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Introduction.

In this paper, we give a characterization of Gorenstein orders over a com-
mutative d-dimensional Gorenstein local ring (Theorem 1.1) and study some
special classes of Gorenstein orders (Theorem 2.1). Auslander called an order
A Gorenstein if A*=A as A-A-bimodules [2]. Our definition of Gorenstein
orders is more general and there are other interesting orders between our sense
of Gorenstein orders and that of Auslander’s. These orders are studied in
Theorem 2.1.

Let R be a commutative d-dimensional Gorenstein local ring with its maximal
ideal m. Following Auslander [2], an R-algebra A is called an R-order if A is
a finitely generated maximal Cohen-Macaulay R-module such that Homg(4, R),
is a projective 4%-module for all nonmaximal prime ideals p of R. We call an
R-order A Gorenstein if A*=Hompg(A4, R) is a projective A°?-module. It is easily
seen that the definition of Gorenstein orders is left-right symmetric and also
that A* is a progenerator for mod 4 when A is Gorenstein. In a classical case,
that is, R being a discrete valuation ring, Gorenstein orders and their represen-
tation theories are widely studied (cf. [4, 7]). They are mostly the parallel
results with those of QF algebras over a field. Gorenstein orders include both
classical Gorenstein orders and QF algebras over a field. Thus many results for
classical and algebra cases can be extended to our cases, and we give the most
basic ones in sections 1, 2. In section 3, we give various examples concerning
Gorenstein orders.

We define some more definitions and notation. We call M a A-lattice if it
is a finitely generated 4-module and a maximal Cohen-Macaulay R-module such
that, M,, respectively Homz(M, R), is a projective 4,, respectively 4°P-module
for all nonmaximal prime ideals p of R. The category of all A-lattices is
denoted by .£(4). All modules are considered as right modules. Left modules
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are regarded as right modules over an opposite ring. We denote the category
of all finitely generated -modules by mod 4. We put Ext,—dim A=
sup{7=0; Extj(A, 4)#0} for Acmod 4[6]. In what follows, all the notation and
definitions provided above are preserved.

1. A characterization of Gorenstein orders.

In this section, we give a characterization of Gorenstein orders and study
the related topics. We see that Gorenstein orders are natural extension of both
commutative Gorenstein rings and QF algebras over a field.

THEOREM 1.1. The following conditions are equivalent for an order A over
a d-dimensional Gorenstein local ring R.

1) A is a Gorenstein order.

2) injdim A=d.

3) Ext,—dim S=d for all simple A-modules S.
Moreover, if R is complete and A is basic, then every condition above is equivalent
to

4) A*=tA=At for te A*

The proof of this theorem needs several lemmas. Firstly, we quote the
definition and properties of injective lattices from [2]. A lattice I is called an
injective lattice if every exact sequence 0—J—X—Y—0 in .£(A) splits. It holds
that I is an injective lattice if and only if there is a projective lattice P in
L£(A°?) such that I=Homg(P, R) if and only if Ext}(, I)| r4»=0([2, Ch I, Pro-
positions 8.1, 8.2]).

Let Xe.£(A) and let 0—+X—>Igf—1>11f—2> .- be an injective resolution of X in
L(A) ([2, Ch 1, Proposition 8.2]). This means that the above sequence is exact
and each I; (=0, 1,.-) is an injective lattice. = Note that Ext{(A4, X)=
Ext}(A4, Im f;_,) for all A=£(A) by [2, Ch I, Proposition 8.2 b)].

DEFINITION. Let Xe.£(A). We call that X has an injective lattice dimen-
sion ¢, denoted by inj .£ dim X=t¢, if Ext4'(, X)| =0 and Ext}(, X)|rn+0.
The following lemma whose proof is standard is very useful because it re-
duces the computations of injective dimensions to those of projective dimensions.

LEMMA 1.2. Let X £(A). Then injdim X=o if and only if inj.L dim X
=oo, and if injdim X is finite then

inj dim X=inj £ dim X+d.
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PrROOF. If inj.L dim X=oo, then injdim X=o. So it is sufficient to show
that if inj £ dim X=t<oco then injdim X=t¢+d. Let S be an arbitrary simple
A-module and 2°S the /-th syzygies of Sz=0, 1, ---). It holds that Q!Se.L(A)
for i=d by [2, Ch I, Proposition 7.3]. So we have Ext4{**1(S, X)=Ext4{(2'S, X)
=0 for all i=d and all simple A-modules S which implies injdim X<d-+¢ by
[6, Proposition 2.7]. There is a lattice A=.L(A) such that Ext4(4, X)+#0. We
have a maximal A-sequence «x,, ---, x¢o=m. Applying Ext,(, X) to an exact
sequence O—>AE>A—>A/Ax1—>O we get an exact sequence

X
Ext4(A, X) —> Exty(A4, X) —= Ext{(A/Ax,, X).

Thus EXtil“(A/Axl, X)#0 by Nakayama’s Lemma. Repeating this procedure for
X3, -+, xg We get Extir4(A/A(xy, -+, x4), X)#0. Hence we have injdim X=
t+d.

COROLLARY 1.3; Let Xe.£(A) and projdim X* finite with X*=Homg(X, R).
Then injdim X=projdim X*+d.

In Example 1 of section 3, we use Corollary 1.3 and compute self-injective
dimension of the order which has finite self-injective dimension but is not
Gorenstein.

We prove the following about the condition 4) of Theorem 1.1.

LEMMA 1.4. Let A*=tA=At. Then At=0 or tA=0, for A= A, implies 2=0.

PrROOF. We have 0=2t(p)=t(pd)=tp(d) for all ysA. Thus A is in the
kernel of the canonical homomorphism A— A** which is an isomorphism. Hence
A=0.

PROOF OF THEOREM 1.1. 1)&2): A is Gorenstein. ©projdim ,,4*=0
injdim A=d by Corollary 1.3. By [6, Corollary 2.8] we have 3)=2). We shall
prove 1)=3). Let 0—R—I,—[,— --- -»I;—0 be a minimal injective resolution of
R. Since R is Gorenstein and 4 is a maximal Cohen-Macaulay R-module, we
have Extj(A4, R)=0 (7=1), so that (*) 0—Homg(4, R)—Homg(A, I)— --- —
Homg(A4, I;)—0 is exact and Homg(A4, I;,) (0<7i<d) are injective 4-modules. Let
S be a simple A4-module. Applying Hompg(S, ) to the sequence (*) we get the
complex 0—Hom 4(S, Homg(A4, I,))— --- =Hom4(S, Homg(A, I;))—0. Since S is an
R-module of finite length, we have Hom (S, Homg(4, I,))=Homg(S, I,)=0 for
7=0, ---, d—1. Thus Ext4(S, A*)=Hom (S, Homz(A4, I,))=Homgz(S, I;)#+0. By
1) A* is a progenerator, so that Ext%(S, 4)#0. Since injdim A=sup{Ext—
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dim S; S is simple} by [6, Corollary 2.8], we have Ext;—dim S=d for all simple
A-modules S. This proves 1)=3). 4)=1) is an easy consequence of Lemma 1.4.
1)=34): Suppose that R is complete and that A is basic. Let {e), -:-, es} be the
complete set of primitive idempotents of 4. Since A is Gorenstein and basic,
there exists a permutation = of the set {1, -, n} such that we have A°P-
isomorphisms u;: Ae;SHomg(ezir4, R) for i=1, ---, n. Let v be the com-
position of a canonical isomorphism @.c»: eris A= (eqci, A)** and the induced
isomorphism Hompg(ui, R): (exci)A)**=Homg(Ae;, R) (1Si=n). Put t;=u(e;) and
s;=vsle;) (1<i, j<n). Letting the value of #; on e;4 be zero if j#=(), we
consider t;=Hompg(A4, R). Similary, we consider s;=Homg(/4, R). It holds that e;t;
=0t Siej=5ij5i (1<7,7<n). For all A A, sqi(de;)=Hompga(u,, R)(¢.-.(i>(€nci)))(2ei)
=@rcir(@rir)(At) =Ati(ezcir)=ti(exrA). Thus, for all 2€ A4, t()=t(ezci>A) = Sacir(4€4)
= Sxcir(A). Let t=372 ;=31 ,sr»Homg(4, R). Since Homgz(4, R)=
@Homg(e: A, R)=PAt,, f=3At(A;=A) for every f&Homg(A, R). Thus f=
(D A:e:) (t)=2t by the above computation, where A=23>34;¢;,. Hence Homg(A, R)
=A¢t. Similary, using t=3s; we can prove A*=t/. This completes the proof
of the theorem.

REMARK 1.5. a) In the case of dim R=1, the equivalence of 1) and 2) of
Theorem 1.1 was shown in [4, Proposition 6.1].

b) If A is quasi-local, i.e., A/rad 4 is a simple ring, then A is Gorenstein
if and only if inj dim 4 <oo (see Corollary 1.8 below). However, there exists an
order having the finite global dimension greater than d. Then injdim A=gldim 4
is finite, but 4 is not Gorenstein. Moreover, we will give the order 4 which
has infinite global dimension, finite self-injective dimension, and is not Gorenstein
in Example 1 of section 3.

c) Let ¢: AXA—R be ¢, p)=t(Ap). Then ¢ is a nondegenerate associa-
tive bilinear form by Lemma 1.4. However, differing from an algebra case the
existence of such ¢ doesn’t necessarily imply the condition 4). Because if we
define t€ A* by t(Q)=¢(1, 1), then A= AtC A*. Thus rankgA=rankgA*=rankz/A¢.
But we can’t conclude At=A* by this.

We generalize [6, Proposition 2.14] in the following.

PROPOSITION 1.6. Let A be a Gorenstein order and E a finitely generated
A-module. Then we have

Ext,—dim E+depthgE=d.

ProoF. Using Theorem 1.1, the proof of [6, Proposition 2.14] works as
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it is.

COROLARY 1.7. If A is a Gorenstein order, then Me L(A) if and only if
Exti(M, 1)=0 (i=1) and M, is A,-projective for all nonmaximal prime ideals p
of R. Therefore, Homu(, A) induces a duality between L(A) and L£(A°P).

Combining Theorem 1.1 with [6, Proposition 2.14] we get the following.

COROLLARY 1.8. Let A be quasi-local. Then A is Gorenstein if and only if
inj dim A <co.

The above homological properties generalize those of commutative cases.
The condition 4) provides another properties. Let A*=tA=/At and ¢: A—/ be
defined by tA=2°t (A= 4). Then ¢ is an automorphism of 4 by Lemma 1.4.
Denote this ¢ by ¢,. If there exists another s A* with A*=sA=/1s, then there
exists a unit A of A such that ¢,=i,0, Wwhere 7; is an inner automorphism of
A defined by pli=apa ' (u=A). We generalize the computation in [3, Section
3] to our situation and describe the Nakayama functor Z=Homz(Hom(, M), R)
using the above automorphism ¢=g,. For Memod 4, let M’ be the same ad-
ditive group as M. The action of A= 4 to M° is defined by m-A=m4a’ (meM).
Then M° is a /-module.

PROPOSITION 1.9. Let A be a Gorenstein order. Then J1(M)= M Homz(A4, R)
=~M° for MeL(A).

PrOOF. Note that Homg(M® 4%, R)=Hom (M, Homg(A*, R))=Hom (M, A).
Since A is Gorenstein, M®QA* is a A-lattice, so that FUM)=MQ A*. Since
A*=At, each element of M® A% is of the form m®¢ where m is in M. For
A=A and mR@yte MR A*, (m@t) A=mRtAi=mAi°®t. Hence the map MK A*—M?,
m&t—m, is an isomorphism of /-lattices.

2. Gorenstein orders in the sence of Auslander.

In [2], Auslander called an order A Gorenstein if A*=/ as A-/-bimodules.
This class of orders occupies the position of “symmetric orders” in the class of
Gorenstein orders in our sense. Thus we investigate these orders and related
ones in Theorem 2.1.

Let A be a Gorenstein order. Then, for any indecomposable projective /-
module P, there exists a unique simple 4-module S(P) such that Ext%(S(P), P)
#0 [2, Ch III, Proposition 3.3]. The notation provided in the end of the pre-
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vious section is preserved in this section.

THEOREM 2.1. Consider the following conditions for an order A.

1) A=A* as A-A-bimodules.

2) There exists te A* such that A*=tA and tA=At for all A€ A.

3) A is Gorenstein and there exists s A* with A*=sA=As such that ¢,=1;
for a unit 2 of A.

4) A is Gorenstein and all s€ A* with A*=sA=As satisfy o,=1i; for a unit
2 of A

5 J=id on L(A), where JI=Homgz(Hom,(, 4), R).

5.a) J1=id on pr(A), where pr(A) is a full snbcategory of L(A) consisting
of all projective A-modules.

5.b) :1=id on L(A)—pr(A).

6) A is Gorenstein and S(P)=P/rad P for all indecomposable projective A-
modules P.

Then we have 1)©2)e3)e4)=5)=5. a)=6) and 5)=5.b). Moreover, if dim R
=2, then 5.b) implies that A is Gorenstein.

Proor. Using Lemma 1.4 1)&2) is easily obtained. 2)=4): There exists a
unit 4 of A such that ¢,=:;0,=7; by 2). 4)=3): This is trivial. 3)=2): By
assumption there exists a unit 2 of 4 with p?s=2pa"', psA. Putt=21"'ssA*
Then tpu=2A"'sy=A"'p’ss=pt for all p=d. 1)=5): We have Hom (X, A)=
Homg(X, R) for all Xe.£(A) by assumption. Thus 97=id on .L(4). 5)=5.a),
5.b): They are trivial. 5.a)=6): We prove this under the assumption that A
is Gorenstein. By [2, Ch III, Proposition 3.3], for a simple 4-module S and a
projective A-module P, we have Ext%(S, P)=Homgz(SKQ Homg(P, R), I;), where
0—R—I,— ---—I[;—0 is a minimal injective resolution of R. Put P’/'=
Hom,(Homg(P, R), A). Then Hom/(P’, A) = Homg(P, R) and Ext%(S, P)=
Homgz(Hom4(P’, S), I;). Thus we have Ext4(S, P)+0=P’/rad P'=S. This im-
plies S(P)=P/rad PoP=P’'<Homgz(P, R)=Hom P, A)=oJ(P)=P. This proves
5.a)=6). Finally we assume dim R=2 and 5.b) and prove 4 to be Gorenstein.
It suffices to show that Q*<pr(A) for all Q=pr(A4°?). If it doesn’t hold, then
there exists Qe<pr(A4°?) with Q* not projective. By assumption Q*=J(Q*).
Since dim R=2, Hom 4(Q*, A4) is a maximal Cohen-Macaulay R-module. Thus
Q=Hom «Q*, 4). By [2,ChI, Lemma 7.8] we have Q*=Hom 4p(Hom 4(Q*, A), A°?)
which is a projective /4-module, a contradiction. This completes the proof.

REMARK 2.2. a) We explain that some implications in Theorem 2.1 are
proper. The examples are given in section 3.
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i) There exists an order which satisfies 5) but not 1) (Example 2).

ii) There exists an order which satisfies 5.b) but not 5.a) (Example 3).

iii) Since a local Gorenstein order always satisfies 5.a), the orders of type
V), (V) in satisfy 5.a) but not 5.b) (see [3, Section 3]).

iv) There exists a Gorenstein order which satisfies neither 5.a) nor 5.b)
(Example 4).

v) When dim R=1 there exists an order which satisfies 5.b) but is not
Gorenstein (Example 5).

b) Whether 5.b)=/4 Gorenstein holds, or not for dim R=3 is an open ques-
tion. It holds that Hom sop(Hom 4(M, A), A°P)=M for all M L(A) when dim R
>2 by [2, Ch I, Lemma 7.8]. However, we can’t prove that Hom (M, A4) is a
maximal Cohen-Macaulay R-module for Me £(A) when dim R=3.

The results in [2, Ch III, Section 1] for Gorenstein orders in the sense of
Auslander also hold for those in our sense after a slight modification using the
Nakayama functor. In particular, for orders satisfying 5.b), i.e., JI=id on
L(A)—pr(A), they hold without any change. Here we only state the results
about Auslander-Reiten translation =D7Tr, in the following.

ProprosITION 2.3. ([2, Ch III, Proposition 1.8]) Let R be a complete
Gorenstein local ring with dim R=d and A a Gorenstein R-order. Then

1) 7(A)=302% %A) for any nonprojective A-lattice A.

2) M A)=R22271~(A) for any mnonminjective A-lattice A, where "=
Hom sop(Hompg(, R), A°%).

3. Examples.

ExAMPLE 1. (Fujita) Let R be a discrete valuation ring with prime ele-
ment z#. Then dim R=1. We provide an R-order 4 with gldim A= and
inj dim A=2.

R nR =R =R =zR 0
R R R R =R .'O
Let A=| R =R R R R|. Put e;= | IRTTRTETES (i and P;=
#R R nR R =R 0-_
R #R =R R R 0

e, A (1=i<5). Then P*=Ae, P*=Ae;, P¥=Ae, P¥= /e, are projective A°?-
modules and P¥=(R R R =R R)’! is not projective with its projective resolution
0—Aes—Ade,PAes—P*¥—0. Thus projdim P¥=1, and so projdim A*=1. By
Corollary 1.3, injdim A4=2. On the other hand, we have gldim A=c by [5,
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Example 3.4].
Next example is due to Artin ([1], see also [3]).

EXAMPLE 2. The order of type (II,) in [1]. Let R be the power series
ring k[[u, v]], where k is an algebraically closed field with char k=0. A is
an R-order generated by x, y with the relations

x*=u, y’=u*v, xy+yx=2v.

By [3] we have 971=id. Thus A satisfies 5) of Theorem 2.1. It is also noted
in [3] that A doesn’t satisfy 1). However, we provide here some more com-
putation in order to see how Theorem 2.1 can be applied to this case. We use
the same notation as in [3]. We have A*=f,, A=Af,,. For d=A* ¢=
(B (x3) =208 (1) — (N x+B ()Y + DY) foy = foy ($(x3)— 208 (1) +$(3)x—P(x)
+¢(L)xy). Thus 6=0;_, is given by a(r\+rx+rsy+r.xy)=ri—rx—riy+r.xy.
If A satisfies 1), then there exists a unit 2 of 4 with p’=2pa* for all psA
by Theorem 2.1. Since o?=id, A* is in the center of A4, i.e., 22 R. Put A=
r+rox+rsy+rixy.  Then AB=rit+riutrivtv—riu*v+2rv+2r,(ri+rw)x+
2ry(rit+raw)y+2r,(ri+rw)xy. Thus r,=r;=r,=0 or »,+r,v=0. In the former
case, we have A= R, and then ¢=id, a contradiction. In the latter case, a unit
A*crad R, a contradiction. Thus A doesn’t satisfy 1).

In the following examples 3,4,5, R is the same as in Example 1.

ExAMPLE 3. (Roggenkamp [7]) An order A such that J7=id on .£(A)—pr(A),
but J7+id. Let

A: R 71'R R R y €1—= » €= ’ 03:

R =wR R R

TR TR TR R

where R=R means the set {(x+xy, x); x, yeR}. Put P,—=e; A (=1, 2,3). The
Auslander-Reiten quiver of £(A) is
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(R #R R R)=P,

\
(TR TR R R) oooooooeoesoeresesrnn (RRRR) oo 7(::13 R R R)
/
(@R R R R)=F 7R 7R R R
el
7R R =R R
(TR TR TR R) oo (xR 7R ©R R)

where dotted lines represents z-orbits and isomorphic lattices are identified.
Using Proposition 2.3 we can show J1=id on L(A)—pr(4). On the other hand,
JI(P)=P,, J1(P,)=P,, J1(P;)=P; hold.

ExAMPLE 4. A Gorenstein order which satisfies neither 5.a) nor 5.b). Let

R 71.'2R 7r2R 1 0 0
A={R R =n®R|. Put eIZ( 0 ), ez-——( 1 ), e3:( 0 )and Pi=e; A, Y;

=rad P; /=1, 2, 3). Then we have P*=Ae,, P¥=Ade,, P¥=Ae, and JI(P,)=P,,
TPY=P,;, JUP)=P,, WY )=Y,, Y ,)=Y,, J(Y;)=Y, by direct computations,
Thus A satisfies our requirement.

R =R =R
EXAMPLE 5. Let A=|zR R #nR| and e¢;, P; be the same as in Example 4
R R R

(=1, 2, 3). We have P¥=Ae,, Pf=Ade, and P¥ is not A°P-projective. Thus A
is not Gorenstein. Put Y=(R R nR)=rad P,. Then J(Y)=Y, JI(P)=PF,, JI(P)
=P, J(Py)=Y. Since P, is a noninjective lattice and P;=rad P,, we have an
almost split sequence 0—P;—P,PP,—Y—0. Since Y=(Ade,)* is an injective lat-
tice, the following is a connected component of the Auslander-Reiten quiver

of LiA).

Thus it coincides with the Auslander-Reiten quiver of .£(A). Therefore, :1=id

on .L{A)—pr(A), but A4 is not Gorenstein. We note that Hom 40,(Hom «(Y, 4), 4°?)
=(R R R)+Y holds in this case.
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Note added in proof. Vasconcelos obtained Proposition 1.6 in the more

general context (On quasi-local regular algebras, Sympos. Math. XI, Academic
Press, 1973, 11-22). He called an algebra which satisfies the condition 3) of
Theorem 1.1 moderated Gorenstein algebra and showed the equality of Propo-
sition 1.6 (section 3, Remark of the above cited paper).

(1]
[2]
[3]
(4]
[5]
[6]
L7]

References

Artin, M., Maximal orders of global dimension and Krull dimension two, Inv. Math.
84 (1986), 195-222.
Auslander, M., Functors and Morphisms Determined by Objects, Proc. Conf. on
Representation Theory (Philadelphia 1976), Marcel Dekker, 1978, 1-244.
Auslander, M. and Reiten, 1., Almost split sequences for rational double points,
Trans. Amer. Math. Soc. 302 (1987), 87-97.

Drozd, Ju. A., Kiricenko, V.V. and Roiter, A.V., On hereditary and Bass orders,
Izv. Akad. Nauk SSSR, 31 (1967), 1415-1436.

Fujita, H., A remark on tiled orders over a local Dedekind domain, Tsukuba J.
Math. 10 (1986), 121-130.

Ramras, M., Maximal orders over regular local rings of dimension two, Trans.
Amer. Math. Soc. 142 (1969), 457-474.

Roggenkamp, K. W., Gorenstein orders of finite representation type and bijective
lattices, Representation Theorey Il Groups and Orders, Springer Lecture Notes
in Math. 1178, 1986, 243-271.

Department of Mathematics
Faculty of Liberal Arts
Nagasaki University

1-14, Bunkyo-machi, Nagasaki
852 Japan '



	A CHARACTERIZATION OF ...
	Introduction.
	1. A characterization ...
	2. Gorenstein orders in ...
	References


