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PROPER ISOPARAMETRIC SEMI-RIEMANNIAN
SUBMANIFOLDS IN A SEMI-RIEMANNIAN
SPACE FORM

By

Naoyuki KOIKE

§0. Introduction.

In a sphere, Erbacher and Yano-Ishihara characterized Riemannian
submanifolds with non-negative sectional curvature, flat normal connection and
parallel mean curvature vector under the additional assumptions. It is a natural
question to consider this problem in the semi-Riemannian case. Recently, we
characterized proper isoparametric semi-Riemannian hypersurfaces in a semi-
Riemannian space form under certain assumptions [1]. The main purpose of
this paper is to characterize, in a semi-Riemannian space form, proper isopara-
metric semi-Riemannian submanifolds with non-negative (or non-positive) sec-
tional curvature and parallel mean curvature vector under certain additional
assumptions.

The author wishes to express his gratitude to Professor S. Yamaguchi for
his constant encouragement and various advice. He also wishes to thank Pro-
fessor N. Abe for his helpful suggestions.

§1. Preliminaries.

Throughout this paper, all manifolds are smooth and connected and geo-
metrical objects are assumed to be smooth unless mentioned otherwise. In this
section, we prepare basic facts about semi-Riemannian submanifolds in a semi-
Riemannian manifold. We call a non-degenerate symmetric (0, 2)-tensor field
on an n-dimensional manifold M™ a semi-Riemannian metric of M" and a mani-
fold M™ equipped with such a metric a semi-Riemannian manifold. Especially,
an n-dimensional real vector space equipped with a non-degenerate symmetric
bilinear form of signature (v, n—vy) given by

{x, x)z—iz;xi2+j >3 x5

=y+41
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is called an n-dimensional semi-Euclidean space and is denoted by R, where
x=(xy, -+, Xn) is the natural coordinate. A frame (e, '--, e,) is said to be
orthonormal if |<{e;, e;>|=0;;. Semi-Riemannian manifolds S2(¢) and H}(c)
given by

v n+1
SpHO={(x1, ) Xa)ERI | = Z x4 3 xit=1/c} (e>0),

v+1 n+1
HMc)={(xy, **+, Xns1)ERM! | —tgxi2+i§2xﬁ=l/c} (c<0)

are called a semi-sphere and a semi-hyperbolic space, respectively. These spaces
are complete and of constant curvature ¢, that is,
R(X, Y)Z=c(XN\Y)Z (=cKY, Z>X—KX, Z}Y)),

where R is the curvature tensor (n=2). It is clear that S?(¢) is diffeomorphic
to R*XS™* and H?(c) is diffeomorphic to S*X R"~*, where S#=S%4 and R*=Rj%.
We note that S?(c) and H?%(c) are not connected and S?_,(¢) and H?%(c) are not
simply connected. “We call these three spaces R?, S*(c) and H?*(c) semi-Rieman-
nian space forms.

A semi-Riemannian manifold M™ isometrically immersed into a semi-Rie-
mannian manifold M™ by an immersion f is called a semi-Riemannian submani-
fold of M. Since f can be treated locally as an imbedding, p (€M) will often
be identified with f(p) and the mention of f will be supressed. Especially if
n=m—1, then M is called a semi-Riemannian hypersurface of M. Let T,M
(resp. T3M) be the tangent space (resp. the normal space) of M at peM, TM
(resp. T*M) the tangent bundle (resp. the normal bundle) of M and I'(TM)
resp. I'(T*M)) the space of all cross sections of TM (resp. T*M). We denote
the semi-Riemannian metrics of M and M by <,> and the Levi-Civita connec-
tions on M (resp. M) by V¥ (resp. V). For any XeTM and any Y I'(TM),
we have the Gauss formula:

(1.1 VxY=VxY+h(X,Y),

where VyY and A(X, Y) are the tangential and the normal components of VxY
respectively. It is easy to show that h is symmetric. We call h the second
fundamental form of the semi-Riemannian submanifold M.

For any XeTM and any EcI'(T+*M), we have the Weingarten formula:

(1.2) VxE=—AgX+VLE,

where —AzX and V4E are the tangential and the normal components of VxE
respectively. It is easy to verify that V* is a connection of the normal bundle
of M. We call A the shape operator of the semi-Riemannian submanifold M.
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It follows that
(1.3) WX, Y), E>=CAgX, Y>

for any X, YT ,M and any EcT;M (psM).
Let B and R be the curvature tensors of M and M, respectively. The
equation of Gauss is given by

RX, )Z=(R(X, V)2)"+S ei(As, XN As,Y)Z  (s8=(Eq, Eo)

for any X,Y and Z&€T ,M (p=M), where (ﬁ(X, Y)Z)T is the tangential com-
ponent and (E,, ---, E,.,) is an orthonormal frame of T5M. The equation of
Codazzi is given by

(R(X, Y)EY'=(V4 A)s X—(Vx A)sY

for any X,YeT,M and any E€TiM (pM), where (VyAY =Vx(A4AgY)
AV‘LYEY——AE(VXY). In particular, if M is of constant curvature ¢, then these
equations can be rewritten as follows:

(1.4) R(X, V)=t X\Y+ 'S et Ap, XN Ag,Y

(1.5) (VxA)eY =Ny A)eX.

§2. Shape operators of proper isoparametric semi-Riemannian
submanifolds.

Let Q@ be a (1, 1)-tensor of a real vector space V equipped with a non-
degenerate symmetric bilinear form. If Q can be expressed by a real diagonal
matrix with respect to an orthonormal frame of V, then @ is said to be proper.

LEMMA 2.1. Let Q,, -+, Qi be proper (1, 1)-tensors of V such that [Qq, Q5]
=0 (1<aqa, b<k). Then Q. -+, Q, are simultaneously diagonalizable with respect
to an orthonormal frame of V.

PROOF. It is sufficient to show the case where k=2. Let {4, -+, 4} (resp.
{gt1, -+, pu}) be the set of all distinct eigenvalues of Q, (resp. Q.). Set V;,=
Ker(Q,—2.0) (1<a<t), Wy=Ker(Q:—ppl) 1=<b=u). Let v be a vector of
Va,- There exists a unique v,&W,, (1<b<u) such that v=v,+ --- +v, because
of V= & W,, where @ means the orthogonal direct sum. By operating Q,

1sbsu

to both sides of v=v,+ --- +v,, we have v+ - +2.0.=Q,v,+ -+ +Qv,. On
the other hand, from [Q,, Q.]=0, it follows that Q.v,&€W,, (1=b=<u). Hence,
we have Q,v,=2,v,, which means that v, V; "W, Therefore, we can obtain
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Vig= D (V2,\W,,) and hence V= & (V;,NW,,) because of V= G V,,

beGq (a,bHet 1sast
where G={(a, b) | 1Za<t, 1=20=5u, (Vi ,\W,,#{0})} and G.={b|(a, b)=G}
(I1=a=<t). Moreover, since V; ,NW,, ((a, b)G) are orthogonal to one another,
they are non-degenerate, respectively. So we can take orthonormal frames of
Vi, W, ((a, b)€G) and, by using them, we can construct an orthonormal
frame of V. It is clear that Q, and @, are simultaneously diagonalizable with
respect to this orthonormal frame. This completes the proof. Q.E.D.

Let A be the shape operator of a semi-Riemannian submanifold M of a
semi-Riemannian manifold M. The submanifold M is said to be proper if Ag
is proper for any EcT*M. If the normal connection is flat and the charac-
teristic polynomial of Ay is constant over the domain of E for any local parallel
normal vector field E, then M is said to be isoparametric [3, 11]. By a similar
method to the proof of Lemma 2 in [2], we can show the following.

LEMMA 2.2. Let M™ be a proper semi-Riemannian submanifold in a semi-
Riemannian space form M™T of constant curvature ¢ with flat normal connection
and parallel mean curvature vector. Then we have

ACA, AY=2(T'A, V' A>+ 3}

2, ZKQ—19KEq, Eo,

where (e, -+, en) and (E,, ---, E,) are an orthonormal tangent frame and an
orthonormal normal frame of M such that Ag,e;=2%e; (1<i<n, 1<a<r), Ky
is the sectional curvature with respect to the 2-dimensional subspace spanned by

e; and e; (1#7), and A is the Laplacian operator of M.
Note that <A, A> and <V'A, V'A> are defined as follows:

<A, A>=i_ﬁ‘,1 aé ei€a{Ag, i, Ag,e:>  and

r

(VA V' Ay= jz > eves6i (Vo A)p e (Vo A e

i 1 a=1
where e;=<e;, ¢;> (1=i=<n) and e;=<(E,, E.) (1Zay).
We denote by B,P --- @B, the following matrix:

B,. 0

0 B,

where B; (1=<7/</) are square matrices, respectively.
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By using Lemma 2.1 and 2.2, we can show the following theorem.

THEOREM 2.3. Let M™ be a proper isoparametric semi-Riemannian submani-
fold in R with parallel mean curvature vector and <N'A, V'A)>=0. Further-
more, suppose that all sectional curvatures of M are non-negative (resp. non-
positive) and <{,>|riy is positive definite (resp. negative definite). Then, for any
point p of M, there exists a parallel orthonormal normal frame field (E,, ---, E.)
on a neighborhood U of p with the property (#): At each point of U, Ag,, -+, Ag,
can be expressed with respect to a certain orthonormal tangent frame (e, -, en)

as follows:
AE1=21111®01¢1 ’

AE2=011€B22112€901:2 B

......

s$—1
Ag,=(B 01, ) DAL B0s,
a=1
AEs+1: ::AErZO ’
where 2,#0, kazn—'blezb, .21 (1<a<s), k=0 and 0, and I, are the zero
matrix of type (I, 1) and the identity matrix of type (I, 1), respectively.

PrRoOF. Fix a point p of M. Since the normal connection of M is flat,
there exists a parallel orthonormal normal frame field (E,, ---, E,) on a neigh-
borhood U of p and moreover [Ag,, Ag,]=0 holds (1=a, b<r). Hence, by
Lemma 2.1, Ag,, -+, Az, are simultaneously diagonalizable with respect to an
orthonormal tangent frame at each point of U. Suppose that Ag, ---, Ag, are
expressed with respect to an orthonormal tangent frame (e,, :--, e,) at each
point of U as follows:

Ag,=A1,D - DAxLy, -, Ap,=ALD - DARL,.
By our assumptions and Lemma 2.2, we have

(2.1) K;j23—2%=0 (1=a=sr, 1Si#j<n).
In the first place, suppose that p is a geodesic point, that is, Ag,= - =Ag,
=0 at p. Since M is isoparametric, Ag,= - =Ag,=0on U. Thus (E,, ---, E,)

satisfies the property (#).

In the next place, we consider the case where p is not a geodesic point.
Since p is not a geodesic point, we may assume that A}#0, K,;#0 2<:<U))
and K;;=0 (/;+1=7<n). From (2.1), we have
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(2.2) $=2% 2<i<ly, 1a<r).
We set
Ef: =( S 8EL)/ 4,

Ey: =(RE,~REN/(A+@)H? 2<b<r),

where A,= aé (2‘1‘)2>”2. It is clear that
CEi{, Ey==1, (Ei, Ey=0, (E,, Ey==+1, V*E{=V*E,=0.

Because of (2.2), AEi and Ag, (2=b<r) are expressed as follows:

Ag, =401,V [,D -+ BRI

Ap,=0,B2} 1. [P --- PII, (2<b<7).

Let (E3, -+, E]) be an orthonormal normal system given by applying Gram-
Schmidt orthogonalization to (E,, -+, E,). It is clear that E; (2<b<r) are
parallel and AE& (2<b<r) are expressed as follows:

Ag; =0,V l,® - OXb; (2<b=7).
By the assumption that K;;=0 (/;+1<7/<n) and the equation [(1.4), we have
0=K,;={e,, e:1)<e;, e;){R(e,, e;)e;, e,>
={e,, e )<e;, e;){x g,l(AE&el/\AE&ei)ei, e

=+4,4},
that is, A’1=0 (,+1<:/<n). After all, we obtain AEi-—:llIh@On_,l. Thus if
Ag,= - =Ag =0, (E], ---, E;) satisfy the property (#). So we consider

the case where there exists =2 such that A%;&O. We may assume that 2;%;,

QEO, Kl1+1,i¢0 (l1+2§2§_11+12) and Kll+1,j:0 ([1+12+1§]§n). By the same
process as the above, we can obtain a parallel orthonormal normal system
(E%4, -, EJ) such that

AE;_—"Otl@Zz[zzEBOn-zl-tz ’
AE’;———011+12®171D+12+111€B EBZ”%II (3§b§7’) .

In the sequel, by repeating the same process, we reach the conclusion. Q.E.D.

In general, if M is simply connected and the normal connection is flat, then
there exists a parallel orthonormal normal frame field on M. By using this
fact, we can obtain the following.
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THEOREM 2.4. Under the same hypothesis asin Theorem 2.3, if M is simply
connected, then there exists a parallel orthonormal normal frame field (E,, -, E,)
on M with the property (#) in Theorem 2.3.

§3. Eigendistributions of the shape operator.

Let M be a semi-Riemannian manifold equipped with a metric {,)» and D a
distribution on M, that is, a subbundle of the tangent bundle TM. If VxY =D
for any XeTM and any YeI'(D), then D is said to be parallel, where I'(D)
is the space of all cross sections of D. If {,>|p is non-degenerate at each
point of M, then D is said to be non-degenerate. We have

LEMMA A. Let D be a non-degenerate parallel distribution on a semi-Rie-
mannian manifold M. Let M’ be the maximal integral manifold of D through
a point of M. Then M’ is a totally geodesic semi-Riemannian submanifold of M.
If M is complete, then so is M.

Let Q be a (1, 1)-tensor field on M. If Q is proper at each point of M,
then Q is said to be proper. The following result is stated in [1].

LEMMA B. Let Q be a proper (1, 1)-tensor field on M which has exactly two
mutually distinct constant eigenvalues A, and A,. Suppose that (NxQ)Y =NVyQ)X
holds for any X,Y&T,M (p€M). Then D,,=Ker (Q—Al) (i=1, 2) are non-
degenerate parallel distributions on M.

By using these results, we obtain the following theorem.

THEOREM 3.1. Let M™ be a semi-Riemannian submanifold of RI". Suppose
that for each point p of M, there exists a parallel orthonormal normal frame
field (E,, -+, E.) on a neighborhood U of p with the property (#) in Theorem
2.3. Then

(i) Do=Ker (Ag,—2) (1=a<s) and Dy=(D.P - @Ds)* are parallel on U
respectively, where (D@D --- @Ds)* is the orthogonal complement of DD --- PD;
in TU,

(ii) the each maximal integral manifold of D, is a totally umbilical sub-
manifold of RI7™ with the mean curvature vector etAE, (e:=<(E,4, Eq)) (1=2a<5s)
and that of D, is a totally geodesic semi-Riemannian submanifold of R}*".

PROOF. Let us restrict ourselves to the neighborhood U.
(i) By applying Lemma B to Ag,, we see that each D, is parallel on U



138 Naoyuki KOIKE

(1=a<s). Since D@ - PD; is parallel on U, so is the orthogonal comple-
ment D,.

(ii) Let U, be the maximal integral manifold of D, through a point of
U (1<a<s). We denote the second fundamental form of U (resp. U(,,) in R
by h (resp. h,). Take X, YT Uw> (€U ). Since U, is totally geodesic
in U, ho(X,Y)=h(X,Y) holds. Also, by the assumption, we have

B(X, Y)= 33 ei<h(X, V), EE,

,,2 et A, X, Y E,
=<(X, Y)elA . E,.

Thus we obtain that A.(X, Y)=<KX, Y)ejA.E,, thatis, U, is a totally umbilical
submanifold of R2*" with the mean curvature vector eiA,E,. Similarly, we can
show that the each maximal integral manifold of D, is a totally geodesic semi-
Riemannian submanifold of R}*". Q.E.D.

§4. Proper isoparametric semi-Riemannian submanifolds
in a semi-Euclidean space.

In this section, we characterize proper isoparametric semi-Riemannian sub-
manifolds in a semi-Euclidean space under the hypothesis as in
Now we prepare the following lemma.

LEMMA 4.1. Let M™ be a semi-Riemannian submanifold of R™T™ with the
second fundamental form h and D,, ---, D, non-degenerate parallel distributions
on M such that TM=D,® --- ®D,. Suppose that h(X, Y)=0 holds for any X<
(Do), and any Y (Dy), (a#b, pM) and the each maximal integral manifold
of Dg (1§a§t) is a totally umbilical submanifold of R}*" with the mean curva-
ture vector No. Then

() VxYeD, for any XD, and any YEI'(D;) (a#b),

() Yx7,=0 for any XD, (a+b),

(ili) <Na, No»=0 (a#D).

ProoF. It is sufficient to prove the case where ¢t=2.

(i) Take X&(D,), and YEI'(D,) (p€M). Let (U, x1, >+, Xnp Y1o *** 5 Vny)
be a coordinate neighborhood of p in M such that 6/0x;=D, and 0/0y,ED,
(1<i<n,, 1<7<n,), where na=dim D, (a=1, 2). Choose constants X* (1=i<n,)
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and smooth functions Y7 (1<7<n,) such that X= %1; X09/0x; and Y::Zj Y79/0y;.
i= =

Since D,, D, are parallel on M and va,axia/ayj:va,ayja/axi, we have V;/5,,0/0y;
=0. Therefore, the assumption on A implies V?a,azia/ay,:o and hence VyY

nmone .
= E jgl X‘(a/asz’)a/aij(Dz)p
(ii) Take XeI'(D,). By the Weingarten formula [1.2), we have
(4.1) Vane=—Ap,X+V%7,,

where A and V* are the shape operator and the normal connection of M, re-
spectively. For YT ,M, we have

(4-2) <A772X: Y>=<h(X; Y); 772>
=<1/nz>:§ eXh(X, Y), hiey, e)))

where (e, ---, e,,) is a local orthonormal frame field of D, about p and ¢;=
{ej, ;> (1=7j<n,). On the other hand, from the equations and [1.4), it

follows that
(4-3) <h<X) Y>1 h(ej, ej)>=<R(Y: ej)ejr X>+<h(XI ej): h(Y: ej)> ’

where R is the curvature tensor of M. Moreover, by the assumption, the right
hand side of (4.3, is equal to zero. Therefore, the equation (4.2) implies A,,X=0.
Also, by the assumptions and the equations [(1.3) and [(1.5), we have

Ti7a=(1/m0) 3} &, V5 (ke e5)

=(U/me) 3} e V(h(X, e)—h(T,X, e)
—h(X, chej)+2h(v.¥ej) e}
=(2/n2):§21 e;h(Txe,, e)).

Moreover, since the each maximal integral manifold of D, is totally geodesic
in M and totally umbilic in R?*", h(NVxe;, e)={Vxe;, ¢;>9.=0 holds. Therefore,
V47,=0 is induced. Finally, we obtain Vx7,=0.

(iii) Let (&, -+, &,,) (resp. (ey, -, en,)) be an orthonormal frame of (D)),
(resp. (D,),) (p=M). By the equation [(1.4), we have

Gy y=(W/mn) 3, 3 806Kk, 0, ey, €

=(W/mn) B S E8CR G, ees, T+<AE, e, hEs, e)).
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Moreover, the right hand side of this equation is equal to zero by the assump-

tions. Hence, we obtain <{7,, 7.>=0. Q.E.D.

For a semi-Riemannian submanifold M, we define the first normal space N}

at p as follows:
Nj=Span {h(X,Y) | X, YT ,M}.

A subbundle N of T*M is said to be normal parallel is V¥ E= N for any XeTM
and any E<I'(N). The following reduction theorem was proved by Magid [6].

THEOREM C. Let M™ be a semi-Riemannian submanifold isometrically im-
mersed into RP*" by f. If the first normal spaces constitute a normal parallel
subbundle, then there exists a complete (n-+s)-dimensional totally geodesic sub-
manifold M of R such that f(M)CM, where s is the dimension of the first

normal spaces.

By using this theorem, he obtained the following result [6], where he also
treated the case <{%, 7>=0.

THEOREM D. Let M™ be a totally umbilical submanifold isometrically im-
mersed into R}*" by f. Suppose that the mean curvature vector v satisfies <%, 7>
#0. Then

(I) If <n, p>>0, then f(M)CS}

D If <9, n><0, then f(M)CHE,
where p is the index of M.

By using Theorem C, D and Lemma 4.1, we can show the following lemma.

LEMMA 4.2. Under the same hypothesis as in Lemma 4.1, moreover suppose
that n. (1=a=<t) are non-null and <{N., 79.>>0 1=Za=u), (Ma, 90<0 (u+1=<a<s)
and n,=0 (s+1=a=t). Then

FIMH)TS3(c) X -+ XStu(cu) X Hitl(cyr) X -+ XH3(cs) X R78
CRYHX o XRIuH X Rzt X -« X R2s11X RMC R,

yyu4+1tl

where ¢oa=<Na, Nad, (Va, Na—Va) IS the signature of D, (1<a<s) and (vo, no—v,)
is that of Dsei@®P --- PD,.

PROOF. We shall prove in the case where t=3, =1 and s=2. We denote
the maximal integral manifold of D, (resp. D%) through pEM by (L,), (resp.
(L3)p) (1<a<3), where D! is the orthogonal complement of D, in TM. Since
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(L), is a totally umbilical submanifold of R?*" with the mean curvature vector
71, it is contained in the affine subspace (fl)psz((Ll)p)EBR(m)p through f(p)
by Theorem C, where R(%.), is the line tangent to (%,),. Now we shall show
that (L,), and (L,), are parallel in R+ for any p, g=M. TFirst we consider
the case where p and ¢ are contained in a cubic coordinate neighborhood V
with respect to D,@Di. Then it is clear that (Li{),\(L),#@. Take ¢'&
(LYo (Ly),. Since (L1)p,=(L1)y, (L), and (L), (=(L,),) are parallel in Rp*
by @), (ii) of Lemma 4.1. Next we consider a general case for p and ¢q. Take
a curve o: [0, 1]-M with ¢(0)=p, ¢(1)=¢q. Since ([0, 1]) is compact, there
exists a finite open covering {V;|1</<k} of ([0, 1]) by cubic coordinate
neighborhoods such that VNV, #@ (1<i<k-—1), pV, and ¢g&V,. Take
»:€ViNViy (1i<k—1). Since p;-; and p; is contained in a cubic coordinate
neighborhood, (L,),,_, and (L,),, are parallel in R?*". Similarly, so are (L)),
and (L,),, (resp. (L1)p,_, and (L,),). Therefore, (L), and (L,), are parallel in
Rr+7. Similarly, (L,), and (L,), (a=2, 3) are parallel in R?*" for any p, ¢g=M,
where (Lo)p=T p(L2)p)DR(%2)p, (Lo)p=Tp((Ls)p). Also, by (iii) of Lemma 4.1,
(Lo)p L(Ly), holds for any peM (a+b).

Let Ry (1Za<3) be the subspace of R?*" spanned by all tangent vectors
of (L,),. Note that R, (1<a<3) are well-defined and orthogonal to one
another by the above facts. Let R, be the orthogonal complement of R,
R»®R:y. We regard R, (0<a<3) as the affine subspace through the origin
of R»*". It isclear that R?*"™=R»X -+ X R¢). Let ¢, (0<a=<3) be the natural
projections of RZ*" onto R. It is easy to show that ¢b,°f is a constant map.
Suppose that (L1),=(L1),. Then we have (gbléf)(p)——-(gblof)(q). Since (%), and
(71) are parallel in Rp+" by (ii) of Lemma 4.1, (¢0)«(7:),=(¢1)x(n:)e. Therefore,
from Theorem D and <{7,, 7,>>0, if follows that there exists a hypersurface
Sm: of Ra, which contains both (¢ f)((L1),) and (¢ie f)(L1))- By the same
method as used in the proof of parallelism between (L,), and (L,),, we can
show that (¢.°f)(L:),) is contained in this hypersurface for any p&M. This
fact implies that (¢, fY(M)CSP. Similar arguements on (¢, f)(M) and (¢se f)(M)
lead to

FMYCT(pre UMYX (oo fUM)X(Pse FUM)CTSTIX HEZX R
CRuHXR@X Ry .
Q.E.D.

REMARK. From the assumption of Lemma 4.2, we can show that the
second fundamental form is parallel and the normal connection is flat. In [6],
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he characterized a complete Riemannian submanifold M" of R!*" with parallel
second fundamental form and flat normal connection. The proof depends on
Satz 2 of [12], which uses the Moore’s lemma [8] We can show that they
are generally valid for proper semi-Riemannian submanifolds. On the other
hand, Moore treats the case where M is a product manifold. If M is complete,
then we can use the Moore’s lemma for the universal covering of M. How-
ever, if M is not complete, then the lemma is not valid for this arguement at
least globally. The lemma assures that each product neighborhood V of M is
contained in a product manifold M of semi-Riemannian space forms as an open
submanifold. However, we have to show that the manifolds M can be tahen
in common for all V as in

The distributions D, (0<a<s) of satisfy the conditions of
Lemma 4.2. Hence we have the following proposition.

PROPOSITION 4.3. Let M™ be a semi-Riemannian submanifold isometrically
immersed into R*" by f. Suppose that there exists a parallel orthonormal normal
frame field (E,, ---, E,) on M with the property (#) in Theorem 2.3. Then

FMH)CS(c)X -+ XSTe(cy ) X HE2t(cusr) X - X H(cs) X RLY

Yusl
CRU* X« XRIUH X R X - XRUIIXRUWC R,
where u is the number of +1 in {KE,, E), -+, {E,;, Eo»} and n=n,+ -+ +n,.

By taking the universal semi-Riemannian covering manifold of M if neces-
sary, this proposition together with [Theorem 2.4 gives the following main
theorem.

TNEOREM 4.4. Let M™ be a proper isoparametric semi-Riemannian submani-
fold isometrically immersed into Rt by f with parallel mean curvature vector
and {N'A, V' A>=0. Furthermore, suppose that all sectional curvatures of M are
non-negative (resp. non-positive), {,>|rty is positive definite (resp. negative de-
finite). Then

FIM)TSX -+ XSTEXRIC R X -« X RTs*' X RWC R

(resp. fIM)CHUX -+ XHEXRWCRUIIX -« XRUIIXRWC R, where n=
No+ -+ +n,.
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§5. Proper isoparametric semi-Riemannian submanifolds
in S»+7(¢) or H™*"({).

In this section we shall show the results corresponding to §4 in the case
where the ambient space is H?*(¢) (or SP*'(¢)).

LEMMA 5.1. Let M™ be a proper isoparametric semi-Riemannian submanifold
of HM"(¢) such that

(1) the mean curvature vector is parallel,

(i) <V'A, V' A>=0.
Then, if we consider M as isometrically immersed into R+, M also is a proper
isoparametric semi-Riemannian submanifold with (i) and (ii).

PrROOF. Let A and V* (resp. A and V*) be the shape operator and the
normal connection of M in H*"(¢) (resp. R*{7+!'). By the Gauss formula
and the Weingaten formula (1.2), we have

(5.1) AgX=AgX, VLE=VLiE,
(5.2) AsX=+~=CX, VLE=0

for any XeTM and any E<I'(T*M), where E is a unit normal vector field
of H2*"(¢) in R+ and T+*M is the normal bundle of M in H?*"(¢). By [(5.1),
and the assumption, we see that M is a proper isoparametric semi-Rieman-
nian submanifold of R»T+!.

Let % (resp. %) be the mean curvature vector of M -in H}*"(f) (resp.
Rrir+1) and 7 that of HZ*"(¢) in R+, Since HI*"(¢) is a totally umbilical
submanifold of RZ*+', 7=%-+75 holds. Moreover, the equation and the
assumption (resp. the equation [5.2) and 7=++'—¢ E) imply V47=0 (resp. V%7
=0) for any XeTM. Thus Vi7=0.

By (5.1), and the assumption, we can show (WA, V' A>=<V'4, V' 4>
>0, where (ﬁ}ﬁ)EY—_—.VX(ﬁEY)——ﬁe;EY—EE(VXY) for any XeTM, any Ye
I’'(TM) and any E€I'(T*M@®T+H({)). Q.E.D.

This lemma together with gives the following theorem.

THEOREM 5.2. Let M™ be a proper isoparametric semi-Riemannian submani-
fold isometrically immersed into H?*"(&) by f with parallel mean curvature vector
and N'A,V'A>=0. Furthermore, suppose that all sectional curvatures of M are
non-positive, {,>|riy is negative definite. Then
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(e YM)YCTHP(c)X -+ XH(c) CTHIRESL(C)THIT ()T RETY,
where n=n,+ --- +n,, 1/¢,+ -+ +1/¢s=1/6=1/¢ and i is the inclusion mapping
of HI*"(¢) into R+

PrROOF. By and Lemma 5.1, we have
(G FYM)CTHc)X -+ XH(c) X REIX {x}
CRUIX - XRUIXRUXRIZII=RITH .

Take pe(@-f)M). We denote the leaf of R7? through p by L, and L,N
(- fYM) by Z,,. Suppose n,>1. Since E,, is totally geodesic in RZiT*!, it is
also totally geodssic in HP*"(¢). Hence f,p is of constant curvature ¢. This
fact contradicts the flatness of L,. Therefore, we have n,<1. If n,=1, then
Zp is a family of non-null curves of H?*7(¢). By the way, all line segments
of R?{7*' contained in H2*"(¢) are null. Hence each component of L, is not a
line segment. This fact contradicts that L, is totally geodesic in RZ7*!. Thus
we see that n,=0.

Let o, be the center of H7e(c,) (1=£a<s). Take pe(i-f)M). We can
uniquely decompose p into p=p,+ - +p,+x, where p,eR%eil (1<a=xs).
From <po—04, pa—0s>=1/cq, it follows that

{Pas Pa>=X0a+(pa—0a), 0a+(Pa—0s)>
=04, 2pa—0a>+1/cCa
={0q, 2p—0>+1/¢a,
where 0=0,+ - +0,. Hence we have
1/2=Lp, p>=Kp1, D>+ -+ +<ps, p>+<x, x>
=<0, 2p—0>+1/c,+ - +1/ce+<x, x> .

Thus <o, 2p—0>=1/¢—1/cy+ --- +1/cs+<x, x>) holds. This equality implies
that <{p, 0> is independent of p<(i-f)(M). Hence, if o is a non-zero vector,
then (7-f)(M) is contained in the hyperplane orthogonal to o in R’},}i}

XR3stiX {x}. This fact contradicts that (7o f)(M) is full in R711X R’;gii
X {x}. Therefore, we see that o is the zero vector and 1/¢=1/c,+ --- +1/¢;
+<x, x>. These facts imply that

Hu(c)X -+ XHB(c) X {x}CTHE(E)
and hence
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H3e)X - XH(c) X {x}CHPTEON(RUIIX - X R X{x})

:H;Lfss:rtl(é)x {x}
Here 1/é=1/c,+ -+ +1/c, because ’

1/¢=Xg, ¢>=<x+(q—x), x+({g—x»>=<x, x>+1/¢C
for g H?#$2 ()X {x}. Therefore, we obtain
(e [AM)CH ()X -+ X Hs(eo) X {x}CHM (0 X {x}

CHI*(O)C R
Q.E.D.

Similarly, in the case where the ambient space is S}*7(¢), we have the fol-
lowing theorem.

THEOREM 5.3. Let M™ be a proper isoparametric semi-Riemannian submani-
fold isometrically immersed into S?*7(¢) by f with parallel mean curvature vector
and <V'A, W A>=0. Furthermore, suppose that all sectional curvatures of M are

non-negative, < ,»|riy is positive definite. Then
(@ FUMICTS™M(c) X -+ XS23(c)TSIHH(E)TSPH ()T R,

where n=n,+ - +ns, 1/c;+ - +1/¢,=1/<1/¢ and i is the inclusion mapping
of St*7(¢) into R+,
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