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GEOMETRY AND SYMMETRY ON SASAKIAN MANIFOLDS

By

P. BUEKEN and L. VANHECKE

1. Introduction.

In [26] the second author has given a brief survey about the local genera-
lization to arbitrary Riemannian manifolds of the notion of a reflection with re-
spect to a point, a line or a linear subspace in a Euclidean space. Local sym-
metries with respect to a point (local geodesic symmetries) are well-known and
these local diffeomorphisms are already used at many occasions to study and
even to classify some particular classes of Riemannian manifolds (see for ex-
ample [25]). Local symmetries with respect to a curve, in particular with re-
spect to a geodesic, led to less well-known characterizations of locally sym-
metric manifolds and spaces of constant curvature [27]. Finally, local sym-
metries with respect to submanifolds are studied in [21] and they give some
nice geometrical results in the theory of embedded minimal and totally geodesic

submanifolds.
Local symmetries with respect to a curve may also be used to study contact

geometry, in particular on Sasakian manifolds. On these manifolds, the integral

curves of the characteristic vector field are geodesics and the study of the local
symmetries with respect to these curves led in a natural way to a very geomet-

rical treatment of the so-called $\varphi$-symmetric spaces introduced in [18]. These
spaces are natural analogues of locally symmetric spaces. (See [4], [5], [6],

[18].)

In this paper we continue our study of Sasakian geometry but now we focus
on local symmetries with respect to geodesics which cut the integral curves of
the characteristic vector field orthogonally. Such geodesics are usually called
$\varphi$-geodesics. The main purpose is to use these local symmetries to give new
characterizations of $\varphi$-symmetric spaces, Sasakian space forms and locally sym-
metric Sasakian manifolds. In sections 2, 3 and 4 we treat some general pre-
liminaries about Sasakian manifolds and symmetries with respect to a curve
thereby focussing on the central role of normal coordinates, Fermi coordinates
and Jacobi vector fields. (For more details about contact geometry we refer to
[1], [29].) In sections 5, 6 and 7 we prove our main results about symmetry.
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2. Contact Geometry and Sasakian Manifolds.

A smooth manifold $M^{2n+1}$ is said to be an almost contact manifold if the
structural group of its tangent bundle is reducible to $V(n)\times 1$ . It is well-known
that such a manifold admits a tensor field $\varphi$ of type $(1, 1)$ , a vector field $\xi_{\approx}^{\vee}and$

a l-form $\eta$ satisfying

$\eta(\xi)=1$ , $\varphi^{2}=-I+\eta\otimes\xi$ .
These conditions imply that $\varphi\xi=0$ and $\eta\circ\varphi=0$. Moreover, $M$ admits a Rieman-
nian metric $g$ satisfying

$g(\varphi X, \varphi Y)=g(X, Y)-\eta(X)\eta(Y)$

for any tangent vector fields $X$ and $Y$ . Note that this implies that

$\eta(X)=g(X, \xi)$ .
$M$ together with these structure tensors $(\varphi, \xi, \eta, g)$ is said to be an almost
contact metric manifold. If now these structure tensors satisfy

(1) $(\nabla_{x}\varphi)Y=g(X, Y)\xi-\eta(Y)X$ ,

where $\nabla$ denotes the Riemannian connection of $g,$ $M$ is said to be a Sasakian
manifold. It is easy to see from (1) that

(2) $\nabla_{X}\xi=-\varphi X$ ,

from which it follows that $\xi$ is a Killing vector field. We refer to [1] for a
lot of examples.

The curvature tensor

$R_{XY}Z=\nabla_{[X.Y]}Z-[\nabla_{x}, \nabla_{Y}]Z$

on a Sasakian manifold satisfies

(3) $R_{XY}\xi=\eta(X)Y-\eta(Y)X$ .
As a notational matter we write $R_{XYZW}$ for $g(R_{XY}Z, W)$ and $(\nabla_{U}R)_{XYZW}$ for
$g((\nabla_{U}R)_{XY}Z, W)$ . Then we have

(4) $R_{XYZ\varphi w}+R_{XY\varphi zw}=d\eta(X, Z)g(Y, W)-d\eta(X, W)g(Y, Z)$

$-d\eta(Y, Z)g(X, W)+d\eta(Y, W)g(X, Z)$ ,

where
$\psi(X, Y)=(d\eta)(X, Y)=g(X, \varphi Y)$ .

A plane section of the tangent space at a point of $M$ is called a $\varphi$-section
if it is spanned by vectors $X$ and $\varphi X$ orthogonal to $\xi$ . The sectional curvature
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of a $\varphi$-section is called a $\varphi$ -sectional curvature. A Sasakian manifold of constant

$\varphi$-sectional curvature $c$ is called a Sasakian space form and its curvature tensor

is given by

(5) $R_{XY}Z=\frac{c+3}{4}\{g(X, Z)Y-g(Y, Z)X\}+\frac{c-1}{4}\{\eta(Y)\eta(Z)X-\eta(X)\eta(Z)Y$

$-g(X, Z)\eta(Y)\xi+g(Y, Z)\eta(X)\xi-g(Z, \varphi Y)\varphi X+g(Z, \varphi X)\varphi Y$

$-2g(X, \varphi Y)\varphi Z\}$ .
Note that $c$ is automatically globally constant for $\dim M\geqq 5$ . (Here and in the

rest of the paper we will suppose, if necessary, that $M$ is a connected mani-
fold.) Further, we have the following useful characterization.

THEOREM 1 [20]. A connected Sasakian manifold $M$ of $dimension\geqq 5$ is a
Sasakian space form if and only if, for every vector field $X$ orthogonal to $\xi$ , we
have

$R_{x_{\varphi}xx}\sim\varphi X$ ,

that is, $R_{x_{\varphi}x}X$ is proportional to $\varphi X$.

We also note that the Sasakian space forms are classified completely and

locally there are three classes according to $c+3>0,$ $c+3=0$ or $c+3<0[19]$ (see

also [1], [29]).

It is well-known that for a Sasakian manifold the condition of local sym-

metry, i.e. $\nabla R=0$ , is a very strong condition. Indeed, we have

THEOREM 2 [17]. A connected locally symmetric Sasakian manifold has con-
stant sectional curvature $c=1$ .

For that reason T. Takahashi [18] introduced the notion of a (locally) $\varphi-$

symmetric Sasakian manifold.
In the rest of this section we consider these spaces in more detail and state

some important facts about them. Some will be needed later on and others are
stated for reasons of completeness.

A geodesic $\gamma$ on a Sasakian manifold is said to be a $\varphi$-geodesic if $\eta(\gamma^{\prime})=0$ .
From (2) it is easy to see that a geodesic which is initially orthogonal to $\xi$

remains orthogonal to $\xi$ . A local diffeomorphism $s_{m}$ of $M,$ $m\in M$, is said to be

a $\varphi$-geodesic symmetry if its domain $U$ is such that, for every $\varphi$-geodesic $\gamma(s)$ such

that $\gamma(0)$ lies in the intersection of $U$ with the integral curve of $\xi$ through $m$ ,

$(s_{m^{o}}\gamma)(s)=\gamma(-s)$
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for all $s$ with $\gamma(\pm s)\in U,$ $s$ being the arc length [18]. Note that at the point $m$

the differential $s_{m*}$ of $s_{m}$ is given by

(6) $ s_{m*}(m)=-I+2\eta\otimes\xi$ .
In [18] Takahashi introduced the notion of a locally $\varphi$-symmetric space by

requiring that
$\varphi^{2}(\nabla_{V}R)_{XY}Z=0$

for all vector fields $V,$ $X,$ $Y,$ $Z$ orthogonal to $\xi$ . Moreover, he defined a globally
$\varphi$-symmetric space by requiring that any $\varphi$-geodesic symmetry of the locally $\varphi-$

symmetric space be extendable to a global automorphism of $M$ and that the
Killing vector field $\xi$ generates a global one-parameter subgroup of isometries.

Finally, let $c\tilde{U}$ be a neighborhood on $M$ on which $\xi$ is regular (see [1]).
Then, as is well-known, the fibration $ c\tilde{U}\rightarrow^{C}U=q\tilde{J}/\xi$ gives a Kahler structure
$(J, G)$ on the base manifold $V$ .

First we collect four results from [18].

THEOREM 3. A Sasakian manifold is a locally $\varphi$-symmetric space if and only

if each Kahler manifold, which is the base space of a local fibering, is a Hermi-
tian locally symmetric space.

THEOREM 4. A complete, connected, simply connected Sasakian locally $\varphi-$

symmetric space is a globally $\varphi$-symmetric space. It is a principal $G^{1}$ -bundle over
a Hermitian globally symmetric space.

THEOREM 5. A necessary and sufficient condition for a Sasakian manifold to
be locally $\varphi$-symmetric is that it admits a $\varphi$-geodesic symmetry at every point,
which is a local automorphism of the structure $(\varphi, \xi, \eta, g)$ .

THEOREM 6. A Sasakian manifold $M$ is locally $\varphi$-symmetric if and only if,

for all vector fields $X,$ $Y,$ $Z,$ $V,$ $W$,

(7) $(\nabla_{V}R)_{XYZW}=\eta(W)\{g(X, V)g(\varphi Y, Z)-g(Y, V)g(\varphi X, Z)+R_{XYV\varphi z}\}$

$+\eta(X)\{g(Y, Z)g(\varphi V, W)-g(Y, W)g(\varphi V, Z)-R_{Y\varphi^{VZW}}\}$

$+\eta(Y)\{g(X, W)g(\varphi V, Z)-g(X, Z)g(\varphi V, W)+R_{x_{\varphi}vzw}\}$

$+\eta(Z)\{g(Y, V)g(\varphi X, W)-g(X, V)g(\varphi Y, W)-R_{XYV\varphi W}\}$ .
Note that it is easily seen that a Sasakian space form is always locally $\varphi-$

symmetric. Other examples may be constructed by using Theorem 4. See also
[18].

In [4] D. E. Blair and the second author proved another characterization
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theorem.

THEOREM 7. Let $M$ be a Sasakian manifold with structure tensors $(\varphi, \xi, \eta,g)$ .
Then $M$ is a locally $\varphi$-symmetric space if and only if all the local $\varphi$-geodesic
symmetries are

a) $\psi$-preserving,
$or$ b) $\varphi$-preserving,
$or$ c) $\eta$ -preserving,
$or$ d) g-preserving.

d) and a) correspond to the analogue characterizations of locally symmetric
and Hermitian locally symmetric spaces (see [25]).

For dimension $M=3$ and 5 we also have

THEOREM 8 [4], [6]. Let $M$ be a connected Sasakian manifold of dimension
3 or 5. Then $M$ is locally $\varphi$-symmetric if and only if all local $\varphi$-geodesic sym-
metries are volume-preserving.

From this a complete classification of complete, simply connected three-
dimensional locally $\varphi$-symmetric spaces is determined in [4].

For our purposes we shall need two other characterizations, proved in [5].

THEOREM 9. A Sasakian manifold $M$ is locally $\varphi$-symmetric if and only if
$\nabla_{X}R_{X\varphi XX\varphi X}=0$

for all vector fields $X$ orthogonal to $\xi$ .

THEOREM 10. A Sasakian manifold $M$ is locally $\varphi$-symmetric if and only if
for every point $m\in M$ and every $\varphi$ -geodesic $\gamma$ through $m$ we have the following
property: for every $ p\in\gamma$ such that $p$ and $s_{m}(p)$ lie in a normal neighborhood of
$m$ , the shape operators $T_{p}(m)$ and $T_{s_{m}(p)}(m)$ at $m$ of the geodesic spheres of radius
$d(m, p)$ centered at $p$ and $s_{m}(p)$ commute with $s_{m*}(m),$ $i$ . $e$ .
(8) $s_{m*}(m)\circ T_{p}(m)=T_{s_{m}(p)}(m)\circ s_{m*}(m)$ .

To finish this section we note that the local geodesic symmetries of a locally
$\varphi$-symmetric space have the remarkable property that they are all volume-
preserving [28]. This is related to the fact that this volume-preserving property
for the local geodesic symmetries holds for any naturally reductive homogeneous
space [8], [14], [22]. We have

THEOREM 11 [5]. Let $M$ be a complete, connected, simply connected Sasakian
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manifold. Then $M$ is a globally $\varphi$-symmetric space if and only if $M$ is a naturally

reductive homogeneous space with invariant Sasakian structure.

The local version of this theorem may be stated and proved by using the

theory of homogeneous structures [22], [23]. Finally we note that the volume-

preserving property implies the following useful identity:

(9) $\nabla_{X}\rho_{XX}=0$

for all tangent vectors $X$. Here $\rho$ denotes the Ricci tensor of $(M, g)$ . (See for

example [25].)

3. Jacobi Vector fields on Sasakian Space Forms.

Let $m$ be a point on a Sasakian manifold and let $\gamma$ be a geodesic, para-

metrized by arc length $s$ , through $m=\gamma(O)$ and with $\gamma^{\prime}(0)=u,$ $\Vert u\Vert=1$ . In what

follows we shall also write $\gamma^{\prime}=u$ at any point of $\gamma$ .
A Jacobi vector field $X$ along $\gamma$ is a vector field that satisfies the equation

(10) $\nabla_{u}\nabla_{u}X+R_{uX}u=0$ .

The Jacobi vector fields may be defined, as is well-known, by variations of

geodesics, and hence it is clear that they play a very important role in the
study of the geometry of a small neighborhood of a point or of a tubular

neighborhood of a curve. So they are crucial in the theory of geodesic spheres

and tubes and hence in the treatment of local geodesic symmetries and local

symmetries with respect to a curve. (See for example [7], [11], [12], [24], [27].)

For our purposes we shall need the solutions of the Jacobi differential equa-

tion (10) when $M$ is a Sasakian space form, $i.e$ . when $R$ is given by (5), $c$ being

a constant. We follow the method developed in [2], [3] but now we need the

explicit solutions.
To solve (10) we take an orthonormal basis $\{e_{i}, i=1, \cdots , 2n+1\}$ at $m$ such

that $\gamma^{\prime}(0)=u=e_{1}$ and we denote by $\{E_{i}, i=1, \cdots, 2n+1\}$ the orthonormal frame

along $\gamma$ obtained by parallel translation or the $e_{i}$ along $\gamma$ .
We start with the easy case $ u=\xi$ . Then by (3) and (10) we have

$\nabla_{\xi}\nabla_{\xi}X+X=0$

for $X$ orthogonal to $\xi$ and hence we obtain at once

THEOREM 12. Let $\gamma$ be an integral curve of the characteristic vector field $\xi$

on a Sasakian manifold and let $X$ be a Jacobi vector field orthogonal to $\xi$ along $\gamma$ .
With respect to the parallel basis $\{u, E_{a}, a=2, \cdots, 2n+1\}$ we have
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$X(s)=\sum_{a=2}^{2n+1}(A_{a}\sin s+B_{a}\cos s)E_{a}(s)$ ,

where $A_{a}$ and $B_{a}$ are constants.

Next, let $\gamma$ be a geodesic through $m\in M$, tangent to $ u\neq\xi$ . This case is
more complicated. Let $\alpha=\eta(u)$ and note that $\alpha$ is constant along $\gamma$ . Then (5)

implies

(11) $R_{uX}u=\frac{c+3}{4}\{X-g(u, X)u\}+\frac{c-1}{4}\{\alpha\eta(X)u-\alpha^{2}X$

$+\alpha g(u, X)\xi-\eta(X)\xi-3g(u, \varphi X)\varphi u\}$ .
Further, let $\{e_{1}, \cdots, e_{2n+1}\}$ be an orthonormal basis at $m$ with $u=e_{1}$ and

$e_{2n}=(1-\alpha^{2})^{-1/2}(\xi-\alpha u)$ , $e_{2n+1}=(1-\alpha^{2})^{-1/2}\varphi u$ .
Again, denote by $\{E_{i}, i=1, \cdots, 2n+1\}$ the basis obtained by parallel translation
of the vectors $e_{i}$ along $\gamma$ . Then we obtain easily along $\gamma$ :

(12) $\left\{\begin{array}{l}E_{2n}=(1-\alpha^{2})^{-1/2}\{(\xi-\alpha u)coss+\varphi usins\},\\E_{2n+1}=(1-\alpha^{2})^{-1/2}\{-(\xi-\alpha u)sins+\varphi ucoss\},\end{array}\right.$

where $s$ denotes the arc length from $m$ along $\gamma$ . Note that $span\{\varphi u, \xi-\alpha u\}$ is
parallel along $\gamma$ . Further, from (11) and (12) we get

(13) $\left\{\begin{array}{l}R_{uE_{a}}u=\frac{1}{4}lE_{a}, a=2,\cdots,2n-1,\\R_{uE_{2n}}u=\{cos^{2}s+(p+1)sin^{2}s\}E_{2n}+\frac{1}{2}psin2sE_{2n+1},\\R_{uE_{2n+1}}u=\frac{1}{2}psin2sE_{2n}+\{sin^{2}s+(p+1)cos^{2}s\}E_{2n+1},\end{array}\right.$

where

(14) $l=c+3-\alpha^{2}(c-1)$ , $p=(c-1)(1-\alpha^{2})$ .
Now, let $X$ be a Jacobi vector field orthogonal to the geodesic $\gamma$ and put

(15) $X=\sum_{a=2}^{2n-1}f_{a}E_{a}+f_{2n}E_{2n}+f_{2n+1}E_{2n+1}$ .

Then, using (13), (14) and (15), (10) is equivalent to the following system of
differential equations

(16) $f_{a}^{\prime\prime}+\frac{1}{4}lf_{a}=0$ , $a=2,$ $\cdots,$ $2n-1$ ;

(17) $\left\{\begin{array}{l}f_{2n}^{\prime\prime}+f_{2n}+psins(f_{2n}sins+f_{2n+1}coss)=0,\\f_{2n+1}^{\prime\prime}+f_{2n+1}+pcoss(f_{2n}sins+f_{2n+1}coss)=0.\end{array}\right.$
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Finally, put

(18) $\left\{\begin{array}{l}z_{2n}=f_{2n}sins+f_{2n+1}coss,\\z_{2n+1}=f_{2n}coss-f_{2n+1}sins.\end{array}\right.$

Then (17) becomes

(19) $\left\{\begin{array}{l}z_{2n+1}^{\prime\prime}+2z_{2n}^{\prime}=0,\\z_{2^{/}n}-2z_{2n+1}^{\prime}+pz_{2n}=0.\end{array}\right.$

Now put
$w=z_{2n}^{\prime}$ .

Differentiation of the second equation in (19) gives

(20) $\{Z^{\prime;^{\prime\prime}\ddagger_{=-2w}^{lw=0}}w_{2n}$

,

In this way we arrive at a system of differential equations which is easy
to solve. We write down the solutions in the three cases we will need.

A. CASE $l=0$

$f_{a}=A_{a}s+B_{a}$ , $a=2,$ $\cdots,$ $2n-1$ ,

$f_{2n}=\beta\sin s+\gamma\cos s$ ,

$f_{2n+1}=\beta\cos s-\gamma\sin s$ ,

where

$\beta=\frac{1}{2}As^{2}+Bs+C$ , $\gamma=-\frac{1}{3}As^{3}-Bs^{2}+\frac{1}{2}(A+pC)s+D$ ;

B. CASE $l>0$

Put $k=\sqrt{l}$ . Then we have

$f_{a}=A_{a}\cos\frac{k}{2}s+B_{a}\sin\frac{k}{2}s$ , $a=2,$ $\cdots,$ $2n-1$ ,

$f_{2n}=\overline{\beta}\sin s+\overline{\gamma}\cos s$ ,

$f_{2n+1}=\overline{\beta}\cos s-\overline{\gamma}\sin s$ ,

where

$\overline{\beta}=\frac{1}{k}$ (A $\sin ks-B\cos ks$ ) $+C$ ,

$\overline{\gamma}=\frac{2}{k^{2}}$ (A $\cos ks+B\sin ks$ ) $+\frac{1}{2}pCs+D$ ;

C. CASE $1<0$

Put $k=\sqrt{-l}$ . Then we have
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$f_{a}=A_{a}\cosh\frac{k}{2}s+B_{a}\sinh\frac{k}{2}s$ , $a=2,$ $\cdots 2n-1$ ,

$f_{2n}=\beta^{\Leftarrow}\sin s+\frac{-}{\gamma}\cos s$ ,

$f_{2n+1}=\beta^{\Rightarrow}\cos s^{=}-\gamma\sin s$ ,
where

$\beta^{\Rightarrow}=\frac{1}{k}$ A $\sinh ks+B\cosh ks$ ) $+C$ ,

$\frac{-}{\gamma}=-\frac{2}{k^{2}}$ (A $\cosh ks+B\sinh ks$ ) $+\frac{1}{2}pCs+D$ .
To prove our results in the following sections we shall need two particular

systems of Jacobi vector fields along a geodesic $\gamma$ .
I. The first system.

Let $X_{a}$ be the Jacobi vector fields along $\gamma$ with initial conditions

$X_{a}(0)=0$ , $X_{a^{\prime}}(0)=e_{a}$ , $a=2,$ $\cdots,$ $2n+1$ .
From the previous formulas we get

i) $\gamma$ is an integral curve of the field $\xi$ .
We have

$X_{a}(s)=\sin sE_{a}(s)$ , $a=2,$ $\cdots,$ $2n+1$ .
ii) $\gamma$ is a geodesic not tangent to $\xi$ .
Here we have

$\frac{|l>0|}{X_{a}(s)1\frac{2}{k}\sin\frac{k}{2}sE_{a}(s)}|s^{\underline{l=_{a}0}}E(s)\frac{|l<0}{1\frac{2}{k}\sinh\frac{k}{2}sE_{a}(s)}$

for $a=2,$ $\cdots,$ $2n-1$ , and

$X_{2n}(s)=(\mu\sin s+\nu\cos s)E_{2n}(s)+(\mu\cos s-\nu\sin s)E_{2n+1}(s)$ ,

$X_{2n+1}(s)=(\lambda\sin s-\mu\cos s)E_{2n}(s)+(\lambda\cos s+\mu\sin s)E_{2n+1}(s)$ ,
where

$\left|\begin{array}{l}-\frac{\overline 2}{k^{2}}(cosks-1)\\\frac{4}{k^{3}}sinks+\frac{1}{k^{2}}p_{S}\\\frac{1}{k}sinks\end{array}\right|\lambda\nu\mu s|_{\frac{1}{k}\sinh ks^{ks-1)}}^{\frac{2}{k^{2}}(\cos^{l}h^{<0}}|l>0|l-S^{2}-\frac{4}{k^{3}}\sinh ks-\frac{1}{k^{2}}p_{S}$
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II. The second system.
Let $Y_{a}$ be the Jacobi vector fields with initial conditions

$Y_{a}(0)=e_{a}$ , $Y_{a}^{\prime}(0)=0$ , $a=2,$ $\cdots,$ $2n+1$ .
As before, we obtain:

i) $\gamma$ is an integral curve of the field $\xi$ .
We have

$Y_{a}(s)=\cos sE_{a}(s)$ , $a=2,$ $\cdots,$ $2n+1$ .
ii) $\gamma$ is a geodesic not tangent to $\xi$ .
Here we get

$\frac{|l>0|l=0|l<0}{Y_{a}(s)\cos\frac{k}{2}sE_{a}(s)E_{a}(s)1\cosh\frac{k}{2}sE_{a}(s)}$

for $a=2,$ $\cdots,$ $2n-1$ , and

$Y_{2n}(s)=(\mu\sin s+\lambda\cos s)E_{2n}(s)+(\mu\cos s-\lambda\sin s)E_{2n+1}(s)$ ,

$Y_{2n+1}(s)=(\nu\sin s+\rho\cos s)E_{2n}(s)+(\nu\cos s-\rho\sin s)E_{2n+1}(s)$ ,

where

$-\frac{|l>0|l_{-}^{-}0|l<0}{\left|\begin{array}{lll}\frac{1}{k}sin & ks & \\\frac{1}{k^{2}}\{2cos & & ks+k^{2}-2\}\\\frac{1}{k^{2}}\{(k^{2}-2)cos & & ks+2\}\\-\frac{2}{k^{3}}(k^{2}-2)sin & & ks+\frac{1}{k^{2}}p_{S}\end{array}\right|11-+s_{2}^{2}s_{-s}1_{-\frac{2}{k^{3}}}^{\frac{1}{k}\sinh_{2}k_{2}s_{2)\cosh ks-2\}}}\frac{1}{k^{2}}\{(k_{(k}^{2}\frac{1}{k^{2}}\{k+_{+_{+2)\sinh ks-\frac{1}{k^{2}}p_{S}}^{2-2\cosh ks\}}}}\mu\lambda\nu\rho$

.

4. Symmetries with Respect to a Curve.

Let $\sigma:[a, b]\rightarrow M$ be a smooth embedded curve in a Riemannian manifold

and let $m=\sigma(t),$ $t\in[a, b]$ . Further, let $\{F_{i}, i=1, \cdots, n=\dim M\}$ be an ortho-

normal frame along $\sigma$ such that $\dot{\sigma}=F_{1}$ and $F_{2},$
$\cdots,$

$F_{n}$ are parallel with respect

to the normal connection along $\sigma$ . We denote by $(x^{1}, \cdots, x^{n})$ the system of

Fermi coordinates with respect to $m$ and the frame $(F_{1}, \cdots, F_{n})$ . Note that

$F_{1}=\frac{\partial}{\partial x^{1}}|_{\sigma}$ . We refer to [12], [13], [15], [27] for more details.
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Next, we consider the geodesic $\gamma$ , parametrized by arc length $s$ , such that
$\gamma(0)=m$ and $\gamma^{\prime}(0)=v\in T_{m}M$, $\Vert v\Vert=1$ and $g(v,\dot{\sigma})=0$ . There always exists a
sufficiently small tubular neighborhood $cU$ of $\sigma$ such that if $ p\in\gamma$ and $p\in cU,$ $\gamma$

is the unique geodesic through $p$ cutting $\sigma$ orthogonally at $m$ and such that

$\varphi_{\sigma}$ : $p=\exp_{m}(sv)->\exp_{m}(-sv)$

is a local diffeomorphism. Then $\varphi_{\sigma}$ is called the local symmetry with respect to
the curve $\sigma$ .

Now let $\omega$ be the volume form with respect to a chosen orientation of the
tubular neighborhood $cU$ and put

$\theta_{\sigma}=\omega(\frac{\partial}{\partial x^{1}},$

$\cdots,$
$\frac{\partial}{\partial x^{n}})$ .

This $\theta_{\sigma}$ is called the volume density function (see [27]). We have

THEOREM 13. The local symmetry with respect to $\sigma$ is volume-preserving (up

to sign) if and only if
(21) $\theta_{\sigma}(\exp_{m}(sv))=\theta_{\sigma}(\exp_{m}(-sv))$

for all $v\in T_{m}^{\perp}\sigma,$ $m=\sigma(t)$ and $t\in[a, b]$ .

In [27] T. J. Willmore and the second author derived a very useful formula
for $\theta_{\sigma}$ using Jacobi vector fields and the Wronskian of two solutions of the
Jacobi differential equations in matrix form. See also [13], [15]. We have

THEOREM 14. Let $(M, g)$ be a Riemannian manifold and $\sigma$ a curve in $M$.
Then we have, for $p=\exp_{m}(sv)$ ,

(22) $\theta_{\sigma}(\exp_{m}(sv))=-\{g(S_{p}\dot{\sigma}(t),\dot{\sigma}(t))+\kappa_{v}(t)\}s\theta_{m}(p)$ ,

where $S_{p}$ denotes the shape operator of the geodesic sphere with center $p$ and
radius $s=d(m, p)$ . $\theta_{m}$ is the volume density function of the exponential map at
$m$ and

$\kappa_{v}=g(\ddot{\sigma}(t), F_{n}(t))$

where $v=F_{n}(t)$ .

Using power series expansions with respect to the arc length $s$ we get for
(22) (see [7], [11], [27])

(23) $\theta_{\sigma}(p)=1-\kappa_{v}(t)s+0(s^{2})$

and hence, from (23), we obtain
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THEOREM 15. Let $\sigma$ be a curve in $(M, g)$ and suppose that the local symmetry

with respect to $\sigma$ is volume-preserving. Then $\sigma$ is a geodesic.

For this reason we will, in what follows, always restrict to local sym-

metries with respect to geodesics $\sigma$ .
We shall use extensively expressions for $S_{p}$ and $\theta_{\sigma(t)}$ and these may be

determined by using the Jacobi vector fields $X_{i}$ and $Y_{i}$ along $\gamma$ considered in
section 3. First, put

$X_{i}(s)=(AE_{i})(s)$ , $i=1,$ $\cdots,$ $n-1$ ,

where now $E_{n}$ is tangent to $\gamma$ . Then $A$ satisfies

$A^{\prime\prime}+R\circ A=0$

with initial conditions $A(O)=0,$ $A^{\prime}(O)=I$ . Further, put

$Y_{i}(s)=(DE_{i})(s)$ , $i=1,$ $\cdots,$
$ n-\sim\perp$

$D$ satisfies
$D^{\prime\prime}+R\circ D=0$

with initial conditions $D(O)=I,$ $D^{\prime}(O)=0$ . In both cases, $R$ is the endomorphism

$R:x\mapsto R_{\gamma^{\prime}x}\gamma^{\prime}$

along $\gamma$ . Finally, we note that
$S_{p}(m)=(A^{-1}D)(s)$

for $p=\exp_{m}(sv)[16]$ (See also [15], [27].) and

$\theta_{m}(p)=s^{1-n}\det A$ .
Using all these relations we obtain

THEOREM 16 [27]. Let $\sigma$ be a geodesic in $(M, g)$ and $p=\exp_{m}(sv)$ . Then

(24) $\theta_{\sigma}(p)=1-\frac{1}{6}s^{2}(\rho_{vv}+2R_{F_{1}uF_{1}u})(m)-\frac{1}{12}s^{3}(\nabla_{v}\rho_{vv}+\nabla_{v}R_{F_{1}vF_{1}v})(m)+0(s^{4})$

where $\rho$ denotes the Ricci tensor of $(M, g)$ .

In order to be able to treat isometric local symmetries with respect to a
geodesic $\sigma$ , we need some expressions for the metric tensor $g$ with respect to

the Fermi coordinates we considered before. We follow the treatment of [9],

[10], [12], [27]. Now we consider the Jacobi vector fields $Z_{i}$ along $\gamma$ with

initial conditions
$Z_{1}(0)=F_{1}(t)$ , $Z_{1}^{\prime}(0)=0$ ,

$Z_{a}(0)=0$ , $Z_{a}^{\prime}(0)=F_{a}(t)$ , $a=2,$ $\cdots$ , $n-1$
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where again $m=\sigma(t),$ $v=F_{n},\dot{\sigma}(t)=F_{1}(t)$ . Then we have

$Z_{1}=\frac{\partial}{\partial x^{1}}$ , $Z_{a}=r\frac{\partial}{\partial x^{a}}$ , $a=2,$ $\cdots,$ $n-1$

and from this we obtain

$g_{11}(p)=g(Z_{1}, Z_{1})$ ,

$g_{1i}(p)=\frac{1}{s}g(Z_{1}, Z_{i})$ , $i=2,$ $\cdots,$ $n$ ,

$g_{ij}(p)=\frac{1}{s^{2}}g(Z_{i}, Z_{j})$ , $i,$ $j=2,$ $\cdots n-1$ ,

$g_{in}(p)=\delta_{in}$ , $i=1,$ $\cdots,$ $n$ .
Following again the method developed in [9], [27] we obtain

THEOREM 17. Let $\sigma$ be a geodesic in $(M, g)$ and put $p=\exp_{m}(sv)$ . Then,

with respect to the Fermi coordinate system of above, we have

(25) $\left\{\begin{array}{l}g_{11}(p)=1-s^{2}R_{F_{1}vF_{1}v}(m)-\frac{1}{3}s^{8}\nabla_{v}R_{F_{1}vF_{1}v}(m)+0(s^{4}),\\g_{1i}(p)=-\frac{2}{3}s^{2}R_{F_{1}vF_{i}v}(m)-\frac{1}{4}s^{3}\nabla_{v}R_{F_{1}vF_{i}v}(m)+0(s^{4}),\\g_{ij}(p)=\delta_{ij}-\frac{1}{3}s^{2}R_{F_{i}vF_{j}v}(m)-\frac{1}{6}s^{3}\nabla_{v}R_{F_{i}vF_{j}v}(m)+0(s^{4}),\end{array}\right.$

where $i,$ $j=2,$ $\cdots,$ $n-1$ .

Based on Theorem 16 and Theorem 17, T. J. Willmore and the second author
proved the following theorems [27] which we will need in the next sections.

THEOREM 18. A Riemannian manifold $(M, g)$ is locally symmetric if and only

if the local symmetries with respect to all geodesics are volume-preserving.

THEOREM 19. A Riemannian manifold $(M, g)$ is a space of constant curvature

if and only if the local symmetries with respect to all geodesics are isometries.

5. Symmetries with Respect to $\varphi$-Geodesics and Locally $\varphi$-Symmetric

Spaces.

In this and in the next sections we will consider local symmetries with

respect to $\varphi$-geodesics on a Sasakian manifold $M^{2n+1}$ with structure tensors

$(\varphi, \xi, \eta, g)$ .
We start with a new characterization of locally $\varphi$ -symmetric spaces.
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THEOREM 20. A Sasakian manifold $M$ is a locally $\varphi$-symmetric space if and
only if the volume density function $\theta_{\sigma}$ has antipodal symmetry along $\varphi$-geodesics
orthogonal to a $\varphi$-geodesic $\sigma$ for any $\sigma$ .

PROOF. Let $M$ be a locally $\varphi$-symmetric space and $\sigma$ a $\varphi$-geodesic. From
Theorem 13 it follows that we have to prove

(26) $\theta_{\sigma}(\exp_{m}(sv))=\theta_{\sigma}(\exp_{m}(-sv))$

for any unit vector $v$ orthogonal to $u=\dot{\sigma}(t)$ and $\xi$ . To do this we use (22)
where $\kappa_{v}=0$ .

First we note that
$\theta_{m}(\exp_{m}(sv))=\theta_{m}(\exp_{m}(-sv))$

since all local geodesic symmetries are volume-preserving on $M$. Secondly, we
apply Theorem 10 to get a property for the shape operator $S_{p}$ in (22). From
(8) we get

(27) $s_{m*}(m)\circ S_{p}(m)\dot{\sigma}(t)=S_{-p}(m)\circ s_{m*}(m)\dot{\sigma}(t)$

where $p=\exp_{m}(sv)$ and $-p=\exp_{m}(-sv)$ . Now using (6) and $\eta(\dot{\sigma}(t))=0$ , we ob-
tain from (27)

$g(S_{p}(m)\dot{\sigma}(t),\dot{\sigma}(t))=g(S_{-p}(m)\dot{\sigma}(t),\dot{\sigma}(t))$

which proves now immediately the required result.
Conversely, suppose (26) holds. Then, from this and (24) we have

(28) $\nabla_{v}\rho_{vv}+\nabla_{v}R_{vuvu}=0$

for all vectors $v$ orthogonal to $u$ and $\xi$ and all $u$ orthogonal to $\xi$ . Next, let
$\{e_{i}, \xi, i=1, \cdots, 2n\}$ be an orthonormal basis at $m\in M$ with $v=e_{2n}$ . Put $u=e_{i}$ ,
$i=1,$ $\cdots,$ $2n-1$ in (28) and sum with respect to $i$ . This gives

$2n\nabla_{v}\rho_{r}-\nabla_{v}R_{v\xi v\xi}=0$ .
But by (2) and (3) $\nabla_{v}R_{v\xi v\xi}=0$ and so we obtain

$\nabla_{v}\rho_{vv}=0$ .
Now (28) becomes

(29) $\nabla_{v}R_{vuvu}=0$

for all $v$ orthogonal to $u$ and $\xi$ , and $\xi$ orthogonal to $u$ . Finally, put $u=\varphi v$ in
(29). Then we obtain

$\nabla_{v}R_{v\varphi vv\varphi v}=0$

for all $v$ orthogonal to $\xi$ . The result follows now from this and Theorem 9.
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6. Symmetries with Respect to $\varphi$-Geodesics and Sasakian Space Forms.

to get
$0=\nabla_{v}R_{vuvu}=-\eta(v)(R_{vuv\varphi u}+R_{vuu\varphi v})=2\eta(v)R_{vu\varphi vu}$ .

So
(30) $\eta(v)R_{vu\varphi vu}=0$ .
Put $v=\alpha X+\beta Y+\gamma Z$ , with $X,$ $Y,$ $Z$ orthogonal to $u$ , in (30) and expand. Since

the coefficient of $\alpha\beta\gamma$ must vanish, we get

(31) $\eta(X)(R_{Yu\varphi Zu}+R_{Zu\varphi Yu})+\eta(Y)(R_{Xu\varphi Zu}+R_{Zu\varphi Xu})$

$+\eta(Z)(R_{Xu\varphi Yu}+R_{Yu\varphi Xu})=0$ .
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Take $X=\xi,$ $Z=\varphi u$ and $Y$ orthogonal to $\xi$ . Then (31) gives

$R_{u\varphi uu\varphi Y}=0$

for all $Y$ orthogonal to $u$ and $\xi$ . Using this and (3) we easily see that

$R_{u\varphi u}u\sim\varphi u$

and hence, Theorem 1 implies the result.

7. Isometric Local Symmetries with Respect to $\varphi$-Geodesics.

In this final section we derive two characterizations of connected locally
symmetric Sasakian manifolds $M$ when $\dim M\geqq 5$ . Note that such spaces have
constant curvature 1 (Theorem 2). Also we study isometric symmetries on three-
dimensional Sasakian space forms.

First we start with a definition introduced in [12] and refer to [24] for
more information about harmonic manifolds.

DEFINITION. A Riemannian manifold $M$ is said to be harmonic with respect
to a geodesic $\sigma$ provided that the volume density function $\theta_{\sigma}$ depends only on
the distance from the geodesic $\sigma$ .

In [12] A. Gray and the second author proved

THEOREM 22. A Riemannian manifold $M$ has constant curvature if and only
if $M$ is harmonic with respect to all geodesics.

Here we prove

THEOREM 23. A Sasakian manifold $M$ has constant curvature 1 if and only
if $M$ is harmonic with respect to each $\varphi$-geodesic.

PROOF. First suppose that $M$ has constant curvature $(=1)$ . Then the re-
sult follows from Theorem 22.

Conversely, let $\sigma$ be a $\varphi$-geodesic and suppose $M$ is harmonic with respect
to $\sigma$ . From (24) we then get

(32) $\rho_{vv}+2R_{vuvu}=\alpha(u)$

for any unit vector $n$ orthogonal to $u$ and since this must be true for all $\sigma,$ (32)
must also hold for all $u$ orthogonal to $\xi$ . Put $ v=\xi$ in (32). Then we get

(33) $\alpha(u)=2n+2$

since $\rho_{\xi\xi}=2n$ . Next, let $\{e_{i}, i=1, ’\cdot\cdot, 2n+1\}$ be an orthonormal basis such that
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$v=e_{1},$ $\xi=e_{2n+1}$ , and put $u=e_{a},$ $a=2,$ $\cdots,$
$2n$ in (32). With (33) we obtain after

summation with respect to $a$ :

(34) $\rho_{vv}=2n$ .
Hence (32), (33) and (34) give

$R_{vuvu}=1$

for all $u$ orthogonal to $v$ and both unit vectors orthogonal to $\xi$ . This gives at
once the required result.

Next we have

THEOREM 24. Let $M^{2n+1}$ be a Sasakian manifold of $dimension\geqq 5$ . Then $M$

has constant curvature 1 if and only if the local symmetries with respect to all
$\varphi$-geodesics are isometries.

PROOF. First, let $M$ be a space of constant curvature. Then the result
follows from Theorem 19.

Conversely, suppose that all the local symmetries with respect to $\varphi$-geodesics
are isometries. Theorem 21 implies that $M$ is a Sasakian space form. Further,

from (25) and the hypothesis we derive

(35) $R_{vuvX}=0$

for all $v,$ $X$ orthogonal to $u$ and all $u$ orthogonal to $\xi$ . This, together with (5)

implies

(36) $0=R_{vuvX}=-\frac{3}{4}(c-1)g(v, \varphi u)g(\varphi v, X)$ .

Since $\dim M\geqq 5$ we can choose $u$ orthogonal to $\xi$ and $X$ orthogonal to $u,$ $\varphi u,$
$\xi$ .

Then put $v=\varphi u+\varphi X$ in (36). This gives at once $c=1$ and the result is proved.

For three-dimensional manifolds we have

THEOREM 25. Let $M$ be a three-dimensional Sasakian space from. Then any
local symmetry with respect to any $\varphi$-geodesic is an isometry.

PROOF. Again, let $\sigma$ denote the $\varphi$-geodesic, $m=\sigma(t),$ $u=\dot{\sigma}(t),$ $p=\exp_{m}(sv)$ ,
$\Vert v\Vert=1$ and $g(v, u)=0$ .

We proceed as in section 3 and use the method described after Theorem 16
in section 4. Here also we consider two cases:

i) $ v=\xi$

Here we get at once
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$Z_{1}(s)=\cos sE_{1}(s)$ , $Z_{2}(s)=\sin sE(s)$

and hence

$g_{11}(p)=\cos^{2}s$ , $g_{I2}(p)=0$ , $g_{22}(p)=\frac{1}{s^{2}}\sin^{2}s$

which proves the result.

ii) $ v\neq\xi$

At $m$ we choose the following basis:

$f_{1}=(1-\alpha^{2})^{-1/2}(\xi-\alpha v)$ , $f_{2}=(1-\alpha^{2})^{-1/2}\varphi v$ , $f_{3}=v$

where $\alpha=\eta(v)$ . Let $\{E_{1}, E_{2}, E_{3}\}$ be the parallel basis obtained by parallel
translating the vectors $f_{i},$ $i=1,2,3$ along the geodesic $\gamma$ . Note that

$e_{1}=u=\mp f_{2}$ , $e_{2}=\pm f_{1}$ , $e_{3}=v=f_{3}$

at $m$ . So the initial conditions are
$Z_{1}(0)=\mp f_{2}$ , $Z_{1}^{\prime}(0)=0$ ,

$Z_{2}(0)=0$ , $Z_{2}^{\prime}(0)=\pm f_{1}$

and hence the solutions of the Jacobi equation are

$Z_{1}(s)=\pm\{(\mu\sin s+\lambda\cos s)E_{1}(s)+(\mu\cos s-\lambda\sin s)E_{2}(s)\}$ ,

$Z_{2}(s)=\pm\{(\nu\sin s+\rho\cos s)E_{1}(s)+(\nu\cos s-\rho\sin s)E_{2}(s)\}$

where

$\left|\begin{array}{l}\overline{-\frac{1}{k^{2}}\{(k^{2}-2)cosks+2\}}\\\frac{2}{k^{3}}(k^{2}-2)sinks-\frac{1}{k^{2}}ps\\\frac{2}{k^{2}}(cosks-1)\\\frac{4}{k^{3}}sinks+\frac{1}{k^{2}}p_{S}\end{array}\right|\nu\lambda\rho-\frac{2}{3}s+s$

From this we obtain the expressions

$\left\{\begin{array}{l}g_{11}(p)=\mu^{2}+\lambda^{2},\\g_{12}(p)=\frac{1}{s}(\mu\nu+\lambda\rho),\\g_{22}(p)=\frac{1}{s^{2}}(\nu^{2}+\rho^{2}),\end{array}\right.$
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which again give the result.
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