TSUKUBA J. MATH.
Vol. 12 No. 2 (1988). 469—476

ON HELICES AND PSEUDO-RIEMANNIAN SUBMANIFOLDS

By

Yasuo NAKANISHI

§0. Introduction.

In a Riemannian manifold, a regular curve is called a helix if its first and
second curvature is constant and the third curvature is zero. As for helices in
a Riemannian submanifold, there is a research of T. lkawa, who investigated
the condition that every helix with curvatures k, [ in a Riemannian submani-
fold is a helix in the ambient space [3]. In a pseudo-Riemannian manifold,
helices are defined by almost the same way as the Riemannian case. Recently,
T. Ikawa proved the following theorem about helices in a Lorentzian submani-

fold [4]:

THEOREM A. Let M, (dim M,=3) be a Lorentzian submanifold of a pseudo-
Riemannian manifold M s. For any positive constant k, I, the following conditions
are equivalent :

(a) every helix in M, with {X, X)=—1, (NxX, Vx X>=k? and <VxVx X, VxVx X)

=—k'*+EN? is a ﬁelz’x n 1\71,9,

(b) M, is totally geodesic.

In this paper, we generalize this theorem to the case of a pseudo-Riemannian
submanifold.

The author would like to express his hearty thanks to Professor S. Yama-
guchi for his constant encouragement and various advices. He also wish to
thank Professor N. Abe for his helpful suggestions.

§1. Preliminaries.

Let V., be an n-dimensional real vector space equipped with an inner product
{,> of index a. A non-zero vector x of V, is said to be null if {x, x>=0 and

unit if {x, x>=+41 or —1. Concerning multilinear mappings on V,, we have
the following lemmas [17:

LEMMA 1.1. For any r-linear mapping T on V. to a real vector space W
and gy=+1 or —1 (—aZe,<n—a), the following conditions are equivalent:
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(@ T(x, -, x)=0 for any x&V , such that {x, x)=¢,,
(b) T(x, -, x)=0 for any xV,.

LEMMA 1.2. For any 2r-linear mapping T on V, to a real vector space W
and eo=+1 or —1, e;=+41, —1 or 0 2—2a=<e,+e,<2n—2a—2), the following
conditions are equivalent :

(a) 2L T(x, -, x,u, x, -, x)=0 for any orthogonal vectors x, ucV, such
1

that {x, x>=¢, and <{u, ud>=e¢,,
(b) there exists weW such that T(x, -+, x)=<x, x)"w for any x&V,.

Now let M, be an n-dimensional pseudo-Riemannian manifold of index «
(O=a=n) isometrically immersed into an m-dimensional pseudo-Riemannian
manifold Mz of index 8. Then M, is called a pseudo-Riemannian submanifold
of A7[,g. We denote the metrics of M, and 1\71,5 by the symbol <,)> and the
covariant differentiation of M, (resp. ]\71,9) by V (resp. V). Gauss’ formula is

where X and Y are tangent vector fields of M, and B is the second funda-
mental form of M,. Weingarten’s formula is
ﬁng—AeX'l_vaE:

where X (resp. &) is a tangent (resp. normal) vector field of M,, V* is the
covariant differentiation with respect to the induced connection in the normal
bundle N(M,) and A; is the shape operator of M,. We have the following

relation :
<AEX) Y>:<B(X1 Y)y E>-

For the second fundamental form and the shape operator, we define their

covariant derivatives by
VB(X, Y, Z)=V3B(X, Y)—B({NzX, Y)-B(X, V;Y),

VB(X,Y, Z, W)=VsTB(X, Y, Z)-NBwX, Y, Z)
—9B(X, VY, Z)—NBX, Y, WwZ),

(VYA)f.X:vY(AeX)—AV}-geX—‘ AeVyX,

where X, Y, Z, W are tangent vector fields of M, and & is a normal vector
field of M,. The mean curvature vector field H of M, is defined by

H:=(1/n)X%<e;, e Bley, ey),

where {e,, ---, e,} is an orthonormal frame of M,. H is said to be parallel
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when V+H=0 holds. If the second fundamental form B satisfies
B(X, Y)=<X, Y>H

for any tangent vector fields X, Y of M,, then M, is said to be totally umbilic.
A totally umbilical submanifold with the parallel mean curvature vector field is
called an extrinsic sphere. If the second fundamental form vanishes identically
on M,, then M, is said to be totally geodesic.

§2. Helices in a pseudo-Riemannian manifold.

Let ¢=c(t) be a regular curve in a pseudo-Riemannian manifold M,. We
denote the tangent vector field ¢’(#) by the letter X. When <X, X>=+1 or
—1, ¢ is called a wunit speed curve. In this paper, a unit speed curve ¢ in M,
is said to be a helix if and only if there exist constants @, 8 and vector
fields U, V of constant length along ¢ such that X, U, V are orthogonal and the
following equations hold:

2.1) VxX=U, VxU=aX+V, VyV=pU.
Especially, if V=0 in this equation, the curve is called a circle in [1]. More-

over, if U=V =0 in this equation, the curve is a geodesic.

LEMMA 2.1. A unit speed curve ¢ in M, is a helix if and only if there
exists a constant A such that

(22) VXVXVXXZRVXX.

ProOOF. If ¢ is a helix, by means of we get
VXVXVXXZVXVXU:VX(aX—I—V):aVXX—l—VXV=(a+/9)U=(a+‘B)VXX

Conversely, we assume the existence of A1 which satisfies [2.2). Since
<X, X>=+41 or —1, we obtain the following equations:

(2.3 xX, X>=0,

(2.4) VxVx X, XD+<Vx X, Vx X>=0,

(2.5) VNxVxVx X, X>4+3VxVxX, VxX>=0.
Substituting [2.2) into and using [2.3), we have
(2.6) X(xX, VxX>)=0.

Differentiating this equation by X and using [2.2), we get



472 Yasuo NAKANISHI

2.7 0=(VxVxVxX, Vx XD04+(VxVx X, VxVx X
=ANxX, Vx XD+ xVx X, VxVx X).

By [2.4), and [2.7), we can see that <VxX, VxX)>, <VxVxX, X> and
(VxVxX, VxVxX) are constant. We put as follows:

U:=VxX, a:={X, X)NxU, X>, V:=VyU—alX.

Note that X, U, V are orthogonal and a, <U, U) are constant. <V, V) is also
constant because

KV, Vi=xVxX, VxVx X>—=2a{VxVx X, X>+a¥ X, X>.
At least, we have
VXV=VXVXVXX——aVXXZ(Z——a)VXXZ(Z——a)U.

Thus we can see that ¢ is a helix. Q.E.D.

§3. Helices and pseudo-Riemannian submanifolds.

In this section, we prove the following theorems:

THEOREM 3.1. Let M, be a pseudo-Riemannian submanifold in a pseudo-
Riemannian manifold M,g and &, &, 8.=-4+1 or —1 (—2a+3=Z¢ey+¢6,+6.<2n—2a
—3). For any positive constants k, [, the following conditions are equivalent :

(@) every helix in M, with <X, X)>=-¢, {VxX, VxX>=¢ek? and <V 3T X, VxVxX>

=cok'+ e, k2% is a helix in M,

(b) M, is a totally geodesic submanifold.

THEOREM 3.2. Let M, be a pseudo-Riemannian submanifold in a pseudo-
Riemannian manifold ]\71,9 and &y, e.=+1 or —1 (—2a+4+4=e¢+¢,<2n—2a—4).
For any positive constant k, the following conditions are equivalent:

(@) every helix in My with (X, X>=g,, {VxX, Vx X>=¢,k? and <V xVx X, VxVxX>

=¢ok* is a helix in M,

(b) M, 1is an extrinsic sphere.

PROOF. In order to prove these theorems simultaneously, we suppose &,=
+1, —1 or 0 and put the following assumption at first:
every helix in M, with (X, X>=¢,, {VxX, VxXD>=¢,k® and VxVxX, VxVx X
=gok'+€,k%? is a helix in M.

Note that this condition is reduced to the condition (a) of when
e,=0. Let x, u, v be any mutually orthogonal vectors of M, at p such that
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{x, xY)=¢¢, <u, uy=e, and <v, v)=¢,.
There exists a helix ¢ of M, such that
3.1 cO=p, X(p)=x, (VxX)(p)=ku
and (VxVxX)(p)=—¢eee 1 kix+ kv,
where X:=c'(t). By [Lemma 2.1, there exists a constant A such that
ViVxVy X=2AVx X.
Since holds in this situation, 4 is calculated as
A= k22 x X, Vx X)(p)
=—e R AVxVx X, VxVx X5(p)

== _5051122'—518212.
Thus we obtain

3.2) VxVxVx X=(—¢eoe, k?—e,6,/)Vx X.

Since ¢ is a helix in M‘B by the assumption, there exists a constant Z such that
VxVxVx X=1Vx X

because of [Lemma 2.1. Since the constant i depends on the initial vectors

x, u, v, we rewrite the above equation as

(3.3) VaVxVxX=1(x, u, v)Vz X.
On the other hand, by Gauss’ formula we have
(3.4) VxX=VxX+B(X, X).

Differentiating with respect to X and using Gauss’ formula and Weingarten’s
formula, we get

ViVx X=V3VxX—Apcx. x> X+3B(X, Vx X)+VB(X, X, X).

Differentiating again and using Gauss’ formula and Weingarten’s formula, we
obtain

~

(3.9 vaXﬁXX:vXVXVXX_ZAVB(X,X,X)X"SAB(X.VXX)X
—(VXA)B(X,X)X—AB(X.X)VXX
—B(X, Apcx, x>X)+4B(X, VxVx X)+3B(Vx X, Vx X)
+5VB(X, Vx X, X)+VB(X, X, VxX)+V*B(X, X, X, X).

Substituting [3.2) and [3.3) into [3.5), we have
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ilx, u, VY (Nx X+ B(X, X))
=(—¢&oe 1k — 6,18V x X—2A95x. x. 1rsX—5Apx. vy x7 X
—(VxApx, xsX—Apcx, x:Vx X
—B(X, Agcx, x> X)+4B(X, VxVx X)4+3B(Vx X, VxX)
+59B(X, VX, X)+VB(X, X, VxX)+VB(X, X, X, X).
Taking tangent and normal parts at p and making use of [3.I), we get
(3.6) Ax, u, V)hu=(—eoe1k*—e,6,kI)U—2A%5cz. . 15X
—5k Apcz,usx—(VzA)pcz, 03X — kR Apz. 25U
(3.7) Ax, u, v)B(x, x)=—B(x, Apcz. »yx)—4e.e,k*B(x, x)
+4kIB(x, v)+3k*B(u, u)+5kVB(x, u, x)
+kYB(x, x, u)+V*B(x, x, x, x).

Note that these equations hold for any mutually orthogonal vectors x, u, v
eT ,(M,) such that {x, x>=¢g,, {u, up=¢, and <{v, v)>=e,. If we add [(3.6) to
the equation obtained by changing u into —u in [3.6), we have

(3.8) {—A(x, —u, v)+i(x, u, V) ku=—4A38z 2. 5x —2(N3 Az, 5r% .

Subtracting from the equation obtained by changing v into —v in we
find

(3.9) Ax, u, —v)=2A(x, u, v).

By subtracting from the equation obtained by changing u into —u in [3.7),
we have

(3.10) {A(x, —u, v)—A(x, u, vV)}B(x, x)=—10kVB(x, u, x)—2kVB(x, x, u).

If we subtract from the equation obtained by changing v into —v in
we get

(3.11) {A(x, u, —v)—A(x, u, vV)}B(x, x)=—8kIB(x, v).
It follows from and (3.11) that
B(x, v)=0.

Since this equation holds for any mutually orthogonal vectors x, veT ,(M,) such
that <{x, x>=¢, and (v, vd>=¢,, by means of there exists a normal
vector w such that

B(x, x)=<x, x>w

for any x&T ,(M,). Thus M, is totally umbilic and w is the mean curvature



On Helices and Pseudo-Riemannian Submanifolds 475

vector H at each point of M,. Now we have
(3.12) B(x, y)=<x, y>H, Aszx=<{H, &x,
for any x, yeT ,(M,) and é&N,(M,). By these equations, is reduced to
{(—A(x, —u, v)FA(x, u, V)}hu=—6e,(H, V:H>x.
Taking the inner product with u, we find that
Ax, —u, v)=Ax, u, v).
By this equation and [3.12), (3.10) is reduced to
ViH=0.

Since this equation holds for any u=T,(M,) such that <{u, ud=e,, making use
of Lemma 1.1, we get

(3.13) V+H=0.

Thus we have proved that (a) implies (b) in [Theorem 3.2. Moreover, by [3.12),
(3.13) and [3.6), we have

A%, u, V)=—coe, k2 —g,8,°—eo(H, H).
On the other hand, by [(3.12), [3.13) and [3.7), we obtain
god(x, u, VVH=—<H, HYH—¢,k*H.

Thus we get
e, H=0,

which means that M, is totally geodesic if &, is not zero. Now we have seen
that (a) implies (b) in [Theorem 3.1.

Since it is clear that (b) implies (a) in [Theorem 3.1, all we have to do next
is to derive (a) from (b) in [Theorem 3.2. Let ¢ be any helix in M, such that

(3.14) KX, XD>=¢,, VxX, VxX>=¢k? and VxVxX, VxVX>=c¢,k",
where X:=c¢’(¢). By Lemma 3.1, there exists a constant A such that
VxVxVx X=AVxX.
By means of [2.7), A is calculated as
A=e1RPAx X, Vx XD=—,k "XV xVx X, VxVx XD=—¢e, k2.
Consequently, we have
(3.15) VixVxVx X=—¢oe, bV X.

By the condition (b), we have
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B(x, y)=<x, y>H, Aex=<H, &x

for any x, yeT ,(M,), §&N,(M,) and

VB=0, VA=0.

Since holds for any curve, by making use of the above equations and
(3.14), we have

Ty VeV X=VxVxVx X—eH, HYVx X—<{H, HYH—¢,k*H.

Substituting into this equation, we find

VVxVy X=(—coe1k?—elH, H))NxX+¢&.H)
:(—5051k2—50<H, H>)€7XX,

which means that ¢ is a helix in M, by Lemma 2.1. Q.E.D.
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