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0. Introduction.

Real hypersurfaces in a complex projective space have been studied by
many differential geometers (for example, see [1], [2], [3], [7] and [15]).
In this paper, we study real hypersurfaces in P,(C) from the point of view of
holomorphic distribution, where P,(C) denotes an n-dimensional complex projec-
tive space with Fubini-Study metric of constant holomorphic sectional curva-
ture 4.

R. Takagi ([13]) showed that all homogeneous real hypersurfaces in P,(C)
are realized as the tubes of constant radius over compact Hermitian symmetric
spaces of rank 1 or 2. Namely, he proved the following

THEOREM A ([13]). Let M be a homogeneous real hypersurface of Pn(C).
Then M is locally congruent to one of the following:
(A,) a geodesic hypersphere (, that is, a tube over a hyperplane P,_,(C)),
(A;) a tube over a totally geodesic Pr(C) (1£ksn—2),
(B) a tube over a complex quadric Q,_,,
(C) a tube over P(C)X Pin-1y2(C) and n(=5) is odd,
(D) a tube over a complex Grassmann G, s(C) and n=9,
(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n=15.

On the other hand, Kimura ([4], [5]) constructed a certain class of non-
homogeneous real hypersurfaces in P,(C), which are called ruled real hyper-
surfaces in P,(C).

Let M be a real hypersurface of P,(C) and denote by TM the tangent
bundle of M. Set £&=-—JN, where J is the complex structure tensor of P,(C)
and N is a local unit normal vector field of M in P,(C). Then we may write
as TM=T'M+R{£,} at any fixed point x of M, where T3M is a J-invariant
subspace of T,M. Let A, be the second fundamental form for the subbundle
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T°M in TP.(C) over M (see §3), where TP,(C) is the tangent bundle of P,(C).
Set A°=A,|roy. Then A° may be interpreted as a smooth section of Hom(T°M,
Hom(T°M, N°M)), where N°M is the orthogonal complement of T°M in TP,(C)
with respect to the metric on TP,(C), which is also a subbundle of TP,(C).
Each of 7°M and N°M has a connection induced from TP,(C) and hence
Hom(7T°M, Hom(T°M, N°M)) has a connection, which is denoted by V° (cf. [6)).

In Section 3, we show the condition that V% A°=0 for any XeT°M implies
that either & is a principal curvature vector and the shape operator A of M in
P,(C) is m-parallel or T°M is integrable, hence either M is locally a homo-
geneous real hypersurface of type A,, A, or B, or M is foliated by complex
hypersurface of P,(C) with parallel second fundamental form, which is P,_,(C)
or a complex hyperquadric Q,_,(C) by the well-known result of Nakagawa-
Takagi ([10]). Moreover, we determine real hypersurfaces M’s (in P,(C)) which
satisfy the condition “7T°M is a curvature invariant subspace of TM and & is
not a principal curvature vector” by using Kimura’s work [4].

In Section 2, we give some characterizations of homogeneous real hyper-
surfaces of type A, and A,.

1. Preliminaries.

Let M be a real hypersurface of P,(C). In a neighborhood of each point, we
choose a unit normal vector field N in P,(C). The Riemannian connections \Y,
in P,(C) and V in M are related by the following formulas for arbitrary vector
fields X and Y on M:

(1.1 VxY=VyY+g(AX, Y)N,
(1.2) VeN=—AX,

where g denotes the Riemannian metric of M induced from the Fubini-Study
metric G of P,(C) and A is the shape operator of M in P,(C). An eigenvector
X of the shape operator A is called a principal curvature vector. Also an eigen-
value A of A is called a principal curvature. In what follows, we denote by V;
the eigenspace of A associated with eigenvalue A. It is known that M has an
almost contact metric structure induced from the complex structure J of P,(C),
that is, we define a tensor field ¢ of type (1, 1), a vector field § and a 1-form %
on M by g(¢X, V)=G(JX, Y) and g, X)=9(X)=G(JX, N). Then we have

(1.3) P’ X=—X+n(X)§, g& &)=1, ¢&=0.
From [1.I), we easily have
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(1.4) ‘ (Vx@)Y=n(Y)AX—-g(AX, Y)§,
(L.5) VxE=¢AX.

Let B and R be the curvature tensors of P,(C) and M, respectively. Since the
curvature tensor K has a nice form, we have the following Gauss and Codazzi
equations :

(16  gRX, Y)Z, W)=g(Y, 2)g(X, W)—g(X, 2)a(Y, W)
| +2(@Y, De@X, W)—g(@X, Z2)2($Y, W)
—28($X, Y)g($Z, W)+g(AY, Z)g(AX, W)
~g(AX, Z)g(AY, W),

(L7 (Vx AY =y AX=9(X)@Y—9(Y)pX—28(¢ X, V)§.

It is well-known that there does not exist a real hypersurface M of P,(C)
satisfying VA=0 (, that is, the second fundamental form of M is parallel).
Here we recall the following notion: The second fundamental form is called %-
parallel if g(NxA)Y, Z)=0 for any X, Y and Z which are orthogonal to &.
We note that the second fundamental form of homogeneous real hypersurfaces
of type A,, A,, B and ruled real hypersurfaces is 7- parallel (cf. [Theorem 5
We say that M is a ruled real hypersurface if there is a foliation of M by com-
plex hyperplanes P,_,(C). More precisely, let T°M be the dlStI‘lbuthn defined
by TiM={XeT ,M: X1&} for xM. Then T°M is integrable and its integral
manifold is a totally geodesic submanifold P,_,(C). In the following, we use
the same terminology and notations as above unless otherwise stated. Now we
prepare without proof the following in order to prove our Theorems :

THEOREM B ([11], [12]). Let M be a real hypersurface of P,(C). Then
the following are equivalent:

(i) M is locally congruent to one of homogeneous real hypersurfaces of type
A, and A,. ‘

(ii) Lgg=0, where L is the Lie derivative. Namely, & is an infinitesimal
isometry.

(ili) pA=Ag.

THEOREM C ([5]). Let M be a real hypersurface of P,(C). Then the second
fundamental form of M is p-parallel and & is a principal curvature vector if and

only if M is locally congruent to one of homogeneous real hypersurfaces of type
Ay, A, and B.



42 Sadahiro MAEDA and Seiichi UpAGcawaA

THEOREM D ([5]). Let M be a real hypersurface of P,(C). Then the second
fundamental form of M is u-parallel and the holomorphic distribution T°M(=
{XeTM: X | &}) is integrable if and only if M is locally congruent to a ruled
real hypersurface of P.(C).

PROPOSITION A ([9]). If & is a principal curvature vector, then the corre-
sponding principal curvature a is locally constant.

PROPOSITION B ([9]). Assume that & is a principal curvature vector and the
corresponding principal curvature is a. If AX=rX for X 1§, then we have ApX
=(ar+2)/Cr—a)¢ X.

PROPOSITION C ([9]). Let M be a real hypersurface of P,(C). Then the
following are equivalent :

(i) M is locally congruent to one of homogeneous ones of type A, and A,.

(i) g((VxAYY, Z)=—n(Y)g@X, Z)—(Z)g(¢X, Y) for any vector fields X,
Y and Z on M.

PROPOSITION D ([5]). Let M be a real hypersurface of Pn.(C). Then the
following are equivalent:

(i) The holomorphic distribution T°M={X<TM : X 1 &} is integrable.

(i) gU@A+AP)X, Y)=0 for any X, YETM.

2. Homogeneous real hypersurfaces of type A, and A,.

In this section we provide some characterizations of homogeneous real hyper-
surfaces of type A, and A, in P,(C). Motivated by Theorem B, first of all we
prove the following

THEOREM 1. Let M be a real hypersurface of P,(C). Then the following
are equivalent : N

(i) M is locally congruent to one of homogeneous real hypersurfaces of type
A, and A,.
(ii) Lep=0, that is, & is an infinitesimal automorphism of 0.

PROOF. For any X&TM, we have
(LepX(X)=[§, dX]—o([§, X])
=V X)— Vg x§—P(Ve X—V &)
=(Ve@) X—VyxE+d(Vx§)
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=n(X)AE—g(AE, X)e—pAGX+ ¢ AX (from [L4) and [I5)
=n(X)Aé—g(A§, X)é—pAPX— AX+n(AX)E (from
=n(X)A§—pAdX—AX.

Since (L:¢)(§)=0, the above calculation asserts that L;$=0 is equivalent to

(2.1) AX=—¢pApX  for any X(L§E).
From and we find
(2.2) GAX=ApX—n(AdX)E  for any X(LE&).

Then we see
P*AX=—AX+n(AX)¢ (from [1.3))

=pApX (from [1.3) and [2.2))
=—AX (from ’

that is, n(AX)=0 for any X( L&) so that & is a principal curvature vector. And
hence, we get n(A¢X)=g(Ad X, &)=g(¢p X, A&)=0. Here we suppose that L.¢=0.
Then from we obtain ¢AX=A¢X for any X(L§&). Moreover, from the
fact that £ is a principal curvature vector, it follows that ¢Aé=A@é&(=0). Then
“Le¢=0" implies “pA=A¢g”. On the other hand “pA=A¢” yields the equation
that is, “L¢¢=0". Therefore by virtue of Theorem B, we get our con-
clusion. Q.E.D.

Nom let T°M€ be a complexification of 7°M. Then we have T°MC¢=
T°M*OPT° MY with respect to ¢, where

T°MEO={Z=T'MC : ¢Z:«/:’1‘Z}:{X—\/———I_¢X: XeT'M}
and

TMOD={Z =T M : §Z=—~'"1Z}={X++/=1¢X: X=T°M}.

We are now in a position to prove the following

THEOREM 2. Let M be a real hypersurface of P,(C). Then the following
are equivalent :
- (i) M is locally equivalent to one of homogeneous real hypersurfaces of type
A, and A,.
(i) & is a principal curvature vector and Vz& is a (0, 1)-vector for any Ze<
TOMCO- 1,

PROOF. For any Z(=X++/—1¢X)=T°M*"?, from we have
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2.3) Vz6=9pAX+ vV —1pApX=T M, where XeT°M.
(i)=(ii): Since §A=A¢, & is a principal curvature vector. Then from (2.3) we
get
V25=¢AX+«/:T¢2AX '
= AX+~—1(—AX+7n(AX)E) (from [1.3)
:¢AX—\/:"1’AX.
Then we find

(V8)=¢(@AX—v -1 AX)
=—AX+AX)¥—v—-1¢AX
=—+V—1(gAX—v—1AX),

which shows that V,& is a (0, 1)-vector with respect to ¢.

(ii)=(i): From (2.3) we have
(V) =d(GAX+v —1dAGX)=—~/=“T(PAX+ T AP X).
This, together with shows that
(2.4) — AX+(AX)E+V =T (— A X+ (A X)E)
=~ T¢AX+pApX  for any X(L8).

Since & is a principal curvature vector, the equation is reduced to —AX
—v—1A¢X=0¢pAdX—~/—1pAX for any X(1&. Therefore we conclude that
GA=Ag. Q.E.D.

REMARK 1. Let M be a Kaehler manifold (with complex structure J).
Then the following are equivalent:

(i) LxJ=0.

(ii) VzX is a (0, 1)-vector for any (0, 1)-vector Z.
Motivated by this fact, we established [Theorem 2.

Finally we prove the following

PROPOSITION 1. Let M be a real hypersurface of P,(C). Suppose that & is
a principal curvature vector and the corresponding principal curvature is non-zero.
If V:A=0, then M is locally congruent to one of homogeneous real hypersurfaces
of type A, and A,.
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PrROOF. By hypothesis we may put Aé=aé. Then from A,
[1.3) and [1.5] we have :

(V:AE=V(A8)— AVb=(fa)E+aVeE=0.

And hence “V:A=0" implies
(2.5) » g(V:A)X, Y)=0 (for any X, Y 1L&).
On the other hand, for any X(&V,={X: AX=rX, X1§&}) we get

g((V:AX, V)=g(Vx AE+¢X, Y) (from [1.7)
=g(Vx(A8)—AVxé+0 X, Y)
=g(apAX—APAX+¢X, V) (from A and

=g(arg X—rA¢X+oX, Y)

={r(a— 3"2) 1 1}g(px, V) (from B)
Therefore the equation asserts that

ar+2 _
r<a—— 27:';)"‘1-—0 .

Namely we find a(»?*—ar—1)=0. Since a0, we have r*—ar—1=0 so that
r(2r—a)=ar-+2, that is, r=(ar+2)/(2r—a). Therefore ¢V ,=1V, so that our real
hypersurface M must be locally congruent to one of homogeneous ones of type
A, and A, (cf. [8]). Of course a homogeneous real hypersurface of type A,
and A, satisfies the condition “V;A=0" (cf. C). Q.E.D.

REMARK 2. “A&=0” implies “V:A=0" (see the proof of [Proposition I)).

REMARK 3. By an easy calculation we find the following:
V:£=0 (, that is, & is principa)&(V:¢)X=0 for any X& TM&(V:0)(§)=0.

3. Main results.

To state our results, we prepare some fundamental equations of subbundles
(cf. [6]). Let F be a vector bundle over a Riemannian manifold M. Assume
that F has a metric connection. Then any subbundle E of F has an induced
metric connection. Denote by V¥ and V¥ the connections of F and E, respec-

tively. Then we have

3.1 Viv="%v+ A(X)(v) for any veC=(E) and XeTM,
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where A is a Hom(E, E*)-valued 1-form on M and E* is the orthogonal comple-
ment of £ in F with respect to the metric on F. A is called the second funda-
mental form of subbundle E in F. E* is also given a connection induced from
F. Denote it by V®*., Then we see that

(3.2) VeEw=VE'w+ B(X)w) for any weC>E*) and XeTM,

where B is a Hom(E*, E)-valued 1-form on M. It is easily seen that A=—*B,
where ‘B is the transpose of B with respect to the metric on F.

Now let M be a real hypersurface of P,(C). Then TM is a subbundle of
TP,(C) over M and T°M={X&TM: X1&} is a subbundle of TM. Thus each
of TM and T°M has a metric connection induced from TP,(C). The orthogonal
complement of T°M in TP,(C) with respect to the metric on TP,(C) is denoted
by N°M, which is also a subbundle of TP,(C) with the induced metric connec-
tion.

Denote by V® and V* the connections of 7T°M and N°M, respectively. By
(3.1) we have

(3.3 Vx Y=V Y+ A (X)Y)
(3.4) VeVY=V%Y+A,(X)XY) for any YECT°M) and X&TM,

where A, and A, are the second fundamental forms of the subbundle 7°M in
TM and TP,(C), respectively. Note that the second fundamental form of TM
in TP,(C) coincides with the ordinary second fundamental form of the immersion
M—-P,(C). A, is interpreted as a smooth section of Hom(7TM, Hom(7T°M, N°M)).
Set A'=A;|ron, which is a smooth section of Hom(T°M, Hom(T°M, N°M)).
Note that any ruled real hypersurfaces in P,(C) may be characterized by the
condition A°=0. We here consider the covariant derivative of A° with respect
to the connection on Hom(7T°M, Hom(T°M, N°M)) induced from TP,(C). First
of all we show the following fundamental relations.

PROPOSITION 2.
(1) A(X)(Y)=—g(@AX, Y)§,
(ii) AL X)Y)=g(AX, Y)N—g(¢AX, Y)§,
(iili) V°¢=0,
(iv) Vxé=g(AX, &N,
(V) VxN=—g(AX, £,
where XeTM and YEC=(T°M).
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PrROOF. For any X&TM and YeC(T°M), we have

(1) glAXXY), §)=g(NxY, §)=—g(Y, gAX),

(i) g(A(XXY), =GCG(VzY, §=g(NxY, §=—g(V, pAX),

G(ALXXY), N)=G(VxY, N)=g(AX, Y),

(i) (VX Y)=V%a(Y)—a(V%Y)
=Vxd(Y)—A(XNH(Y)—d(Vx Y—A(X)Y))
=(xg)Y)+g(@AX, §Y)§
=0,

where we have used (1.1)~(1.5).
(iv) Vyé=Vx&+g(AX, ) N=¢gAX+g(AX, &N,
which, together with implies V4&é=g(AX, &N.
(v) VxN=—AX, |
which, combined with [3.2), implies V4 N=—g(AX, &)¢. Q.E.D.

The connection on Hom(7T°M, Hom(T°M, N°M)) is also denoted by V°. The
covariant derivative of A° is defined by

(3.5) VY ANYNZ)=Nz A(YNZ)— AN Y XZ)—A(Y)N%Z)
for any X&TM and Y, Z<C(T*M).

Now we prove

PROPOSITION 3. For any X&TM and Y, Z=CT°M),
(3.6) : VEANYXD)=¥(X, Y, ZIN+¥(X, Y, ¢Z)§,
where ¥ is the trilinear tensor defined by
3.7 VX, Y, 2)=g(Vx AXY), Z)—n(AX)g($AY, Z)
—(AY)g(pAX, Z)—n(AZ)g(pAX, Y).

PROOF. We have from [Proposition 2
(Ve ANYNZ)=N3 ANY N Z)— A" VE Y X Z2)— A(Y)V%Z)
={g(Vx(AY), Z)+g(AY, VxZ)}N—n(AX)g(AY, Z)&
—{g(Vx(PAY), Z)+g(pAY, VxZ)}—n(AX)g(pAY, Z)N
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—g(ANYY), Z)N+g(pANGY), Z)6—g(AY, V% Z)N
+g(@AY, V3 Z)¢
={g(VxAXY), Z)—9(AY)g(@AX, Z)—n(AX)g(pAY, Z)
—n(AZ)g(@AX, Y)IN+{—n(AX)g(AY, Z)—n(AY)g(AX, Z)
—g(@(Vx(AY)), Z)+g(@ANY), Z2)—9(AdZ)g(¢ AX,Y)}§,
which implies [3.6). Q.E.D.

Recall the definition of %-parallelity of A. We say that A° is %-parallel if
V¥A*=0 for any XeC=(T°M).
The main purpose of this paper is to prove the following

THEOREM 3. Let M be a real hypersurface of P,(C). Assume that A° is 13-
parallel. Then M is locally congruent to one of the following :

(1) a homogeneous real hypersurface of type A,,

(2) a homogeneous real hypersurface of type A,,

(3) a homogeneous real hypersurface of type B,

(4) a real hypersurface in which T°M is integrable and its integral manifold
is a totally geodesic P,_,(C) (, that is, M is a ruled real hypersurface),

(5) a real hypersurface in which T°M is integrable and its integral manifold
is a complex quadric Q,_;.

PROOF. By A® is 7n-parallel if and only if ¥(X, Y, Z)=0 for
any X, Y, ZeC=(T°M), that is,

3B.8)  g((VxAXY), Z)=n(AX)g(@pAY, Z)+n(AY)g(9AX, Z)
+9(AZ)g(pAX, Y) for any X, Y, ZeC>(T°M).

Therefore we must study real hypersurfaces (in P,(C)) which satisfy the equa-
tion (3.8). Since the Codazzi equation tells us that g((VxA)Y, Z) is sym-
metric for any X, Y and Z(€T°M), exchanging X and Y in (3.8), we obtain
g(Y, 0AX)n(AZ)=g(X, pAY)n(AZ) so that

(3.9) NAZ)g(Ap+9A)X, YV)=0 for any X, Y, Z(eT°M).

Now we assume that n(AZ)=0 for any Z(=T°M), that is, £ is a principal cur-
vature vector. Then the equation (3.8) shows that g((VxA)Y, £)=0 for any
X, Y, Z(=T°M), that is, the second fundamental form A of M is 7p-parallel.
And hence our real hypersurface M is locally congruent to one of homogeneous
ones of type A,, A, and B (cf. Theorem C). Next we assume that £ is not a
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principal curvature vector. Then the equation tells us that the holomor-
phic distribution 7°M is integrable (cf. D). Of course the integral
manifold M° of T°M is a complex hypersurface (with complex structure ¢) in
P,(C). Moreover, the second fundamental form A° of M° is parallel (, which
is equivalent to (3.8)). Therefore we conclude that M° is locally congruent to

P,_(C) or Q,_, (cf. [10]). Q.E.D.
As an immediate consequence of Theorem C and (3.8), we get

THEOREM 4. Let M be a real hypersurface of Pn,(C). Then A°® is n-parallel
and & is a principal curvature vector if and only if M is locally congruent to one
of homogeneous real hypersurfaces of type A,, A, and B.

In addition, from Theorem C, Theorem D and we find

THEOREM 5. Let M be a real hypersurface of P,(C). Then A° is n-parallel
and the second fundamental form of M is wn-parallel if and only if M is locally
congruent to one of homogenecous real hypersurfaces of type A, ‘A; ‘and B or a
ruled real hypersurface. . ’

REMARK 4. We now denote by H the sectional curvature of a holomorphic
2-plane (with respect to ¢) on a real hypersurface M. Kimura ([4]) determined
real hypersurfaces (in P,(C)) on which H is constant. He showed the following

THEOREM E ([4]). Let M be a real hypersurtace of P,(C) (n=3) on which
H is constant. Then M is one of the following: '

(a) a homogeneous real hypersurface of type A, (H>4),

(b) a real hypersurface in which T°M is integrable and its integral manifold
is a totally geodesic P,_,(C) (, that is, M is a ruled real hypersurface) (H=4),

(c) a real hypersurface in which there is a foliation contained in some com-
plex hyperplane P,_,(C) as a ruled real hypersurface (H=4).

Our aim here is to give a characterization of the cases (b), (¢) in Theorem
E. We prove

PROPOSITION 4. Let M be a real hypersurface of P,(C) (n=3).. If T°M is
a curvdature invariant subspace of TM and & is not a principal curvature vector,
then M is locally congruent to one of the cases (b), (c) in Theorem E.

PROOF. Since R(T°M, T*M)T°MCT°M, the equation (1.6) yields
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0=g(R(X, Y)Z, &)
=g(AY, Z)g(AX, §)—g(AX, Z)g(AY, §)

for any X, Y, Z&T°M and &=—JN.
Then we have

(3.10) NWAX)PAY=9(AY)pAX for any X, YeT'M.
We here consider a linear transformation ¢A: T°M—T°M. Note that
3.11) rank (pA)<1 at each point of M.,

( Suppose that rank(¢A)=2 at a certain point x of M. Then there
exist X, Y=T!M such that

(3.12) PAX+0, PpAY#0 and g(PpAX, pAY)=0.
So from (3.10) and (3.12) we see

(3.13) 7n(AX)=0.

'It follows from v(3.ld) and (3.13) fhat

3.14) N(AY)=0 for any Y (1 X).

Therefore, from (3.13) and (3.14) we find that & is a principal curvature
L vector at x, which is a contradiction.

Then (3.11) asserts that the Gauss equation (1.6) is reduced to
gR(X, Y)Z, W)=g(Y, 2)g(X, W)—g(X, Z)g(Y, W)+g(@Y, Z)g($X, W)

—g(@X, 2)g(@Y, W)—2g(¢p X, Y)g(¢Z, W),
that is,

R(X, Y)Z=g(Y, Z)X—g(X, 2)Y+g(9Y, Z2)pX—g(9 X, Z)pY
—2g(@X, Y)pZ for any X, Y, Z€T'M.

Then we conclude that our real hypersurface M satisfies that H=4. Therefore
Theorem E tells us that M is locally congruent to one of the cases (b), (c). Of

course the cases (b), (c) satisfy the hypothesis of Q.E.D.

We here provide a geometric meaning of the condition “the second funda-

mental form of M is y-parallel”. The following is due to Nakagawa.

PROPOSITION 5. Let M be a real hypersurface of P,(C). Then the following
are equivalent :
(i) The second fundamental form of M is n-parallel.
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(ii) Every geodesic y=y(t) (t<I) of M such that 7'(t) is orthogonal to & (for
any te<l), considered as a curve in P,(C), has constant first curvature along 7.

PROOF. We find that the condition (ii) is equivalent to g((VxA)X, X)=0
for any X(T°M). On the other hand, the Codazzi equation shows that
g(NVxA)Y, Z) is symmetric for any X, Y and Z(=7T°M). And hence the con-
dition (i) is equivalent to the condition (ii). Q.E.D.

REMARK 5. The first author ([8]) proved the following :

Let M be a real hypersurface of P,(C). Then every geodesic 7 of M, con-
sidered as a curve in P,(C), has constant first curvature along 7 if and only if
M is locally congruent to one of homogeneous real hypersurfaces of type A,
and Az.

REMARK 6. The authors do not know how to construct a real hypersurface
M with M°=@Q,_, (, that is, M is of case (5) in [Theorem 3).
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