequality
c-dimg¢oy X <dim, X for every compactum X.

PROBLEM 3. Let K be a compact (n—1)-connected polyhedron with 7,(K)
=Z. Then one can define the dimension dimgx as the above. Is it true that
dimg X=dimX for every compactum X?
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VANISHING OF HOCHSCHILD’'S COHOMOLOGIES
H'(A®A) AND GRADABILITY OF A LOCAL
COMMUTATIVE ALGEBRA A

By

Qiang ZENG

0. Introduction.

In Nakayama conjectured that a finite dimensional algebra R with an
infinite dominant dimension is selfinjective. As such an algebra R is isomorphic
to an endomorphism ring of a generator-cogenerator over an algebra A, Tachi-
kawa has shown that the Nakayama’s conjecture is reduced to the follow-
ing conjectures (i) and (ii): For a finite dimensional algebra A over a field K,

(i) A is selfinjective if Hochschild’s cohomological groups H{(ARx A)=
Exti(D(A), A)=0 for =1, where D(A)=Homx(A, K).

(ii) An A-module X is projective if A is selfinjective and if Exti(X, X)=0
for 7=1.

It is to be noted here that the Nakayama’s conjecture is true if and only
if both the conjectures (i) and (ii) are true.

For the conjecture (ii) there have been already several interesting results
by Hoshino [6] and Schulz [9]. In Hoshino applied Wilson’s therem to
settle the conjecture (i) for algebras A’s with cube zero radicals, because in
this case both A’s and the corresponding endomorphism rings R’s are positively
Z-graded.

This paper concerns with the conjecture (i) for local commutative algebras.
In §1 we provide a theorem that for a local (not necessarily commutative)
algebra A, R=End APD(A)) is positively Z-graded if and only if so is A. It
is proved in §2 that local algebras with quartic zero radicals such that they
are homomorphic images of polynomial ring K[x,y] over an algebraically
closed field K are positively Z-graded, and applying Wilson’s theorem we can
prove that conjecture (i) is true for such algebras. In §3 we shall give,
however, a not positively Z-graded commutative local algebra, which is a homo-
morphic image of the polynomial ring K[x, v,z] with quartic zero radical.

Received March 22, 1989. Revised December 4, 1989.
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1. Preliminary

Let R be an finite dimensional algebra over a field K. Let

0—>R—>E —>Ey—> - —> Ep —> - (1)

be a minimal injective resolution of the right R-module R.

In Auslander and Reiten introduced the generalized Nakayama conjecture :
Every simple R-module appears as a submodule of some E, in (1). We shall
say dom dim Rr=n (resp.=) if E; are projective R-modules for all j<n-+1
(resp. all 7>0) in (1).

In Nakayama conjectured that R is selfinjective if dom dim Rgp=co.
The Nakayama conjecture is true if the generalized Nakayama conjecture is
true, because the injective envelope of any simple right R-module S is projective,
if dom dim Rp=c0.

In Wilson proved that the generalized Nakayama conjecture is true
for positively Z-graded algebras.

Suppose dom dim Rr=2. It is well known that there exists a minimal
faithful left R-module which is a projective and injective left ideal Re for an
idempotent e¢. Further R=End.z.Re and Re is a generator-cogenerator as a
right eRe-module. Cf. [10]. Conversely for any algebra A and for a generator-
cogenrator X4, dom dim End,X=2. This connection between A and End,X
plays an important role in this paper. In our context End, X is selfinjective iff
A is selfinjective.

A graded algebra is an algebra A together with a vector space decomposi-
tion A=@,ezA: such that A;A;CA,;.

Since A is a finite dimensional algebra, A,=0 for | 2| >0. We will consider
positively Z-graded algebras, that is, graded algebras with 4,=0 if 2<0. We
will further assume rad A=@;.; A:. Thus we will write A=F 120 4:.

A graded right A-module is a module M together with a vector space de-
composition M=@,eczM, such that M;A;CM,,;. Notice that we are allowing
negative gradings on our modules. If L=@;ezL, is another graded A-module,
we define a degree 7/ morphism to be an A-homomorphism f: M—L such that
f(M)CT L. It is to be noted that for a graded A-module M the degrees of
morphisms make End M be a (not necessarily positively) Z-graded algebra (see
4, §20.

The i-th shift ¢(z)(M) of M=@,czM, is defined to be a graded A-module
L=@rezL: such that L,=M,_,.

THEOREM 1.1. Let A be a local algebra, D(A)=Homxg(A, K) the injective
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cogenerator as a right A-module and R the endomorphism ring of ADPD(A).
Then R is positively Z-graded iff so is A. Here it is to be noted that the grad-
ing of A is one induced from the grading of R and the grading of R is one
induced by the degrees of morphisms in End(ADD(A)).

PROOF. “Only if” part. Let R=&}-, K, and ¢ a projection: APD(A)—A. Since
rad R=@p, R, there is an idempotent f of R such that f=e and we have
that A=eRe is isomorphic to a positively Z-graded algebra fRf=PI(fRf )
with (fRf).=fR.f.

“If” part. Let A=Pr,A. Then D(A) is gradable such that D(A)-,=D(A:)

ﬁ ﬁ) and R

). So we may assume that A is not selfinjective.

for n=k=0. If A is selfinjective, i.e. A=D(A), then R;(
A, A
A, A,
By using the n-th shift ¢(n) we obtain a new grading of D(A) such that
D(AY=(D(AND(D(AND - B(D(A))n, where (D(A));=D(A,-:), 0=i=n.
Now

has a grading with ng(

Hom,(A4, A) Hom(D(A), A)
RgEndA(AEBD(A))g( )

Hom,(A, D(A)) Homu(D(A), D(A))

and it is clear that Hom,(A, A)=Hom(D(A), D(A))= A, Hom4(A, D(A))=D(A)
and degrees of morphisms define naturally non-negative Z-gradings of Hom (A, A),
Hom(D(A), D(A)) and Hom4(A, D(A)) which are respectively identical with A,
A and D(A).

Next for the Z-grading Hom,(D(A), A)=D;ezHomg,4(D(A), 6(—2)A), we
want to notice here that the degree of any morphism from D(A) to A is at
least one. This fact will be proved by induction on n as follows: If n=1,
then A=A,DA, and (D(A))=D(A,), (D(A)),=D(A,). Hence it is clear that
—1<degree of ¢=<1 for ¢=Hom,(D(A), A). But since D(A,) is the socle of
D(A) and A is not selfinjective, ¢ is not a monomorphism and the degree ¢
must be 1. Assume that for any grading B=B,PB,P --- PB., r<n, the degree
of ¢=1 for ¢o=Homp(D(B), B) and suppose the degree of ¢=:i<0 for g=
Hom4(D(A), A). In the case i=0,0%¢(D(A))C A, and A, is considered to be a
division algebra. Hence @(D(A),)DH(D(A)Ar)=AcAr=A, and ¢ must be a
monomorphism. Then similarly as in n=1 this contradicts to that A is not
selfinjective. Next assume /<—1. Then 0=¢@(D(A))=¢(D(A,)). Hence ¢ is
considered to be a homomorphism of D(A,-.PA, D - PAy) to A and A,-P
An-®P --- DA, can be cosidered as a grading of A/A,. Let p: D(A/A)—A/A,
be the composition of ¢ and the canonical homomorphism from A to A/A..
Then we know that the degree of p<—1 but this contradicts to the assumption
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of induction.
Let us denote the gradings of Hom4(A, A), Hom(D(A), D(A)), Hom (A, D(A))
and Hom,(D(A), A) by

Hom(A, A)=@2_E*P, Hom(D(A), D(A)=@?_E&?,
Hom,(A, D(A)=@?_.E&" and Hom(D(A), A)=P? EL?,

Now we can introduce a positive Z-grading of R by

Egn 0 0 B
Rzk=( ), R2k+1=( )

0 E@® Eg» 0
Because
EGPEF> 0 Egf 0
R2k+1R2j+1= @1y L2 - 2.2 =Rz<k+j+1),
0 Eg >Ej+'1 0 Ek+’j+1
0 EB{mERP 0 Efd
Ry Ryjr= 2.2 T2, 1y - @1 =Rsck+pp+1
Ek ' Ej * 0 Ek+'j 0
and
0 EGPE®D 0 EWR
Ryrs1Roi= PRI c o =Rocksp+1-
Ek ' Ej * 0 Ek.’.’j 0

Since a commutative algebra is a direct sum of local algebras we have
immediately

COROLLARY 1.2. Let A be a commutative algebra. Then End(APD(A)) is
positively Z-graded if and only if so is A.

THEOREM 1.3. Let A be a positively Z-graded local algebra. If Exti(D(A), A)
=0 for all i=1, then A is selfinjective.

PROOF. Suppose that A, is not selfinjective and Exti(D(A), A)=0 for all
i=1. Let

0 —> ADD(A) E,— E, —> - E,

be a minimal injective resolution of A@PD(A) as a right A-module. Denote
End , (APD(A)) by R. Since E;=Add-D(A),D(A) is a direct summand of
APD(A) and since Exti(D(A), A)=0 for all /=1, we have the following in-
jective resolution of Rg:

0—> R —> H,—> H, H, e

where H;=Hom(z(APD(A))4, E;) and H; are projective and injective right
R-modules.
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On the other hand, by [Theorem 1.1l R is positively Z-graded. Hence by
Wilson’s theorem R is selfinjective. However this implies that A is selfinjective
and a contradiction.

PROPOSITION 1.4. Let A be a positively Z-graded local algebra and R the
endomorphism ring of right A-module ADD(A). Then Nakayama conjecture is
true for R.

§2. Local Commutative Graded Algebras

Throughout this section K is assumed to be an algebraically closes field of
characteristic zero. The following and [Proposition 2.2] are well
known, cf. and [4, V. 3.9.5], but for the sake of reader’s convenience, we
shall write elementary proofs.

LEMMA 2.1. A commutative K-algebra A 1is local if and only if A isa
homomorphic image of K[ x1, xs, -+, xm /1", where I is the ideal of the polynomial
ring K[x,, x5, -+, xm] of variables x,, x,, -+, Xm, Which is generated by x,, x»,

e, Xme

ProoF. Let J be the radical of a local commutative algebra A and J"=0.
Then there are ring-homomorphisms a: K[ X;, X,, -, Xn]—A and B: A-A/]
=K. Put Ba(X;)=a;. Then Ba(X;—a;)=0 and hence a(X;—a;)/J. Therefore
a((X;—a)")=(a(X;—a;))"=0 and hence (X;—a;)"=Kera. Now we can take
x;=X;—a;.

For f(x, y)K[x, y] we shall denote by f.,x, y) the homogeneous term
of f(x, y) of degree t.

PROPOSITION 2.2. Let f(x, y) be a polynomial in K[x, y] such that f(x, y)=
Dezefi(x, ¥) with the non-zero homogeneous term fy(x, y)=ax*+bxy-+cy® of degree
2, I=(x, y) and A=K[x, y]/(I", f(x, y)), n=3. Then A is isomorphic to a local
algebra K[X, Y]/(L", g(X, Y)) such that L=(X, Y) and g(X, Y)=XY or X*—
Y, p>2.

PrROOF. Assume a+#0. Then ax’+bxy+cy*=a(x—ay)x—By) for some a,
eK.

Case (1): a+#pB. As we can consider x—ay and x—f8y as new parametess
of K[x, y] we can take f,(x, y)=xy. On the other hand, in the case (2): a=
B, by replacing x—ay with x we can take fy(x, y)=x>. Further it is easily
seen that the above context for f,(x, y) are valid even if a=0.
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At first we shall proceed the proof for the Case (1) by induction on n: we
can replace xy with f(x, y)—xy mod I™ and after repetitions of such rearrange-
ments we obtain an expression of f(x, y) which excludes terms x%y’, 7, j=1 and
i7>1. So if n=4 we may assume that f(x, y)=xy+ax*+by>. Put X=x+by*
and Y=y+ax?. Then XY=xy+ax*+by* mod I*. Since X and Y eradA\rad®4,
we can take X and Y as new parameters and we have A= K[X, Y]/
(X, Y), XY).

Assume n>4. Applying the assumption of induction to K[x, y]/(I""!, f(x, y))
we can take f(x, y)=xy+ax®~'4+by""! mod I™. Similarly as in the case n=4,
putting X =x+by""% and Y =y-+ax""? we can take X an Y as new parameters
and we conclude A=K[X, Y]/(L", XY).

Now we shall begin the proof of the Case (2). First we can replace x*
with f(x, y)—x® mod I™, which is a sum of homogeneous terms of degrees >2.
And by repetitions of such rearrangements we may assume that terms x'y’,
:>1, 7>0 do not appear in f(x, y). Hence if n=4, f(x, y)=x+ay*+bxy* mod I*.
Then f(x, y)=(x+(1/2)by*)*+ay® mod I*. So replacing parameters x and y with
X=x+(1/2)by* and Y =—a'’®y respectively, we have A=K[X, Y]/(X, Y),
X2-Y3).

Assume n>4. Applying the assumption of induction to K[x, y]/(I™"},
f(x, ) we can take f(x, y)=x*—yP+ay" '+bxy"? 3<p<n. Then f(x, y)=
(x+(1/2)by™%)*—(y—(1/p)ay™~P)® mod I™ and we can replace parameters x and
y with X=x4+(1/2)by"~* and Y=y—(1/p)ay®~? respectively. Therefore A=
K[X, Y]/(L", X*—Y?). This completes the proof.

It should be noted that K[x, y]/((x, »)*, xy), n=3, is biserial in the sense
of Fuller [3]. On the other hand, K[x, y]/((x, ¥)*, x?—»*®) has a unique maximal
serial ideal, i.e., a serial ideal which contains every non-simple serial ideal.

PROPOSITION 2.3. Let A be a local commutative algebra as in Proposition
2.2. Then A is positively Z-graded.

PrROOF. Denote by & the residue class of K[x, y]/((x, y)*, xy) (resp.
K[x, y]/((x, y)*, x*—y?) which contains u=K[x, y]. It is easily seen that
Klx, y1/((x, )", xy)=@A;, where A,=K and A,=Kx'+Kyt, i>0, gives a
positive Z-grading. On the other hand, according to p(p<n) is odd or even
we have the following positive Z-gradings of K[x, y]/((x, y)*, x2—3y?)) res-
pectively :

Klx, y1/((x, ", xz——y”))———Bo@ @?;ngni@@?;}) sz,
where B,=K, Bp.,;=Kxy* and B,;=Ky’, and
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K[x, y1/(x, )", x*—yP)=BD D% B«D Dj=d ' Be+ D Dh=i-o B,
where p=2q, B,=K, B;=Ky?, B,,;=Kxy'+Ky® and B,=Ky"*.
If p=n, K[x, y1/((x, )", x2)=@?=3C; where C,=K and C;=Kxy" '+ Ky,
1>0, gives a positively Z-grading.

A COROLLARY 2.4. A homomorphic image of K[x, v]/(x, ¥)* is positively Z-
graded.

PrROOF. K[x, y1/(x, y)'=KPKx+Ky)DEKx+EKy?P(Kx+Ky)® is a posi-
tive Z-grading of K[z, y[/(x, y)*. If g(x, y)=>2%, g, y) with g.(x, y)#0,
then K[x, v]/((x, v)*, g(x, v)) is uniserial and clearly its homomorphic image
is positively Z-graded. Therefore by Proposition 2.3 it is enough to consider
homomorphic images of K[x, y1/((x, y), f(x, y)), where fox, y)=rf«(x, y)=0
and fo(x, ¥)+fs(x, y)=xy, x2—3y® or x2. However if b+0 in the below, the
ideal of KI[=x, y1/((x, ¥)*, x*—y?) (resp. K[x, y]/((x, y)*, x*)) generated by
(axy+by*+cxy*+dy® contains (x, y)P=rad*K[x, y1/{(x, ¥)*, x*— y*)) (resp.
rad®( K [x, y1/((x, v)*, x%)). Hence K[x, v1/((x, ¥)!, x?—3*, axy+by*+cxy*+
dy®) (resp. K[x, y1/((x, )%, x%, axy+by*+cxy*+dy®)) with b+#0 has a cube
zero radical and consequently is positively Z-graded. Similarly, if ab=0, the
ideal generated by @ x>+by*+cx°+d y°® contains (x, vy’ =rad*(K [x, ¥1/(x, y)*, xy)).
Hence K[x, v1/((x, ¥)% xy, ax?*+by*+cx*+dy®), with ab+0, has a cube zero
radical and consequently positively Z-graded. Further positive Z-gradings of
K[x, y1/((x, ¥)%, xy, ax*+by’), 3=i=2,3=7=2, are induced by one of
K[x, v1/((x, )t xy), if ab=0. Also a positive Z-grading of K[x, y1/((x, ¥)*,
xy, ax®*+by®), ab+0, is induced by one of K[x, y]/((x, ¥)*, x¥). Since both
Klx, y1/((x, )%, xy, ax*+cx*+dy*) and K[x, y1/((x, ), x¥, by*+cx’+dy?)
are isomorphic to K[x, v]/((x, y)* x*—9% a’xy), a’=K, we return to check
the positive Z-gradability of K[x, y1/((x, )}, x*—»%, axy*—by®), 2=i=1. But
in the case /=1 and ab=0, it is isomorphic to K[x, v1/((x, y)*, b'xy, x*—?)
with b’(#£0)< K because axy—by*=(ax—by*)y and we can take ax—by? and y
as new parameters. So the grading is induced by one of K[x, y1/((x, »),
x%—y*). Further in the case /=2 and ab=0, the grading is induced by
K[x, y1/((x, ), x*—*). For K[x, y1/((x, y)*, x*—y°, axy*—by*) with ab+0,
by taking X=x—(a/2b)y* and Y=y as new parameters we have K[x, y]/
((x, ¥)4, x2—¥%, axy?—byH) = K[X, Y]/(X, V), X% aXY®—bY?®) and so the
grading of A is induced by K[X, Y1/(X, V), X)=KOKX+KYPKXY+KY*?
PKXY:+KY®. For homomorphic images of K[x, y]/((x, y)!, x?) it remains to
check the positively Z-gradability of K[x, y1/((x, ¥)*, axy—>by?) with b0, but
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it is isomorphic to a positively Z-graded algebra K[x, y1/((x, ¥y)*, x%, axy).
Now by the analogous discussion we know that the grading of any homomor-
phic image of all local algebra considered above is induced by one of K[x, v]/
(x, )% xy), K[x, y1/U(x, y), x®*—3%) or K[x, y1/((x, ¥)*, x*). This completes
the proof.

By we have immediately

THEOREM 2.5. The conjecture (i) is true for homomorphic images of
K {x, y] with quartic zero radicals.

Similarly we know that the conjecture (i) is true for local algebras
Kix, y1/((x, »)*, f(x, y)), where nz4 and f(x, y)=ax*+bxy+cy*+dx*+-,
provided at least one of a, b, ¢ is nonzero. It seems to be of interest that
those local algebras correspond to Arnol’d’s normal forms A, t<n, of functions
in the neighborhood of a simple critical point. We are indebted to Drs. K.
Watanabe and M. Tomari for drawing our attention to these facts. (cf. [1]).

§3. Example of Local Commutative Algebra Which Is Not Gradable

As our proof in §2 is effective for positively Z-graded local algebras it is
important to assure the existence of a local commutative algebra which is not
positively Z-graded. The following provides the example.

PROPOSITION 3.1. Let A=K [x,, x5, X51/((Xy1, X2, X3)%, X1Xa— X3, XoX3— X3, X3, —X3).
Then A is not positively Z-graded.

PROOF. Suppose that A=A,PA,PAPD --- PA, is a positive Z-grading such
that rad A=A,PAD --- PA,. Let us denote by f(x, y, z) an element of A
which is the residue class containing f(x, y, 2)K[x, y, z]. Then A=K1=
Kz +Kx,+Kx;+Kx2+ Ki3+ Kz + Kx3+ K3+ Kx3, rad A=Kz, + Kz, +Kz;+ Kx?
+Kxi+Kxi+Kxi+ Ki3+ Kx3, rad®’A = Kx?+ Kxi+ Kx:+ Kxi+ K33+ K% and
rad?’A=socA=Kxi{PKxz}PpKz3. Since dimg(radA\rad®?A)=3, there exists a;<
radA\rad®A4, /=1, 2, 3 and positive integers n,, n,, n; such that a1 E Ay, A€
Anyy ayE An, with n,=n,<n, and a;, /=1, 2, 3, are K-linearly independent. For
the simplicity we shall abbreviate from now ¥%; to x;, 7=1, 2, 3.

Then we have

2

a, X1 X1 i

X1

a, |=(a)| xo |+ (b x5 |+ (ciy)| %% |, asy, bij, ci;€K,

2

ag X3 X3 3

X3
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7, 7=1, 2, 3 and d=det (a;;)#0.
At first we shall notice that n,=n,=mn, is impossible. Let n=n,; and

a; a,
a; |=(a;;)"'| a; |. Then aj=A,, i=1, 2, 3, and ai=x;+a? with a’/c=rad?A4,
as a;

i=1, 2, 3. Therefore 0#ajas=xx,+cxi+dx} with ¢, d=K. However ala,c
Asn but xix,+cxitdxi=xi+cxid-dxis A, because ail=x}, 7=1, 2,3, this is a
contradiction.

Now assume that n,<n,<n;. It is clear that 0+ai= A} ,CsocA, i=1, 2, 3.
Since dimg socA=3 and A},CAs;,, i=1, 2,3, A3 DAL,DAS,=socA. By the
assumption it holds that 3n,<n;+42n;<n,+2n;<3n, and 3n,<<3n,<n,+2n,<3n,.

Further we make an assumption (a): n;+2n;#3n,. Since A, A}, CAn 1an,N
socA and An, A2 CAn,n,NS0CA, ayai=3F 10110523 An A%,=0 and aai=
21 anafinis Ay, AZ,=0. It follows that ayaii=a»a3,=0, /=1, 2,3. Further
from 3n,<2n,+n,<3n, we similarly obtain aja,= A% A,,=0 and consequently
ata;;=0, 7=1, 2, 3. Therefore a,;#0 implies a,;=a;;=0. Also a,;#0 implies
as;;=0. Then (a;;) must be a monomial matrix because d=det (a;;)#0. So we
have 0#a,a,=caj=soc A for some c=K. But this implies 0+A,, Ar,NASC
An+n;N\Asng. But n,4+n,=3n; contradicts to n,<n,<n,.

Now we make another assumption (b): »n,+2n,=3n,. In this case it holds
that 3n,<2n,+n,<2n,+n;<n,+2n;<3n;, 2n,+n,<3n,<n,+2n;<3n, and 2n,+
ns#3n, because n,+2n;=3n, and n;<n,<ns. Then A} A, CAznsn,\Usoc A,
A An,CAsnysngNsoc A, and A, A2, CAn,s2n,s0c A and they induce aia,=ala,
=aja;=a,a5=0. Hence we have a?;a,;=alia;;=a.;a3,=0,7=1, 2,3, and we
arrive at the same contradiction as in the case (a).

Assume now that n,<nm,=mn,. And at first assume further a} and a3 are
K-linearly independent. Then it holds that 3n,<2n;+n,+27,<3n, and n} &P
AR An, DA AL DAL, Csoc A, So it follows that A} A,,=A, A%,=0 and hence
a;a,;=ay;a%,=0, i=1, 2,3. If a,;#0, then a, =a, =0.

Further suppose one of a,, or a,; is nonzero. Then 4=0. Therefore a,,=

Azs (323
A3 Q33

a;1:—=a,.=a,*=0 and l #+0.

So we have
Ofl:a11x1+b11x%+b12x§+b13x§+ﬁ{,
az':azzx2+azaxs+bzlx%+b22x%+b23x§+ﬂé
A= Q3 Xo+ A3 X501 X3+ 0o x5+ bss x5+ B3,
where Bi<rad®4, /=1, 2, 3.

and
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Then we have x,=dsa,+dssas+x; and x;=dza,+dga;-+xi with x5, xts
Az Q23
A3z Qgg
because ar’ai=x,x;E A}, and (dunar+dysas)dseas+dgas)S A2, and x5(dseay+dasas)
+(d32a2+d33a3)x;€Kx%EBKx3=A}’;2.

However either a @, =a,:02:x}4(012822a11825)X53+ (011052 +D135a25)x3 OF a o=
A11b31x3 4 (012050+011055)x3+(a11032+ b15a355)x5 is nonzero, for otherwise a¢,,=0 and it
contradicts to our assumption. As they belong to both A, A,, and soc A=
A3 DA3,, we have n,+n,=3n,, i. €. n,=2n,. But this is also impossible because

rad®A and (di,-):< )_1, 7, 7=2,3 and hence 0#A} NAZ, and 3n,=2n,

3n,=2n,. As in the case where a,,#0 or a,;#0 we arrive at a similar con-
tradiction. We can proceed our proof to the next case where aj and aj are K-
linearly dependent. Then since a},/a},=a3,/a},=al;/a3;, we have a;;=w:a.:, Qs =
W.a,; and ag=wsa.3, where w;, 7=1, 2, 3, are cube roots of unit. (It is to be
noted that this case does not occur if the characteristic of K is 3).

Now the inequality 3n,<2n,+n,<n,+2n,<3n, induces either A2 A,,=0 or
An,A%,=0. Then according to them we have either a},a,,=a},a,,=a%,a,,=0 and
socA=A, A} DAZ DAz, or anad=a,a5,=a,505=0 and socA=A2Z A, DA PAS,.

Assume a,;#0. Then a,;=0. And both a,, and a,;=0; otherwise, a;,#0
or a;;#0 implies 4=0. Therefore we have a,=a.x,+7], @s=as%+As3x5+7}
and a;=wya::%+wsa53%;,+ 73, Where yi<=rad?A, =1, 2, 3. Then similarly as in
(42X (427
W00y W3lag
2n,=3n,, and either a,a,#0 or a,a;#0. The later fact induces that A, A.,N
(A A%DAL DAL)F#0 or An An;\(AZ Ar, DAL BAR,)#0, and it follows that
n,-+n,=3n,, but this contradicts to 2n,=3n,. In the case where a;;#0 or a,;#0,

the preceding case, from the assumption a;,;#0 and #0 we have

we also arrive at a similar contradiction.

Now it remains to prove thae n,=n,<n; does not occur. In this case

s DA, =soc A and ai and a} are K-linearly independent, and the inequality

3n,<2n+n;<n,+2n;<3ns; implies A7 An,,=0 and A, A;,=0. Thus we have
atla,=aha,=a%a;,,=0 and ay,ai,=a,ad:=a,;a3;=0. Then similarly as in the
case where n,<n,=n; and a} and a} are K-linearly independent, we arrive at
a similar contradiction.

It is to be noted that for this example our conjecture (i) is true.
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