ON A CONSTRUCTION OF INDECOMPOSABLE MODULES AND APPLICATIONS

Ву

Koji NISHIDA¹⁾

1. Introduction

One of the main purposes of this paper is to introduce a new method to get a family $\{M_n\}_{n=1,2,\dots}$ of indecomposable modules over a commutative Noetherian local ring R with the maximal ideal \mathfrak{m} , which will be done in Theorem (2.1) when R possesses a finitely generated R-module C of depth $_RC\geq 1$ such that $C\otimes_R\hat{R}$ (R is the completion of R with respect to the \mathfrak{m} -adic topology.) is indecomposable and the initial part of a minimal free resolution of C satisfies certain condition. Each M_n is a finitely generated R-module of $\dim_R M_n = \dim_R C$ and $\operatorname{depth}_R M_n = 0$ and if C is Cohen-Macaulay, then M_n is Buchsbaum (see [9] for the definition of Buchsbaum module.). Furthermore $M_n/H^0_{\mathfrak{m}}(M_n)$ ($H^0_{\mathfrak{m}}(M_n)$) $= \bigcup_{i\geq 1} [(0):\mathfrak{m}^i]_M$) is isomorphic to the direct sum of n-copies of C. Hence in this case there are "big" indecomposable R-modules without limit.

Another aim of us is to apply Theorem (2.1) to the Buchsbaum-representation theory in the one dimensional case. We say that a Noetherian local ring R has finite Buchsbaum-representation type if there are only finitely many isomorphism classes of indecomposable Buchsbaum R-modules M which are maximal, i.e. $\dim_R M = \dim R$. In [4] S. Goto determined the structure of one-dimensional complete Noetherian local rings R of finite Buchsbaum-representation type under the hypothesis that the residue class field of R is infinite, which will be removed in section 3 of this paper. Our family constructed by Theorem (2.1) has the suffix set of non-negative integers and this enables us to develope the same arguments in [4], not assuming the infiniteness of the residue class field.

Throught this paper R is a Noetherian local ring with the maximal ideal \mathfrak{m} . We denote by \hat{R} the completion of R with respect to the \mathfrak{m} -adic topology and $H^i_{\mathfrak{m}}(\cdot)$ is the i-th local cohomology functor of R relative to \mathfrak{m} . For each finitely generated R-module M let $\mu_R(M)$ be the number of elements in a minimal system of generaters for M and let M^n denote the direct sum of n-copies of

¹⁾ Partially supported by Grant-in-Aid for Co-operative Research. Received May 19, 1988

M. We regard each element of M^n as column vector with entries in M.

2. Construction of indecomposable modules.

Let C be a finitely generated R-module and let

$$\sigma: 0 \longrightarrow L \longrightarrow F \xrightarrow{\varepsilon} C \longrightarrow 0$$

be the initial part of a minimal free resolution of C. We define a homomorphism

$$\rho: \operatorname{End}_{R}(C) \longrightarrow \operatorname{End}_{R}(L/\mathfrak{m}L)$$

of algebras by

$$\rho(\phi)(\bar{z}) = \overline{\psi(z)}$$

for any $\phi \in \operatorname{End}_R(C)$ and $z \in L$, where $\overline{}$ denotes the reduction $\operatorname{mod} \mathfrak{m} L$ and ψ is an R-endomorphism over F with $\varepsilon \psi = \phi \varepsilon$. The well definedness of ρ is verified as follows. If ψ' is another R-endomorphism over F with $\varepsilon \psi' = \phi \varepsilon$, then $\psi' = \psi + \delta$ for some $\delta \in \operatorname{End}_R(F)$ with $\delta(F) \subset L$. Notice that $\delta(L) \subset \mathfrak{m} L$ because $L \subset \mathfrak{m} F$. Then we have $\overline{\psi'(z)} = \overline{\psi(z)}$ for any $z \in L$. We put $A_{\sigma} = \operatorname{Im} \rho$ and we regard $L/\mathfrak{m} L$ as a (left) A_{σ} -module. If $\operatorname{End}_R(C)$ is generated by $\phi_1, \phi_2, \cdots, \phi_r$ as R-module, then $\rho(\phi_1), \rho(\phi_2), \cdots, \rho(\phi_r)$ generate A_{σ} over R/\mathfrak{m} . Especially A_{σ} is equal to R/\mathfrak{m} if $\operatorname{End}_R(C)$ is a cyclic R-module.

Our main theorem is stated as follows with the above notations.

THEOREM (2.1). Let C be a finitely generated R-module such that depth_RC ≥ 1 and $C \otimes_R \hat{R}$ is indecomposable and let

$$\sigma: 0 \longrightarrow L \longrightarrow F \stackrel{\varepsilon}{\longrightarrow} C \longrightarrow 0$$

be the initial part of a minimal free resolution of C. Suppose there exist elements x and y of L such that \bar{x} and \bar{y} are linearly independent over A_{σ} . We denote, for each integer $n \ge 1$, by N_n the R-submodule of L^n generated by

$$\begin{pmatrix} x \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} y \\ x \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ y \\ x \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ y \\ x \end{pmatrix}$$

and $\mathfrak{m}L^n$. We put $M_n=F^n/N_n$. Then the following statements hold.

- (1) M_n is indecomposable if A_{σ} is commutative.
- (2) $M_n \cong M_m$ if $n \neq m$.

(3) M_n is a maximal Buchsbaum R-module if C is maximal Cohen-Macaulay.

Before the proof of Theorem (2.1) we show the next lemma, which may be well-known, since it plays a key role.

LEMMA (2.2). Let A be a commutative ring with an identity element and T be an A-module. Suppose there are elements x, y of T which are linearly independent over A and P, Q are $n \times n$ $(n \ge 1)$ matrices with entries in A. Then if

$$P\begin{bmatrix} x & y & & & \\ & x & y & 0 & \\ & & \ddots & \\ & 0 & & \ddots & \\ & & & & x \end{bmatrix} Q = \begin{bmatrix} \frac{\Pi_1}{0} & \frac{1}{\Pi_2} \end{bmatrix}$$

for some matrices Π_1 and Π_2 with entries in T, either P or Q is singular.

PROOF. Assume that both P and Q are regular. Let

$$N = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{bmatrix}.$$

As x and y are linearly independent over A, we have

$$PQ = \begin{bmatrix} \Phi_1 & 0 \\ \hline 0 & \Phi_2 \end{bmatrix}$$
 and $PNQ = \begin{bmatrix} \Psi_1 & 0 \\ \hline 0 & \Psi_2 \end{bmatrix}$

for some matrices Φ_i and Ψ_i with entries in A of the same size as Π_i . Since PQ is a regular matrix, Φ_i must be square and regular. Hence we get

$$PNP^{-1} = \left[\begin{array}{c|c} \Omega_1 & 0 \\ \hline 0 & \Omega_2 \end{array} \right].$$

where $\Omega_i = \Psi_i \Phi_i^{-1}$. Take a maximal ideal J of A. For any matrix X with entries in A we denote by \overline{X} the matrix of which entries are the classes of the entries of X in A/J. Then \overline{P} is still regular and

$$\bar{P}\bar{N}(\bar{P})^{-1} = \begin{bmatrix} \bar{\Omega}_1 & 0 \\ 0 & \bar{\Omega}_2 \end{bmatrix}.$$

But this contradicts the uniqueness of the Jordan's normalform.

Now let us start the proof of Theorem (2.1).

(3). Applying [4, Lemma (2.3)] to the exact sequence

$$\begin{bmatrix} \varepsilon & \cdot & \cdot & \\ & \cdot & \cdot & \varepsilon \end{bmatrix}$$

$$\tau \colon 0 \longrightarrow L^n \longrightarrow F^n \longrightarrow C^n \longrightarrow 0$$

and N_n we get that M_n is a maximal Buchsbaum R-module if C is maximal Cohen-Maculay.

(2). The exact sequence

$$0 \longrightarrow L^n/N_n \longrightarrow F^n/N_n \longrightarrow C^n \longrightarrow 0$$

induced from τ yields $H_m^0(M_n) = L^n/N_n$ and so $M_n/H_m^0(M_n) \cong C^n$. Hence $M_n \not\equiv M_m$ if $n \neq m$.

(1). We shall prove that M_n is indecomposable in the following. Assume $M_n = X_1 \oplus X_2$ with non-zero R-submodules X_i . Then $\overline{X}_1 \oplus \overline{X}_2 \cong C^n$, where $\overline{X}_i = X_i/H_m^0(X_i)$. Since the category of finitely generated \widehat{R} -modules is a Krull-Schmidt category and since $C \otimes_R \widehat{R}$ is indecomposable, so $\overline{X}_i \otimes_R \widehat{R} \cong C^{s_i} \otimes_R \widehat{R}$ for some integers s_i with $s_1 + s_2 = n$. So we have $\overline{X}_i \cong C^{s_i}$ by [8, Lemma 5.8]. Because $H_m^0(X_i) \subset \mathfrak{m} X_i$ by $H_m^0(M_n) \subset \mathfrak{m} M_n$, we get a commutative diagrams

with exact rows and columns for i=1, 2. Then $F^{s_i}/N_i'\cong X_i$ and $\mathfrak{m} L^{s_i}\subset N_i'\subset L^{s_i}$. Let $t_i=\mu_R(N_i')$ and let N_i' be generated by

$$\left(\begin{array}{c} z_{1,1}^{(i)} \\ \vdots \\ z_{s_{i},1}^{(i)} \end{array} \right), \left(\begin{array}{c} z_{1,2}^{(i)} \\ \vdots \\ z_{s_{i},2}^{(i)} \end{array} \right), \cdots \left(\begin{array}{c} z_{1,t_{i}}^{(i)} \\ \vdots \\ z_{s_{i},t_{i}}^{(i)} \end{array} \right) (z_{\nu,\mu}^{(i)} \in L).$$

Let N' be an R-submodule of $L^n = L^{s_1} \oplus L^{s_2}$ which is generated by

$$\begin{bmatrix}
z_{1,1}^{(1)} \\
\vdots \\
z_{s_{1},1}^{(1)} \\
0 \\
\vdots \\
0
\end{bmatrix},
\begin{bmatrix}
z_{1,t_{1}}^{(1)} \\
\vdots \\
z_{s_{1},t_{1}}^{(1)} \\
0 \\
\vdots \\
z_{s_{0},t_{1}}^{(2)}
\end{bmatrix},
\begin{bmatrix}
0 \\
\vdots \\
0 \\
z_{1,t_{2}}^{(2)} \\
\vdots \\
\vdots \\
z_{s_{0},t_{0}}^{(2)}
\end{bmatrix},
\begin{bmatrix}
0 \\
\vdots \\
0 \\
\vdots \\
0
\end{bmatrix}$$

Then $F^n/N'\cong X_1\oplus X_2$ and so $F^n/N'\cong F^n/N_n$. Hence applying [4, Lemma (2.3)] to N_n , N' and τ we have $\phi(N_n)=N'$ for some $\phi\in\operatorname{Aut}_R(F^n)$ with $\phi(L^n)\subset L^n$. Let $\xi\in\operatorname{End}_R(L^n/\mathfrak{m}L^n)$ be the endomorphism induced from ϕ . We identify $\operatorname{End}_R(L^n/\mathfrak{m}L^n)$ with the matrix algebra $M_n(\Gamma)$, where $\Gamma=\operatorname{End}_R(L/\mathfrak{m}L)$. Put $\xi=[\xi_{ij}]_{1\leq i,\,j\leq n}$. Since there is an automorphism $\phi\in\operatorname{Aut}_R(C^n)$ which makes the following diagram

$$0 \longrightarrow L^n \longrightarrow F^n \longrightarrow C^n \longrightarrow 0$$

$$\psi \downarrow \qquad \phi \downarrow$$

$$0 \longrightarrow L^n \longrightarrow F^n \longrightarrow C^n \longrightarrow 0$$

commutative, we have $\xi_{ij} \in A_{\sigma}$ for any $1 \le i$, $j \le n$ and $[\xi_{ij}]_{1 \le i, j \le n}$ is a regular matrix of $M_n(A_{\sigma})$. Furthermore because $\xi(N_n/\mathfrak{m}L^n) = N'/\mathfrak{m}L^n$, we have

$$egin{align*} \left[egin{align*} ar{z} & ar{y} & & & & & & \\ & ar{z} & ar{y} & & & & & \\ & & \cdot & \cdot & ar{y} & & & \\ & & \cdot & ar{z} \end{array}
ight] Q = egin{align*} ar{z_{1,1}^{(1)}} & \cdot \cdot \cdot & \overline{z_{1,t_1}^{(1)}} & 0 & \cdot \cdot \cdot & 0 \\ & & \cdot & \cdot & & & \cdot & \\ \hline z_{t_1,1}^{(1)} & \cdot \cdot \cdot & \overline{z_{t_1,t_1}^{(1)}} & 0 & \cdot \cdot \cdot & 0 \\ \hline 0 & \cdot \cdot \cdot & 0 & \overline{z_{t_1,1}^{(2)}} & \cdot \cdot \cdot & \overline{z_{t_1,t_2}^{(2)}} \\ \hline \vdots & & \ddots & \ddots & \ddots & \\ \hline 0 & \cdot \cdot \cdot & 0 & \overline{z_{t_2,1}^{(2)}} & \cdot \cdot \cdot & \overline{z_{t_2,t_2}^{(2)}} \\ \hline \end{array}$$

for some $n \times n$ regular matrix Q with entries in R/\mathfrak{m} (Hence $Q \in M_n(A_\sigma)$). But this is a contradiction by Lemma (2.2) and the proof is completed.

We note the following corollary which is a special case of Theorem (2.1).

COROLLARY (2.3). Let C and

$$\sigma: 0 \longrightarrow L \longrightarrow F \longrightarrow C \longrightarrow 0$$

be as in Theorem (2.1) and let $A_{\sigma} = R/\mathfrak{m}$. Then if $\mu_R(L) \geq 2$, there exists a family $\{M_n\}_{n=1,2\cdots}$ of finitely generated indecomposable R-modules such that $M_n \cong M_m$ for $n \neq m$ and M_n is maximal Buchsbaum if C is maximal Cohen-Macaulay.

The typical example such that A_{σ} is not equal to R/\mathfrak{m} is the next

Example (2.4). Let k be any field, then the semi-group ring $R = k[t^3, t^4, t^5]$

has a family $\{M_n\}_{n=1,2,...}$ of indecomposable maximal Buchsbaum R-modules such that $M_n \cong M_m$ if $n \neq m$.

PROOF. Put $S=k[t]=R+Rt+Rt^2$ and let

$$\sigma: 0 \longrightarrow L \longrightarrow R^3 \stackrel{\varepsilon}{\longrightarrow} S \longrightarrow 0$$

be the initial part of a minimal free resolution with

$$\varepsilon(e_1)=1$$
, $\varepsilon(e_2)=t$ and $\varepsilon(e_3)=t^2$,

where e_1 , e_2 , e_3 are the canonical basis of R^3 . Since S is an indecomposable maximal Cohen-Macaulay R-module, by Theorem (2.1) it is sufficient to show that A_{σ} is commutative and there exist elements x and y of L such that \bar{x} and \bar{y} are linearly independent over A_{σ} , where $\bar{\cdot}$ denotes the reduction mod mL ($m=t^3S$). As $\operatorname{End}_R(S)$ is a commutative R-algebra which is generated by $\mathbf{1}_S$, $t\mathbf{1}_S$ and $t^2\mathbf{1}_S$ as R-module, so A_{σ} is commutative and $\rho(\mathbf{1}_S)=\mathbf{1}_{L/mL}$, $\rho(t\mathbf{1}_S)$ and $\rho(t^2\mathbf{1}_S)$ generate A_{σ} over k. We put $\xi_i=\rho(t^i\mathbf{1}_S)$ for i=1, 2. Let α_1 and α_2 be the R-endomorphisms over R^3 defined by the matrices

$$\begin{bmatrix} 0 & 0 & t^3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & t^3 & 0 \\ 0 & 0 & t^3 \\ 1 & 0 & 0 \end{bmatrix}$$

respectively. Then $\varepsilon \alpha_i = (t^i \mathbf{1}_s) \varepsilon$ for i=1, 2. Hence ξ_i is induced from α_i . Put

$$x = \begin{bmatrix} t^{4} \\ -t^{3} \\ 0 \end{bmatrix}, \quad x_{1} = \begin{bmatrix} 0 \\ t^{4} \\ -t^{3} \end{bmatrix}, \quad x_{2} = \begin{bmatrix} -t^{6} \\ 0 \\ t^{4} \end{bmatrix}, \quad y = \begin{bmatrix} t^{5} \\ -t^{4} \\ 0 \end{bmatrix}, \quad y_{2} = \begin{bmatrix} 0 \\ t^{5} \\ -t^{4} \end{bmatrix}, \quad y_{3} = \begin{bmatrix} -t^{7} \\ 0 \\ t^{5} \end{bmatrix}.$$

Then we have $\xi_i \bar{x} = \bar{x}_i$ and $\xi_i \bar{y} = \bar{y}_i$. Assume

$$(a_0 \mathbf{1}_{L/mL} + a_1 \xi_1 + a_2 \xi_2) \bar{x} + (b_0 \mathbf{1}_{L/mL} + b_1 \xi_1 + b_2 \xi_2) \bar{y} = 0$$

with $a_i \in k$ and $b_j \in k$. Then we get

$$a_0\bar{x} + a_1\bar{x}_1 + a_2\bar{x}_2 + b_0\bar{y} + b_1\bar{y}_1 + b_2\bar{y}_2 = 0$$
.

Since \bar{x} , \bar{x}_1 , \bar{x}_2 , \bar{y} , \bar{y}_1 , \bar{y}_2 are linearly independent over k, so

$$a_0 = a_1 = a_2 = b_0 = b_1 = b_2 = 0$$
.

Hence \bar{x} and \bar{y} are linearly independent over A_{σ} .

3. Curve singularities of finite Buchsbaum-representation type.

This section is devoted to verifying that we can avoid the restriction on the residue class field in [4, Theorem (1.1)]. But we will not look over the whole arguments developed in [4] since it is sufficient to prove only [4, Corollary (2.4)]. [4, Theorem (2.7)], [4, Theorem (3.1)] and [4, Proposition (6.1)] without the hypothesis that the residue class field is infinite. Throught this section we assume that R is complete and $\dim R=1$.

We begin with the following

PROPOSIEION (3.1) (cf. [4, Corollary (2.4)]). Let R have finite Buchsbaum-representation type and I be an ideal of R such that R/I is a Cohen-Macaulay ring of dim R/I=1. Then $\mu_R(I) \leq 1$.

PROOF. Applying Corollary (2.3) to the exact sequence

$$\sigma: 0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$$
,

we have $\mu_R(I) \leq 1$.

THEOREM (3.2) (cf. [4, Theorem (2.7)]). Let R be a Cohen-Macaulay ring with the canonical module K_R . If R has finite Buchsbaum-representation type, then $v(R) \leq 2$, where v(R) denotes the embedding dimension of R.

Proof. Let

$$\sigma: 0 \longrightarrow M \longrightarrow F \longrightarrow K_R \longrightarrow 0$$

be the initial part of a minimal free resolution of K_R . Since $\operatorname{End}_R(K_R) = R$, we have $A_{\sigma} = R/\mathfrak{m}$. Hence $\mu_R(M) \leq 1$ by Corollary (2.3). Then the proof of [4, Theorem (2.7)] works for the rest.

THEOREM (3.3) (cf. [4, Theorem (3.2)]). Let P be a regular local ring of dim P=2 and let R=P/fP with $f\in P$. We denote the integral closure of R in its total quotient ring by \overline{R} . If \overline{R} is module-finite over R and $e(R)\geq 3$, where e(R) denote the multiplicity of R, then there exists a family $\{M_n\}_{n=1,2,...}$ of indecomposable maximal Buchsbaum R-modules such that $M_n \cong M_m$ if $n \neq m$.

PROOF. Let L be the first syzygy module of \mathfrak{m} . Since \mathfrak{m} is an indecomposable maximal Cohen-Macaulay R-module, the minimal free resolution of \mathfrak{m} is periodic of period 2 and L is indecomposable by [2] and [7]. Hence we have an exact sequence

$$\sigma: 0 \longrightarrow \mathfrak{m} \longrightarrow F \longrightarrow L \longrightarrow 0$$

with F R-free. We put $A = \{x \in \overline{R} \mid x \mathfrak{m} \subset \mathfrak{m}\}$, which we identify with $\operatorname{End}_R(\mathfrak{m})$ as algebras. Then by $[4, \operatorname{Proposition}(3.4)]$ there is an element $h \in A$ such that A = R + Rh and $h\mathfrak{m} \subset \mathfrak{m}^2$. Hence $\operatorname{End}_R(\mathfrak{m}/\mathfrak{m}^2) = A_\sigma = R/\mathfrak{m}$. Since R is not regular, $\mu_R(\mathfrak{m}) \geq 2$ and so we can get the required family by Corollary (2.3).

By Theorem (3.2), Theorem (3.3) and [1] we have the next

THEOREM (3.4) (cf. [4, Theorem (3.1)]). Let R be a Cohen-Macaulay ring. Then R is reduced and $e(R) \leq 2$ if R has finite Buchsbaum-representation type.

Finally we prove the following

PROPOSITION (3.5) (cf. [4, Proposition (6.1)]). If R has finite Buchsbaum-representation type, then $e(R) \le 2$ and $v(R) \le 2$.

PROOF. Our method of proof is almost the same as the proof of [4, Proposition (6.1)] and so see it for the detail.

Let $I=H^{\mathfrak{m}}(R)$. Then R/I is a Cohen-Macaulay ring of finite Buchsbaum-representation type. Hence we get by Theorem (3.4) that R/I is reduced and $e(R/I)=e(R)\leq 2$. As $\mu_R(I)\leq 1$ by Proposition (3.1) and as $v(R/I)\leq 2$ by Theorem (3.2), we have $v(R)\leq 3$. We show $v(R)\neq 3$ in the following. Assume v(R)=3. Then v(R/I)=2 and $\mu_R(I)=1$, hence e(R/I)=2. We put I=zR. By [4, Claim 1 in the proof of Proposition (6.1)] R/I is an integral domain. We denote the normalization of R/I by S. Let $\overline{\mathfrak{m}}$ be the maximal ideal of R/I and let $\overline{\mathfrak{m}}=(\bar{x},\bar{y})$ and S=R+Rt, where $t=\bar{x}/(\bar{y})^n$ for suitable $n\geq 1$. Furthermore we get an exact sequence

$$R^{4} \xrightarrow{\begin{bmatrix} z & 0 & x & bx + ay^{n} \\ 0 & z & y^{n} & z \end{bmatrix}} R^{2} \xrightarrow{\epsilon} S \rightarrow 0$$

for some $a \in R$ and $b \in R$ with $t^2 = \bar{a} + \bar{b}t$, where

$$\varepsilon \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$$
 and $\varepsilon \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -t$.

We note if $a \in \mathfrak{m}$, then $b \in \mathfrak{m}$. Let $L = \operatorname{Ker} \varepsilon$. Then L is generated by

$$v_1 = \begin{bmatrix} z \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ z \end{bmatrix}, \quad v_3 = \begin{bmatrix} x \\ y^n \end{bmatrix}, \quad v_4 = \begin{bmatrix} bx + ay^n \\ x \end{bmatrix}.$$

We apply Theorem (2.1) to the exact sequence

$$\sigma: 0 \longrightarrow L \longrightarrow R^2 \xrightarrow{\varepsilon} S \longrightarrow 0$$
.

Since $\operatorname{End}_R(S)$ is a commutative R-algebra which is generated by $\mathbf{1}_S$ and $t\mathbf{1}_S$ as R-module, so A_σ is commutative and $\rho(\mathbf{1}_S) = \mathbf{1}_{L/\mathfrak{m}L}$ and $\rho(t\mathbf{1}_S)$ generate A_σ over R/\mathfrak{m} . We put $\xi = \rho(t\mathbf{1}_S)$. Because the following diagram

$$\begin{bmatrix} 0 & a \\ 1 & -b \end{bmatrix} \xrightarrow{R^2} \xrightarrow{\varepsilon} \xrightarrow{S} S$$

is commutative, we have

$$\xi \bar{v}_1 = \bar{v}_2$$
, $\xi \bar{v}_2 = (a \mod \mathfrak{m}) \bar{v}_1 - (b \mod \mathfrak{m}) \bar{v}_2$,

$$\xi \bar{v}_3 = \bar{v}_4 - (b \mod \mathfrak{m}) \bar{v}_3, \quad \xi \bar{v}_4 = (a \mod \mathfrak{m}) \bar{v}_3$$

where $\bar{v}_i = v_i \mod \mathfrak{m} L$ for $1 \leq i \leq 4$. Hence if $a \in \mathfrak{m}$, then \bar{v}_1 and \bar{v}_4 are linearly independent over A_{σ} and if $a \in \mathfrak{m}$, then \bar{v}_1 and \bar{v}_3 are linearly independent over A_{σ} . But this is a contradiction by Theorem (2.1).

References

- [1] Auslander, M., Isolated singularities and existence of almost split sequences, Proc. ICRA IV, Springer Lecture Notes in Math., 1178 (1986), 194-241.
- [2] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. A.M.S., 260 (1980), 35-64.
- [3 [Goto, S., Maximal Buchsbaum modules over regular local rings and a structure theorem for generalized Cohen-Macaulay modules, Advanced Studies in Pure Mathematics, 11 (1987), 39-64.
- [4] Goto, S., Curve singularities of finite Buchsbaum-representation type, Preprint 1987.
- [5] Goto, S., Surface singularities of finite Buchsbaum-representation type, Preprint 1987.
- [6] Goto, S. and Nishida, K., Rings with only finitely many isomorphism classes of indecomposable maximal Buchsbaum modules. to appear in J. Math. Soc. Japan.
- [7] Herzog, J., Ringe mit nur entrich vielen Isomorphieklassen von maximalen unzerlegbaren Cohen-Macaulay Modulen, Math. Ann., 233 (1978), 21-34.
- [8] Herzog, J. and Kunz, E., Der kanonische Modul eines Cohen-Macaulay Rings, Springer Lecture Notes in Math., 238 (1978).
- [9] Stuckrad, J. and Vogel, W., Buchsbaum rings and applications, VEB Deutscher Verlag der Wissenschaften, 1987.

Department of Mathematics Faculty of Science Chiba University Yayoi-cho, Chiba-shi 260 Japan