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THE GROTHENDIECK RING OF VECTOR SPACES
WITH TWO IDEMPOTENT ENDOMORPHISMS

By

D. TAMBARA

Introduction.

In this paper we are concerned with a particular bialgebra 4 over a field
k, which is generated as an algebra by e,, ¢, with defining relations ej=e,,
e2=e,, and whose comultiplication A: A—-AXA and counit ¢: 4—k are given
by the formulas

A(el):el®el+(1_el)®(1—ez)
Aler)=(1—e)R(1—ey)+e:Re,
g(e))=¢(e;)=1.

The purpose of this paper is to compute the representation ring of /4, namely
the Grothendieck ring of finite dimensional 4-modules with respect to 6 and
&, when k is an algebraically closed field of characteristic zero. The classi-
fication of indecomposable /-modules is known and our main task is to decompose
tensor product of indecomposable /-modules.

The results are summarized at the end of Section 1. Our computations
involve the decomposition of tensor product of Z,-graded k[x]-modules. More
generally we do this for Z,(=Z/eZ)-graded k[x]-modules for any integer ez=2.
Here, for Z,-graded k[x]-modules A, B, we give A®B the standard grading
and let x act on it by

x(aRb)=xaRb+w'aRxb dega=7,

where o is a fixed primitive e root of 1.

The bialgebra 4 comes from a certain universal construction. In general,
for k-algebras A, B such that dim A< co, there is a k-algebra a(A, B) equipped
with a k-algebra map p: B—»A@a(/l, B) having the following property: For
any k-algebra C, the map Hom; . (a(A, B), C)—»Hom,_. (B, AQC) induced by
p is a bijection. The algebra a(A, A) becomes naturally a bialgebra.. The
bialgebra a(A, A)° in the dual space a(A, A)* is the universal measuring bialgebra
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of A in the terminology of Sweedler [3]. Our bialgebra A is isomorphic to
a(A, A) with A=k X k. General theory of such bialgebras will appear elsewhere.

1. Main results.

Throughout this paper k2 is an algebraically closed field of characteristic
zero, @ is over k and all modules are finite dimensional over 2. Let 4 be a
k-algebra generated by e, 7, j=1, 2, with defining relations

lzzetj, i:]., 2
J

e1je1r=0;kij, i, 7, k=1, 2.

We make A a bialgebra, defining comultiplication A: A—-A4A®A and counit
¢: A—k by the formulas

A(eik):zj}eij®ejk

e(ey;)=0i;.

This bialgebra is identified with the one in Introduction by e;;=e¢;. For right
A-modules V, W, we always regard VW as a right A-module through the
map A. Our object is to decompose 4-modules VW for all indecomposable
A-modules V, W.

We begin with a parametrization of indecomposable /A-modules. Since a
A-module structure on V is determined by the subspaces Ve;; of V, the classi-
fication of /-modules is a special case of that of quadruples of subspaces in
vector spaces, which was done by Gelfand and Ponomarev, and by Nazarova.

For vector spaces V;;, 7, =1, 2, and an isomorphism a: V,;BV;;— V@D Ve,
define a A4-module M(a) as the vector space V,,/{AV,, on which e, ¢;; act as
the projections to V,,, V,,, and e,,, ¢,, act as the projections to a™'(Va,), a™'(Vy,)
respectively. We write the isomorphism a in a matrix form

2 SE I 4T
a= ’ aij: Vlj_’)Vzi.
(2 ST 7 £

Let & be the category of k[x]-modules on which x acts nilpotently. Inde-
composable objects of & are V,:=~k[x]/(x**"), n=0. By a Z,-graded k{x]-
module we mean a k[x]-module A equipped with a Z,=Z/2Z)-grading A=
A¢PA, such that x(A;,)C Ay, for i=Z,. A homomorphism of Z,-graded k[x]-
modules is a k[x]-linear map preserving grading. Let @ be the category of
Z,-graded k[ x]-modules on which x acts nilpotently. For each n=0 and ;=0, 1,
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let V4 be a Z,-graded k[x]-module which has a basis v, xv, -+, x"v such that
degv=; and x"*'v=0. The modules V3 for n=0, =0, 1 form a complete list
of indecomposable objects in 9.

For an object A of @, define A-modules L,(A), L,(A) by

oo 1)
L.(A)=M
lay [a

(IA., fi )
0 4,

where f,: A;—A,, fi: A—A, are multiplication by x. For an object A of &
and A=k—|{0, 1}, define a A-module L;(A) by

14 14
Lz(A)=M( )
la f

where f: A—A is the map a—(1—2A)a+xa. From the table of indecomposable
representations of the Dj-graph in Dlab and Ringel [1], we see the following.
PROPOSITION 1.1. The A-modules
LI(V%)’ LO(V%) ngo; J.ZO, 1
LV, n=0, Ask—{0, 1}

form a complete list of indecomposable A-modules.

Obviously L,(V3)=k, the trivial 4-module. We define functors
R exe—&
R 1 DIXD—> 9D

R DXD —> D

p* 1D —>&
Px 1 & —>D
( ):9D—D

in the following way. If A, B are k[x]-modules, the 2[x]-module ARB is
defined to be the vector space A®B on which x acts as

x(aQb)=xaRb+aRxb .
If A, B are Z,-graded k[x]-modules, the Z,-graded k[x]-modules AQB and
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A®’B have the underlying space A®B, and the grading and the action of x
are defined as

ARB : (AQB): =k@ AR B;

=i+

2(aRb)=xaRb+(—1)'aRxb, ac A;, beB
AR'B: (AR’'B),=AQRB,
x(a@b)=xaRxb .

If we exhibit a Z,-graded k[x]-module A=A,HA, and a k[x]-module B by the
diagrams
fo
Ay A, BDg
1

where f,, f1, g are multiplication by x, the functors py, p*, () are defined as

fo
p*:AonA, —> ADfifo D ADSofs

1

1 g
g 1
o fo f1
( ):A()(__Al > A1:Ao.
1 fo

THEOREM 1.2. Let 2, p<k and let A, B be objects of @ or & Then we
have an isomorphism of A-modules

LA AYQL(B)=L;u(C)

where C is an object of D or &£ defined as follows.

(i) C=ARB if A=p=I

(ii) C=p*AQRB if 2=1, p#0, 1
(iii) C==ARp*B if A#0, 1, p=1
(iv) C=AKXBPDARB if A, p#0,1, Ap+1
(v) C=px(ARB) if A p+0,1, Ap=1
(vi) C=B®#dim4 if A=1, p=0

(vii) C=pB®%dim4 if A#0,1, p=0

(vili) C=A®dimBopAedimB:  jf 20, p=1
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(ix) C=A®dim B fodimb if A=0, p#0, 1
(x) C=AQ'B if A=p=0.
Proof will be given in Section 2.

We next describe the effect of the functors ® &R, p*, Dx, ( on indecom-
posable modules in & and &.

PROPOSITION 1.3. (i) We have isomorphisms in &

min(m, n)

‘/m®‘/nz ZQB‘) Vm+n-zl

for all m, n=0.
(ii) The Grothendieck ring S of (&, B, Q) is the polynomial ring on one
generator [ Vy].

This is well-known and an immediate consequence of the Clebsch-Gordan
rule for tensor product of simple §l,-modules. See also Littlewood [2, p. 195].

PROPOSITION 1.4. (i) We have isomorphisms in D

EBmm(m n)V1.+Jn 2l Zf mn is even

mm(m n)—1
Di=o (VL oDV L) if mn is odd

l:even

V}',,@V{lz{

for all m, n=0, i, j=Z,.
(ii) The Grothendieck ring R of (D, D, Q) is a commutative ring generated
by the classes [V§], [V{], [V3] with defining relations

[Vil*=L=[Vi])
(VilP=0Vi1A+LViD.

We shall prove this in Section 3. In fact we shall determine decomposition
of tensor product of Z.-graded k[x]-modules for any e=2.

PROPOSITION 1.5. (i) We have isomorphisms in D
IVJEB@ Vj-}-l@@ 1Vj+n l Z‘f mgn

ViLQ'Vi=
S VIEDR" VDD Vit if m>n

for all m, n=0, 1, j€Z,.
(ii) The Grothendieck ring T (without 1) of (D, D, ®’) has a Z-basis
{ed : n=0, j=Z,}, where

eh=[Vi]—[Vi-I-[Vi1+[Vits]
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with the convention V1,=V4,=0 and we have

el if m=n
ehel=

0 if m#n.

PROPOSITION 1.6. (i) We have isomorphisms

{ Vn/2®vn/2—1 if n is even
p*V%g . .
Vin-102BV -1 if nis odd
p*Vn":‘Vgn+1€BV:lan+1

Vi=vin

for all n=0, j=Z,.
(i) The functor p*: D—E induces a surjective ring homorphism p*: R—S
such that

p*LVil=1,  p*Vil=2, p*[Vil=1+[V.]
and the functor px: E—D induces an injective homomorphism py: S—R such that

pxp*(@)=1+[ViD[Vile
for all aeR.

Proofs of Propositions [.5, are easy and omitted.
Combining these results, we see that the representation ring of A is isomor-

phic to the ring K defined as follows. The additive group of K is the direct
sum

K=@Kx
where
R if A=1
K;=4 S if 4+#0,1
T if 2=0
and

R=Z[¢, ¢,, ¢.] a commutative ring with defining relations
52:19 ¢1(¢1—1—5):O)
S=Z[¢] a polynomial ring,

T= 069 Zel is a ring without 1 such that e%el=0mnsel.
nz0,j=0,1

1R is the identity element of K. For a=K,;, beK,, the product a-b lies in
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K, and
A=p=1 == a-b=ab
A=1, p+#0, 1 = a-b=p*a)b
A#0, 1, p=1 == a-b=ap*(b)
A p#0, 1, Ap#1=— a-b=2ab
A4, 20, 1, Ap=1 == a-b=py(ab)

A=p=0 == a-b=ab

A=0 —e¢-a=a, a-e=a
$.ra=2a, a-¢,=a-+a
¢.-a=3a, a-p,=2a+a

Pta=2""a, a-¢*=2%a+a)

where the multiplications in the right hand sides are those of the rings R, S
or T, and

p*: R—S is a ring homomorphism such that e—1, ¢,—2, ¢g—14¢
px: S—R is an R-linear map such that 1—(14¢)@,

(" ): T—T is an additive map interchanging ¢% and e} for all n>0.

2. Proof of Theorem 1.2.
Let 2, p=k—{0} and let
fo g
A:(Ao—:Al), B'———(Bo(..—>_o_Bl)
fi &1

be Z,-graded k[x]-modules with the notation in Section 1 and suppose that
1—2—fof 1, 1—2—f1fo, 1—pt—gog1, 1—p—g,g, are nilpotent.

We restate in terms of the functor M as follows:
(2.1) If 2=p=1, then

where

[
A®BD AR B, l: AQBPARB,

1
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z—(l ®g0 f: ®1)

foX1 —1X4:
l“‘(l Xg: fi1 K1 )
1 fo®1 —1X4g, )

(2.2) If Ap#1, then
fo 1 go 1 11 1 1
il ol e el )
1 f 1 g 1 1, 1 I
1—2p—le=1—2—f1f )Q@L1+1R(1—pu—gog)EEnd(A,Q B;)

1—2p—L=10—2—fof DQ1+1(1—p—g.8,) EEnd(A,Q B,).
(2.3) If 2, p$1, R‘L!——_l, A():Al, Bo:Bl, fozl, go:]., thel'l

11 11 11 [ 1
el = e )
1 fi 1 & 11 11

—I=(1—-2—f)QI+1Q(1—p—g)EEnd(A,QB,).
(2.4) If p=1, then

fo 1 - IR 1®g,
M QM =M
1 /1 go 1 I®g, 1IR1
where the left factor 1 in 1®1, 1Qg, 1Xg, is the identity map on A,PA,.
(2.5) If 21=1, then

1 £ go 1
i, el )
fo 1 I g
(2.6) If A=p=1, then
(1 fl) (1 gl) ( 1 f1®g1) ( 1 fo®g1)
M XM =M PM .
fo 1 go 1 @& 1 F1Rgo 1

Indeed, cases (2.1)-(2.6) correspond to cases (i)-(x) in [Theorem 1.2 in the
following way

where

where

R

(1 R1s, f1®1ao) (1 Qls, fo®131)
M oM .
fu®ls, 1 Xlp, fi®1s, 1 Qls,

(2.1) = (1)

(2.2) & (i), (iii), (iv)
2.3) = (V)

(2.4) &= (vi), (vii)
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(2.5) & (viil), (ix)
(2.6) == (x)

Note that in some cases the present A, B, 4, ¢ are different from A, B, 4, ¢ in

,
Theorem I.2.

LEMMA 2.7. Given isomorphisms

ay,y  dyg
a= ViuPVie —> VouPVy,

Ay Aao

[Bz(‘@n ,612> W e e WS

B2 B
Bii Bz
,B—l—’-'- WoDWa — Wi PW i,

Bz Bre
with ai;: V=V, Biji Wiy—Was, Bij: Wey—Wy, we have an isomorphism of
A-modules

M(a)QM(B)=M()

where

7:ZuPZyy —> Z0PZss
Zue=6j5Vij®W,-k

a,® 1 a’m@ﬁh 0 am@}sfz

r= a21®.311 3@ 1 a21®}9xz 0
0 a12®,8§1 a1 am@ﬁéz
d21®[921 X a21®ﬁ22 a1

The columns of this matrix correspond to V,QWi1, V1:Q@Wai, ViiQWis, V1:QW s,
and the rows correspond to Vi, @Wiy, Vs Q@Woay, Vo QW s, V0 QWo, in order.

Proof is straightforward. Now we shall prove (2.1)-(2.6).

(1) Let
(fo 1 (go 1
L fl)’ =\ gl)'
'((glgo—l)-lgl —(glgo—lrl)

—(gog:—1)7! (gogl—‘l)_lgo
so M(a)QM(B)=M(r) with

Then
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fo®1 1RX(g1g8o— 1" gs 0 —1X(g:g0—1)!

y= 1®go [1i®1 1®1 0
0 —1®(gog1— D™ fu®1 1®(gog:— 1) g0
1R1 0 1RX4g, fi®1
Multiplying an invertible matrix with 7 on the left, we have
1®g. &1 1®1 0
| B2 ~1®z, 0 Q1 | (ko 1
= 11 0 1®2, f1®1 1 hy)’
0 1R foR@(1—gug1) —1Rg

where

N z( 1®&o &1 ) A _( 1®g, f1R1 )
0= f ’ f .

R(1—g.180) —1Rg: X1 —gog1) —1Rgo
(1a) We shall prove (2.1). Let A=p=1. Then A, B€9. Let [, [, be as
in (2.1).
LEMMA 2.8. The Z,-graded k[x]-modules

Lo
AQB«DAKQB: '4——‘1“’ AR BB AR B,

1

ho
AR BD AR B, _h(_‘_” ARB,DARB,.

1

are isomorphic.

From this we have

he 1 L 1
Mr=M =M )
1 hn 1 !

PROOF OF LEMMA 2.8. The both Z,-graded k[x]-modules have the common
underlying graded space AQB, and x acts on the first module as

x(a®b)=xaQRQb+(—1)t aRxb acs A,

and on the second module as

which proves (2.1).

xa@(1—x*)b+a@xb if aeA,
xa®b—a@xb if a€A,.

We may assume that A, B are indecomposable. Let dim A=m, dim B=n, and
let u A, ve B be homogeneous generators. Let G=Fk[s, t] be a graded k-algebra

x(a®b)={
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with defining relations s™=¢"=0, is=—st and degs=degt=1. G acts on the
vector space AR B in two different ways.
The first action:

s(a@b)=xaXb
HaRb)=(—1)'aRxb, asA;.
The second action:

xa®(1—x%)b if a€A,
s(a@b)z{

xaQb if ae=A,
Ha®b)=(—1)aRxb, asA;.

To prove the lemma, it is enough to show that these two Z,-graded G-modules
AQB are isomorphic. With respect to either action, s*#/(u®@v) 0=i<m,
0<7<n) form a basis of ARB. Hence the both G-modules are free on the

generator u@v. This proves the lemma.
(1b) Suppose next that Aup+1. We shall prove (2.2). Putting

ko=F1f QL —gog1)+1Xg0g:

kx=fof1®(1—g1go)+1®g1go,
we have

Since 1—£k,, 1—k, have the unique eigenvalue A, hoh, is an isomorphism. Simi-
larly h,h, is an isomorphism. Therefore

1 1 1 1 1 1
=l w2 L)
1 Ak 1 & 1 k&
LEMWA 2.9. Let s€EndV, tcEndW be nilpotent endomorphisms and A, p&E

k—{0}. Then (A+s)Q(p+t)—Ay, sQ1+1Qt<End(VRW) are conjugate.

The proof of the lemma is similar to that of Let l,, I, be as
in (2.2). Applying the lemma to s=1—A1—ff, t=1—p—gog:, we see that k&,
and [, are conjugate. Similarly k., and [/, are conjugate. Thus

11 11
1= D
1 lo 1 ll
which proves (2.2).

(1c) Suppose 2, p+1, Ap=1. Let A=A, fo=1, Bs=B,, go=1. Then
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1 0 k0
ho=P )Q, h=Q™ P,
0 —=k 0 -1

where P, Q are some invertible matrices and 2=f,Q(1—g,)+1Q4g;.

as in (2.3).

! are conjugate. Hence

S

This proves (2.3).
(2) We shall prove (2.4).

)
=\, ) 7L 1)

Then
ﬁ"—( (1—g:8o)! —(l—glgo)"gl)
—(1—g0g1)7'&0 (1—gogn)™ .
So
fo®1 11 —g180)7" 0 —1®(1—g:80)7'&:
yo= I®1 1K1 1®4g: 0
0 —1Q(1—gog1)7'gs  fo&®1 1®(L—gog)™
1&g, 0 1RK1 [1&1
1®1 i1 1X®4g: 0
~| fo®(g:18—1) —1K1 0 1®4g:
- 1®go 0 I®1 1K1
\ 0 1Xg, fo&@(gog:—1) —1K1
Put
1®1 f1R1
h():( )EEnd(At.@Bo@Al@BO)
foR(g:180—1) —1RK1

N ( 1®1
o foR(gog1—1)

These are isomorphisms, so

N ( 1.Q15,
T \(L®go)hs?

We claim that the following two objects of @ are isomorphic.

where A=A,PA..

f1R1

I)EEnd(Ao®Bl@A1®Bl) .

<1A®gl>hr*> |
14®1s,

(1Rgohs!

.—_>A

(1®g1)h1

Let [, be
Using with s=1—A—f,, t=1—p—g,, we see that k and

ool el )

Let
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1Xg,

AR B, —
I®

Note that the isomorphism class of an
the integers dimKer(x™: C;—C;.,) for

(1K g ho=h,(1RQg0),

we have

ARB,.
g1

object C:=CBC, of 9 is determined by
n>0, =0, 1.

(1Xgh,=h(1Rg:1),

Since

dimKer(1®g:)hi' - (1Qgi+n)hitn=dimKer(1Qg:) --* (1R g:+a)h7la?

=dimKer(1Xg,) - 1&Xg:+n),

where indices are taken modulo 2. Thus the above two objects are isomorphic.

It follows that

( 1 (l®g1)hr‘)~( 1 1®g1)
(1Rgo)hs! 1 ) Qe 1/
This proves (2.4).
(3) Let
1 fi
A1)
fo 1
‘811 ‘812 A
(o 5
ﬁzl ,822
Bi: Bie
(s, o)
1821 ﬁZZ
Then M(a)QM(B)=M(r), where
1®1 1B 0 1B
y fo@B1 1®1 fo&@ B2 0
0 f1Q85: 11 f1QB:.
fo@Bas 0 fo@ B2 11
1®1—f1fo®f9{1f911 0 O f1®‘8§2
~ 0 1®1 fo®.312 0
- 0 F1QB5  1RL—f1fo@B32822 0
f @B 0 0 1®1
2( he f1®/9{z)@( 1K1 fo®,81z)
N\ SR IR F1®Bi hy

with

/lu:1®1_‘f1f0®/9;11811
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hi=1Q1— f1fo&QBs:B2 .
Since f,f, is nilpotent, h,, h, are isomorphisms. Hence
z( 1 hal(f1®/3{z))@( 1 fo& B )
fo@Bau 1 hTH(f1&B21) 1
(3a) To prove (2.5) we let

8o 1)
ﬁ_(l gn.

Then
( 1 k?‘(f1®1)) ( 1 fo®1 )
r= S
fo®1 1 kT'(f1&1) 1

where

ko=f1fi®g:180—1&Kg:18,+1X1

ki=f1feR8g0g:1—1Xgog:+1K1.
Put

ko=Ffof108:80—1Xg:180+1X1
Ri=fof1Q808:1—1RXg.g:+1X1.

These are isomorphisms and we have

{ (f o@D ko=ko(fo&®1) { (f e @Dki=ki(fe&Q1)
(f1QDko="Fko(f11) (/1 QDki=Fki(f1Q1).

Then, by the same argument as in (2), we know that there are isomorphisms
in 9

FoX1 kT f1®1)
A®By, ———= Ai®B, A®B, —/———= ARB,
k3'(f1R1) fo&R1
Ul U
fo®1 /11
A®B, — A,QB, AR®B, — ARB,.
&1 fo&®1

Thus

1 @1 1 [l
e 0 Fle )
fo®1 1 i® 1

which proves (2.5).
(3b) Finally we prove (2.6). Let

1 g
B= ,  p=l.
go 1
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Then
( 1 k' (f10g1) ) ( 1 fo®g1)
1= P, ’
f0®go 1 kfl(f1®go) 1
where
k0=f1fo®1+l®g1g0—l®l
ki=f1fi@1+1Qgog1—1R1.
Put
o=fof1&1+1Kgog1—1&R1
1=fof1®1+1Kg:18,—1X1.
Then

{ (fo&@g0) ko= ko(f1XR&0) { (foQ®gnki=Fki(fi&g1)
(f1®g)ke=Fko(f1Kg1) (f1Qg0)ki="Fki(f1&80).

As in (2) there are isomorphisms in 9

FoR&o kT'(f1&Qg0) :
ARB, ——— A/ RKB, ARB, ———— ARB,
ks (f1X41) S8
Ul Ul
fo@go ‘ , f1&go
AQ®B, == AQB, ARB, =— A.RQB,.
f1®g: fo®g:

Thus

( 1 f1®g1) ( 1 fo®g1)
g ) .
fo®8go 1 f1&¥8o 1

3. Tensor product of graded %[ x]-modules.

This proves (2.6).

Througout this section we fix o=k a primitive e'! root of unity with e=2.
By a graded k[x]-module we mean a k[x]-module M=@;ezM; such that
dim M< oo, xM;C M,,, forall ie€Z. If M, N are graded k[x]-modules we make
the vector space M@N‘a graded k[xJ-module in the following way.

(M®N)k:i§2kMi®Nj
2x(aXRb)=xaRb+w'a@®xb a=M;, beN.

This operation & on graded k[x]-modules is associative. For each m=0 and
ieZ, let Vi, be a graded k[ x]-module of dimension m+1 generated by an element
of degree i. The modules V% for m=0, i=Z furnish a complete list of inde-

composable graded k[x]-modules. The main result of this section is the
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following.

THEOREM 3.1. For any m, n=0 we have an isomorphism of graded Fk[x]-
modules
va@ve" @ Vi,
where [—ly is defined in the following way. Write m=re+i, n=se+j, [=qe+h
with r, s, geN, 014, 7, h<e.

ly=m+n—21 if wax(t+j—e+2, 0)<hA<min(, j)

or if max(z, /)+1<A<min(G+j+1, e—1)
lx=@+s—2q+1)e—1 if 0=h<i+j—e+1
lx=r+s—2q)e—1 if min(z, 7)+1<h<max(s, 7)
le=F+s—2¢—1)e—1 if i+j+25h=<e—1.

Here we understand V*i,=0.

IProposition 1.4 (i) follows from this, by letting e¢=2 and reducing the
grading modulo 2. See also and the end of this section.

The proof of goes as follows. We first decompose Vi,®VY,
ViIRVL, Ve.QVY directly. In the Grothendieck ring we can express all [V,]
as polynomials of [V3], [V?], [V¢]. Then a straightforward computation gives

the desired formula.

We begin with preliminary observation. Let m, n=0 and let G=Ek[s, t]
be a graded k-algebra with defining relations fs=wst, s™*'=¢"*'=0 and degs=
dett=1. Let G, be the degree k part of G for each £=0. Put x=s-+¢. Since

x-siti=st*1tif@isititt
when G is viewed as a graded k[ x]-module by left multiplication, G is isomor-
phic to V% Q@V?Y. Since tx=wxt+(1—w)t* and
025m+l:(x—t)m+‘:xm+l+01xmt+ +Cm+1tm+l

for some ¢y, -, cms1 =k, G has a basis x't/, 0<i<m, 0<7<n. Assume m=n

and put
z=x" Lo x™ M+ s Fent™.

Then the following hold.
(i) The left multiplication x: G,—G,4, is injective for k< n, bijective for

n<k<m, and surjective for m<k.
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(ii) G/xG has a basis Y modxG, 0<7<n.
(iii) Ker(x : G—G) has a basis zt/, 0<7<n.
(iv) For each 0<j7<n, put

ly=sup{l:zt’'€x'Gms;-1} .
Then

G

IR

PVR+i-ly

=
as graded k[ x]-modules.

(1) is clear and (ii), (iii) follow from (i). To see (iv), decompose G=; k[ x]u;
with u; homogeneous elements such that x™iu;#0, x™i*'u;=0. Then the
elements x™iu; form a basis of Ker(x: G—G). Since zt/, 0<57<n, have mutu-
ally different degrees m-+7, the bases {zt/} and {x™iu,;} of Ker(x: G—G) are
equal up to a permutation and scalar multiples. Hence {/;} is a permutation of
{m;}. This proves (iv).

LEMMA 3.2. For any m=0 we have

C Vo@DV if . m+1=0 (mode)
ViRV Ii= B
Ve.PVEi if m+1=0 (mode).

PROOF. We mayiassumé m>0. In the above observation we specialize
(m, n) to (m, 1). Then t?=0, tx=wxt and
Oz(x_t)m+1:xm+1__

S{¢]

zt=x™t.
If m+1=£0, then (@™**—1)/(w—1)=+0, so
zex™ Gy, zEx™G,

—_ o—l m+1 m+1
Zt—mx =X Go.

Thus, by (iv) of the observation, G=V 3 _iPV% . as graded k[ x]-modules.
If m+1=0, then z=x™, x™*'=0. So zt&x™*'G,. Thus G=VLBV.
LEMMA 3.3. For any r>0 we have

V‘26®V0 = V?r+1)e€BV1(r+1)e~ZEBV72-e—1€B e @Vf‘;—ll@vir—l)e .
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PROOF. We specialize (m, n) in the previous observation to (re, ¢) Then
ter1=0, x¢=s°+4t° and s¢ t°¢ are central elements in G. We have

0=(x— )" e =(x"— ) (x —t)=x"H — xTef—px(T-De+lge

S0
Z=xTO— X7 (T e
and
zti=xTetI—xTe 1IN 1€jge—1
tt=xTete.

Let us determine the integers /,:=sup{l:zt/€x'G 4,1} for 0<j=<e. Clearly
ly=(r—1)e. By induction on s, we see easily that

xrc+j:xrctj+rx(r—l)e+jt¢, ]21
xreGj:<xretj, x(r—l)e+jte>’ jzl.

It follows that x"¢'t/*'&x"¢G; for 1<j<e—1, hence /;=re—1. We have
x”*“‘-—(r—i—l)x””'zt:—rzt“’,

and x7¢*"!, zt¢~! are linearly independent. So [,.,=re+e—2. Finally, since
x"¢*te=(r+1)zt%, we have [,=re+e. Thus

G 5V?r+1)e®vtr+1)c—2®vze-l® T @Vf?;-}l@V%r-l)e

as graded k[x]-modules.
LEMMA 3.4. VIRVL=VLRVY for all m=0.
PROOF. We can decompose V{QVY, in the same manner as V5,QV1.
LEMMA 3.5. VIQVL=Vi=ViQVE for all n=0 and i, j=Z.

PROOF. Let u, v, w be homogeneous generators of Vi, Vi, Viti respectively.
The correspondences w**u@x*veox*wox*vQu, 0<k<n, give the isomorphisms.

Let Q be the Grothendieck ring of the category of graded k[ x]-modules
with respect to P, &®. The classes [V4] in Q form a basis of Q. We set

e=[V3i]
$n=LV3] n=0
é-.=0.

Then ¢,=1 and by ¢ is a central invertible element in Q and
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(Vil=¢'d, n=0, ;2.
By ¢, is also central and by

GmartePm_y  if m+15£0 (mode)
(3.6) ¢m¢1={ _

(1+e)pn if m+1=0 (mode)
for m=0 and by
3.7 ¢re¢e:¢(r+1)e+5¢(r+1)e-—2+(52+ +56'1)¢re—1+56¢(r—1>e

for r>0. It follows that Q is generated by ¢, ¢!, ¢;, . and in particular @
is commutative.

For each integer n=—1, define a polynomial H,(s, t) with integral coeffici-
ents by

n+l___ a0+l
Yy

Hu(x+y, xy)=- x—y
with x, y indeterminates. Then H_,=0, H,=1 and we have a formula

n

min(m, n)
Hm(s; t)Hn(S) t): qu}) tle+n—2l(s: t)

for m, nz=—1. Put
0n:Hn(¢e_5¢e—2r se)EQ

_ Un:Hn(¢1y S)EQ
for n=—1. Then

min(m, n)

(3.8) Onb,= swam+n—2l

~
Il
)

min(m, n)

(3.9) dmo'n: lgg el0m+n_zl-

By an easy induction it follows from and that
(310) 0'1;:¢1; O_S_z:;e-—l
(3.11) Oe14i=(1+eNPe1—e'Pe1; 0=i<e—L.

LEMMA 3.12. We have

min(t, j) t+j-e+1

¢i¢J:h $h¢t+/—zn+ ngo etPey

for —1<4, j<e—1.

=max(i+j~e+2,0)

PROOF. We may assume i=7=0. When 7/+s7<e—2, the formula results

from [3.9), [3.10). Let i+j=e—1+! with 0</<e—1. Then by and



244 D. TAMBARA

we have

P:p;=0.0;

J
= Zo "G itj-2n

=

= 5h{(l+€l_2h)¢e~1_st_2h¢e-1—l+2h} + > 5h¢e—1+l—2h

0shslje 1/2<hs]
- (5h+sl—n)¢e-1— > 5l_h¢e—1—l+2h
oshsl/2 0shsls2

+ 2 e"Pecrricant X €'Pe_iiioan

1/2<hst T

J
2 5h¢i+j—2h ’

h=l+1

3
- hz=o ¢"Pe-rt
which proves the lemma.
LEMMA 3.13. @reri=0:0:+6"0, 1@e-2; for r=0,0<5i<e—1.

PROOF. Denoting by ¢é;..; the right hand side, it is enough to show that

$o=1
¢2:¢e
¢1/-e+i¢1:¢1l-e+t+1+5¢1/-e+i-1 0=ige—2,r=0

¢;'e¢e:¢,(r+1)e+8¢,(r+l)e—2+(52+ +58_1)¢;e-1+58¢/(r-1)e r>0.

The second equality follows from the definition of #, and the third follows
from without difficulty. For the last, using and Lemma 3.12, we have

Grepe=(0r+¢e0, 1@c-2)(0,+cP.-5)
=0.0,+e0, 10,0 o 60,0, .10, 9%,
=0, +60,_+e(0,+e0, )P
460, @e-2t+e20, (e 2P+ (144 - +&%)Pe-1)
=0,41+60,@este(0,Pe2t+e0,_,do)
(e - e 1Pe (0,10, oPes),

as required.

PROOF OF THEOREM 3.1. From Lemmas and we can deduce easily
that
min(i, j) t+j—-e+1

J
¢re+i¢j: 2 €h'¢re+i+j—2h+ 2 Eh¢(r+1)e—1+ E 5h¢1e—1

h=max(it+j-e+2,0) h=0 h=1+1
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for r=0,0=i<e—1, —1<j<e—1. Replacing j by e¢—2—; and multiplying
g/t we have

min(i+j+1,e-1)

i
&P = et 4 jte gh - 3 .
¢re+z ¢e 2—j h=ma§i,j)+1 ¢re+1+]+e 2h+h=zj"'+1 ¢(1’+1)e 1+h=§j+2 ¢re 1

for r=0, 0<7, j<e—1. Using and we can also see

r,8)

ming
¢re+kas: go eqe¢(r+s-2q)e+k

Q

if r=0,r=zs=—1,0=k=<e—1orif r, s=—1, b=e—1.

Now let m=re+i, n=se+s with r», s=0, 0<7, j<e—1. The formula to
prove is symmetric in m, n, SO we may assume r=s. By the above three
formulas, we have

¢re+i¢se+j:¢1’e+i¢j08+¢1'€+i81+j¢3—Z"j¢3‘1

:§5q6+h¢(r+s-2q)e+i+j-zn +(§5qe+h¢(r+s—1—2q)e+i+j+e—2h
+@Z)5qe+h¢cr+s—2q)e+e—1+§5qe+h¢w-1+s-2q)e+e—1

+§eqe+h¢(r+s—1~2q)e+e—1+§sqe+h¢(r71+s-1—2q)e+e—1 »

where the &' summation 3, is over the elements (g, 4) in the set I, defined

below.
I, : 0£¢g<min(r, s), max(z+j—e+2, )< h<min(, 1)
I,: 0<¢<min(r, s—1), max(z, )+1<h<min(G+75+1, e—1)
I;: 0=¢g<min(r, s), 0<h=Zi+j—e+1
I,: 05¢<min(r—1, s), +1=h<g
I;: 0<¢g<min(r, s—1), J+HISh<i
[;: 0<£9<min(r—1, s—1), I+74+25h<e—1.

As observed earlier, (V5,QV%)/x(V%XVY) has a basis consisting of homogene-
ous elements of degrees 0, 1, -+, min(m, n). Therefore the map I,II - I1/.—
[0, min(m, n)] taking (g, h) to ge+h must be a bijection. Since the ranges of
h in I, ---, I; give a partition of [0, e—1], putting [=qge+h, we have
min(m, n)
Pn@n= lgo sl¢l*
with /4 as described in [Theorem 3.1. This proves the theorem.

PROPOSITOIN 3.14. The ring Q is a commutative ring generated by ¢, €7, ¢,
9. with a defining relation
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He—1(¢1’ 5)(951—1—‘5):0 .

ProOF. This follows from and the fact that {¢*¢igr: keZ, 0<i<e—1,
r=>0} is a basis of Q. Details are omitted.

Finally we pass from the Z-graded case to the Z.-graded case. We consider
only Z.(=Z/eZ)-graded k[x]-modules M=&;cz,M; such that xM,CM;,, for
all feZ, and x acts on M nilpotently. For such modules M, N, we make the
space MXN a Z,-graded k[x]-module in the same manner as in the beginning
of this section. For a graded k[ x]-module M, let w4M be the Z.-graded %[ x]-
module such that weM=M as k[x]-modules and (74«M),=D;)-;M; for j=Z,,
where 7 :Z—Z, is the natural projection. Then the assignment M—om,.M
commutes with &, and the objects m4V3}, n=0, 0<j<e—1, form a complete list
of indecomposable Z,-graded k[ x]-modules. Therefore the Grothendieck ring
of the category of Z,-graded k[x]-modules is isomorphic to Q/(¢*—1). When
e=2, we obtain [Proposition 1.4 (ii) from Proposition 3.14.
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