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ON DEDEKIND SUMS AND ANALOGS

By n

Don REDMOND, R. Sitaramachandra RA0 and R. SIVARAMAKRISHANAN

Abstract The purpose of this paper is to point out a connection
between an identity due to Subrahmanyam and the Peterson-Knopp
identity for the classical Dedekind sum. We then consider the same
connection with regard to the Apostol-Vu generalization of the
Dedekind sum. We also consider some sums related to the classical
Dedekind sum.

1. Introduction.

We define the function ((x)) by

x—[x]—1/2 if x is not an integer

((x))={

0 otherwise.

Let A and £ be positive integers. The Dedekind sum S(h, k) is defined as

an st 0= 3, (D).

In [9] H. Rademacher and E. Grosswald have given a survey of the properties
of S(h, k). P. Subrahmanyam in has shown that

(1.2) > S(h+Dbk, nk)zﬁp(d)S(hd, k)a(n/d),

d(mod n)

where p(n) is the Mobius function and o(n) is the sum of divisors function. In
[5] M. 1. Knopp proved the following identity for S(a, h):

(1.3) S X S(ah+bk, dk)a(n)S(h, k).

ad=n d(mod d)
d>o0

This generalized an older identity of Petersson. Proofs of [(1.3) have been given
by Goldberg in using the identity and Parson in using Hecke
operators. In Parson and Rosen have extended Knopp’s identity to gener-
alized Dedekind sums.

Suppose A(x) and B(x) are given functions which are defined on the ra-
tionals and satisfy a relation of the form
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> Fx+b/9)=¢""F(qx),
b(mod ¢)
for every positive integer ¢, every rational number x and some constant u(F)

depending only on F. In Apostol and Vu define a class of functions
- f(h, k)—‘—ﬂ(mgd k)A(n/k)B(hn/k),

which are called Dedekind sums of type (v(A), v(B)). It may be observed that
the classical Dedekind sum S(k, k), defined by [L.I), is of type (0, 0) and is
obtained by taking A(x)=B(x)=((x)).

In Apostol and Vu generalize and Let f(h, k) be a Dedekind
sum of type (v(A), w(B)). Let A=1—y(A)—v(B) and

og(n)=£d1.

They prove the following results. If k is a given integer, then

(1.5) N Ed )f(h+bk, nk)=n“‘dZ‘. p(d)d > f(hd, k)ai(n/d)
modn in

and if n is a positive integer, then

(1.6) 42_ d‘”“”b(m%}i d)f(ah—i—bk, dky=n"Pg,(n)f(h, k).

a>0
The purpose of the paper is to point out the intrinsic connection between

Subrahmanyan’s identity and Knopp’s identity as well as qetween Apostol and
Vu’s generalizations of these identities via a basic inversion principle. Incident-
ally, we derive a few analogues of Knopp’s identity. In this connection, we
also introduced two sums T(h, k) and S’(h, k) which are related to S(h, k).

2. An Inversion Principle.

Let f(m, n) and g(m, n) be complex valued functions defined for all positive
in tegers m and n. Define the two arithmetic functions e.(n) and e(n) by e.(n)
=[1/n] and e(n)=1 for all positive integers n. Let e(n) and n(n) be two
arithmetic functions related by the identity

2.1) ) " HE(n/d)rz(d)=eo(n).

We say that ¢ and % are Dirichlet inverses of each other.

THEOREM 1. With ¢ and 7 as above we have
f(m, n)=§ g(md, n/d)e(d)
if and only if
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glm, n)= 23 f(md, n/d)y(d).

PrROOF. We have
dZIInn(d)f(md, n/d)—_~ﬁﬂ(d)wzzn]ms(t)g(mdt, s)

> n(d)e(t)gimdt, s)

dis=n

= 2glmn/s, S)dcg,s”(dk@

sin

i

= Xlg(lmn/s, s)esn/s)

n
=g(m, n),
by (2.1) and the definition of e,.
This proves that
dian(md, n/d)e(d)=f(m, n) implies fl“_,"f(md, n/d)n(d)=g(m, n)

The proof of the reverse implication is similar and is omitted. This completes
the proof of Theorem 1.
COROLLARY 1.1. We have
f(m, n)=d%g(md, n/d)

if and only if
glm, n)= 2 p(d)f(md, n/d).

PrOOF. The result follows immediately from Theorem 1 if we take e(n)=
e(n)=1 and p(u)=p(n), since it is known (see [6, Theorem 4.6]) that (2.1) is
valid for this choice of ¢ and 7.

THEOREM 2. Suppose f(m, n) and g(m, n) are related by

(2.2) fOm, my= 2 g(md, n/d).

If G and H are arithmetic functions which are related by
(2.3) G(m:man(d)’

then

2 G(a)g(ah, d)= d.Z;zH(d)f(hd’ n/d).

ad=n

Proor. By Theorem 4.7 of [6], we have, from (2.3),
2.4) H(n)z(ﬂZﬂy(d)G(n/d).
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By and Corollary 1.1, we have
2 Gla)glah, d)= 3 G(a) 2 u(s)f(ahs, 1)

ad=n d=n

asgnG(a)y(S)f(a hs, t)

= S f(ht, n/t) 2 Gla)u(s)

EH(t)f(ht, n/t),
by This completes the proof of Theorem 2.

THEOREM 3. The two identities (1.2) and [1.3) are equivalent.

PROOF. We have only to appeal to Corollary 1.1 with appropriate choices
of f(m, n) and g(m, n). We take

f(m, n)=a(n)S(m, n)
and
g(m, n)==b(m§d n)S(m-}—bn, mn).

Then (1.2) is equivalent to
g(m, n)= d%ﬂ(d)f(md, n/d),
which, by Corollary 1.1, is equivalent to
f(m, n)= 23 gimd, n/d).

This establishes the equivalence and completes the proof.

THEOREM 4. Let G and H be arithmetic functions which are related by [2.3).
Then

(2.5) adzzln G(a)b(m?d d)S(ah—+—bk, dk)= (?HH(d)S(hd, k)o(n/d).

PRrROOF. Denote the left hand side of (2.5) by L. Then, by (1.2), we have
L=a§nG(a)c§y(c)S(ahc, k)a(d/c).

If we let m=ac, we have
L= > G(m/c)p(c)S(mh, k)a(n/m)

ml Im
d

3
o

m

= 2 S(mh, k)o(n/m)c%G(m/C)#(C)

I
S
S8

3

3
3

= H(m)S(mh, k)a(n/m),

min
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by This completes the proof of the theorem.

COROLLARY 4.1. We have

ey 2 2 Slahtbk, di)= > o, Hd)SChd, R)o(n/d),

ad=n b(mod d
(a, m)=1

for any positive integer m,

(2) 2 > S(a’h+bk, dk)= X A(d)S(hd, k)a(n/d),

a2d=n b(mod d) din

where A is Liouville’s function,

3) 2 a X d)S(ah—{—bk, dk)r—gjnc(m, d)S(hd, k)a(n/d),

ad=n b(mod
alm

where c(m, n) is Ramanujan’s trigonometric sum defined by

(2.6) cm, n)= 2 expQ@aikm/n),
Ay
4) dE_ abcmEd d)S(ah-l—bk, dkk)zg‘_, ¢(d)S(hd, k)a(n/d),
where ¢ denotes Euler’s quotent function, and
(5) ; log ab(mgd d)S(ah—I—bk, dk)= E_‘, A(d)S(hd, kR)a(u/d),

wyere A is the von-Mangoldt function defined by
log p if nis a power of the prime p

0 otherwise.

A(n)z{

PRRF OF (1). If we take G(n)=e,((m, n)), then, by H(n)=p(n). The
result follows from Theorem 4.

ProOF oOF (2). Recall that A(n) is defined by An)=(—12%" where 2(n)
counts the total number of prime factors of n. Then, we have

1 if n is a perfect square
E}ll(d)=

0 otherwise.
(see [4, p. 1117). The result follows from Theorem 4 if we take H(n)=2(n) and
1 if n is a perfect square
G(n)z{
0 otherwise.
PROOF OF (3). From (2.6) we have
n if nlm

> c(m, d)={
din

0 otherwise.
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Thus, if we take H(n)=c(m, n) and
n if nim

G(n):—-{

0 otherwise,

then the result follows from Theorem 4.

PrOOF OF (4). Here we take H(n)=¢(n) and G(n)=n. Then for this choice
of G and H we see that (2.3) holds by Theorem 2.17 of [4]. The result then
follows from Theorem 4.

PrROOF OF (5). By the definition of 4(n) and unique factorization we see that
dE Ald)=log n.
in

Thus, if we take H(n)=A(n) and G(n)=log n in Theorem 4, then the result
follows from Theorem 4.

This completes the proof of the corollary.

Note that (1) of Corollary 4.1 is a generalization of the Petersson-Knopp
identity (1.3), which is the case m=1.

THEOREM 5. The two identities (1.5) and (1.6) are equivalent.

PrROOF. Let f(h, k) be a Dedekind sum of type (v(A), v(B)). Let

F(h, n)=n"*g;(n)f(h, k)
and
G(h, n)=n">® 3 f(h+bk, nk),

db(mod n)
where A=1—v(A)—u(B).
The identity (1.5) then states that

> f(h+bk, nk):n‘“lﬁy(d)d‘”“’f(hd, kYo (n/d)

b(mod n)

___n,,(AHy(B)dlznﬂ(d)d—vu)f(hd, k)o(n/d)
=nt® 5 p(d)(n/dy® f(hd, k)o(n/d)

=n”‘5>d‘|‘3 p(d)F(hd, n/d)
or
2.7 G(h, n):d‘lj p#(d)F(hd, n/d).
By Theorem 2, (2.7) is equivalent to

F(h, n)= gjﬂG(hd, n/d)
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or
n®e(n)f(h, By=2d™>® > f(hd+bk, dk),
din b¢mod d)

which is [(1.6).
Thus implies The reverse implication is obtained by taking the
above steps in reverse order. This completes the proof of the theorem.

THEOREM 6. Let G and H be arithmetical functions related by
G(n)zn”w’g] H(d).
Then
3 G@), 3 flah+bk, db)=n'"3 5 H(d)d™f(hd, koa(n/d),

where f is a Dedekind sum of type (v(A), v(B)) and A=1—y(A)—u(B).

This result generalizes The proof is similar to that of Theorem 4
and so we omit it.

3. Analogues of Knopp’s Identity.
THEOREM 7. If (h, k)=1, then
> p((b, d)S(ah(b, d), F)y=@(n)S(h, k).

ad=n b(mod d)

PrROOF. We have

5 (b, d)S(ahb, d), b= T Du)S(ahe, bp(d/e)

ad=n b(mod d)

= > S(Omh, k)@(ﬂ/?ﬂ)ﬁ#@)

min
md=cn

=¢(n)S(h, k),

by Theorem 4.6 of [4]. This completes the proof of Theorem 7.

THEOREM 8. If f is an arithmetic function, then

3.1) B fCamy, B S(a, Wh+bk, nk/(a, n)

b¢mod n/(a,n)

=r§n S(rh, k)a(s)CIETp(c)go(cs)f(r/c) .

ProOOF. If we denote by L the left hand side of (3.1), we have, by (1.2),
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L= 2 ¢f(d)Z pc)S(hde, kla(t/c).

= 3 X2 pc)S(mh, RYya(n/m)f(m/c)p(cn/m)

min cim
md=nc

= 3 S(rh, Ba()Zpe)f(r/o)p(cs),

$=n

which gives the right hand side of and completes the proof of Theorem 8.

COROLLARY 8.1. If n is sguare-free, then

> pa, n))b 3 ))S((a, n)h+bk, nk/(a, n))

a(mod n) (mod n/Ca,n

=r§nrp(r)5(rh, k)a(s)p(s).

PROOF. Let f(n)=p(n) in Theorem 8. Since n is square-free and r|n we
see that 7 is square-free. Thus
plo)pr/c)=p(r)
for all ¢|r. Thus, if f(n)=p(n), then the right hand side of (3.1) is equal to

3.2) 2 S(rh, ka(s)Z p()p(r/e)ples)= 2 Srh, k)a(s)u(r) Zi¢les).

T8=n $=n

Again n square-free and rs=n implies that (», s)=1. Since c¢|r in the inner
sum we see that (¢, s)=1 and since ¢ is a multiplicative function [4, Theorem
2.15], we see that the inner sum in (3.2) is equal to

;rso(CS):so(S)g‘;so(C):rso(S),

by Theorem 2.17 of [4]. If we combine these resuits we get the result of the
corollary and complete the proof.
Before giving our next analogue of the Petersson-Knopp identity (1.3) we

prove some lemmas.
LEMMA 9.1. If x is any real number, we have

5 (% +x))=m@xckz/ay.

n(
(n,k)=1

PrOOF. We have

3 (F+)=,.2.((F+) 2

k)
(n,k)=1
=5, 2 ((F+%))

aln
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- dlzkﬂ(d)m(mg k/d)((-k_-+x>>
= 3 p(d)(kx/d)),

by Lemma 1 of [9]. This completes the proof.

LEMMA 9.2. If x is any real number, then

e k)((”a—:l)):(a’ k)(((;xa)»'

PrROOF. Let g=(a, k) and define a’ and &’ by k'=k/g and a’=a/g. It

follows from the definition of ((x)) that it is periodic of period 1. Thus, for
any integer n, we have ((x+n))=((x)). Thus

- k>((x+~“kﬂ))=m(m(%m((ﬁ%’ri))

B )

n= O’m. 0
=3 —olmg :(( kn )
:gn(mgk')((ﬁa m+ a;))

R (C3)
(G )

=g((k'x)),

by Lemma 1 of [9] and the fact that since (a’, 2’)=1 as n runs through a com-
plete residue system modulo £’ so does a’n. This completes the proof.

LEMMA 9.3. For any real number x and integers a and k we have

(Gt 5)=2 M)(k ‘”((Ue%zﬁ))-

(n,k)=1

ProoF. By Lemma 9.2, we have
2 () () g

= 20D B 7)

ar
>3
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= guae ()

d.kﬂ_(d@l(k’ “d)(((k,kZd) L

l

which proves the result.

THEOREM 9. We have

> Shtbr, ne)= 5 20 ) 5 pwsrShs, kirs, ),
b{meod n) "

Proor. By Lemma 9.3, we have
3, Sth+bk, ne)=, 3 (<nk))<(”‘+”k)’" )

b(mod (moc)i n) m(mod nk)

B, 3, (k)
:mmodnk) ( )); D, md)((k(n md)))

- El #(d) m(mod nk)(( nk ))(n md)(( k(n, md)))

b et (C9) (€ )
=dm—”—€j—)—m=np(s)r5(hst, k(rs, d)t)
_ < #d)

L2283 u(s)rS(hs, k(rs, d)),

n d rsin

a

since by (5) of [1], we have
(3.3) S(gh, qk)=S(h, &)

for any positive integer ¢, since the classical Dedekind sum is a Dedekind sum
of type of (0,0). This completes the proof.

4. Carlitz’s sum b.(h, k).

Let B,(x) denote the rth Bernoulli polynomial and let B,(x)=B,(x—[x]).
In Carlitz defined, for (h, k)=1,

(4.1) Crlh, B)= 35 k)Bp+1—r(n/k)Er(hn/k)-

In [1] it is stated that C,(k, k) is a Dedekind sum of type (»—p, 1—r). Thus,
by Theorem 1 of [1], we have
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(4.2) o, Crlhtbk, dR)=d"" 3 p(e3t?~C (ht, k)op(d/1).

b

Further, in [2], Carlitz defines the sums
4.3) br(h, )= (=1 )wr=eCyh, ).
=0 S

In Carlitz proves in the case when d is a prime ¢ and then remarks
that it does not seem possible a similar result for the sums in We now
state such a result, which is an analog of Subrahmanyam’s identity.

THEOREM 10. We have

2, or(htmb, nk)y=n'"? 3 d?7p(d)a(u/d)b,(hd, k).

m¢mod n)

PrRoOF. This follows immediately from (4.2) and (4.3) and so we omit the
details.
We can also give an analog of the Petersson-Knopp identity.

THEOREM 11. We have

2 dt 3 d)br(ah—}—mk, dk)=n""Pagy(n)b,.(n, k).

=ads m(mod

PrROOF. If in Corollary 1.1 we take

f(m, n)=n""?a,(n)b,(m, n) and g(m, n)=n""1 ( ?d )br(m+bk, nk),

b
then the result follows immediately.

5. The Sum T(h, k).

For x=0 we define the fractional part of x by

{x}=x—[x].
It is known [3] that

b 1
=3 @=Dtlgx}.

Thus, if ¢>1, then

bcm‘?‘d d){x+ g_}i tgx}

for all x. Therefore, the sum defined for relatively prime integers A and % by

G.1) Th, )= 3 {—"—}{—"—h—}

n(mod k) k k

is not a sum of Dedekind type. However, T(h, k) and S(k, k) are closely related
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to one another.

THEOREM 12. We have
(5.2) T(h, B)=S(h, k)+k/4.

Proor. From [9] we have

(7)) =0
oo ((F)=0.

ron o= 3 (D))
N (C)(C)Es SN (C)
%Mm%h((%))%
(O (C D)l

which completes the proof.

and if (h, k)=1, then

Thus

THEOREM 13. If (h, k)=1, then

1 1/h k1
(5.3) T(h, b)+T(k, h>_z(h+k—1)+—l§(}-+z+ﬁ)_

PrOOF. The reciprocity law for S(h, k) is given by

6.4) SCh, k)+S(k, h)=—%(1/2)(h/k+k/h+71k—>

(see [9]). Thus
T(h, k)+T(k, h)=5(h, k)+S(k, h)+(h+k)/4

and the result follows from (5.4) and completes the proof.

6. The Sum S’(n, k).

We define the sum

(6.1) S'(h, k>—n<mm)(( ))(( ))

Our first result is a relatiinship between the two sums S(h, £) and S’(h, &),
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which, unfortunately, is not symmetric in A and k.

THEOREM 14. We have

S'(h, k)= dIZky(d)S(h, k/d).

ProoF. We have

s =,.3, (N )R
=z, 3 ()
= 54D L5 k,d><< k/d »(( k/d )

= 3 #d)S(h, k/d),

which proves the result.
The next theorem gives three results that are the exact analogues of the
corresponding results for the classical Dedekind sum.

THEOREM 15. (1) If h'==xh (mod k), then S'(h’', k)==x=S"(h, k).
(2) hh=+1 (mod k), then S'(h, k)==+S'(h, k).
(3) If h*+1=0 (mod k), then S’'(h, k)=0.

PROOF OF (1). By Theorem 4.1 of [6] we see that ((x)) satisfies ((£x))=
+((x)) and recall that ((x)) is periodic of period 1 so that for all integers m, n

(5N~

(L 2)
= 2N
N ()(CP)

=45’ (h, k).

and ¢ we have

Thus

PROOF OF (2). By part (1), we need only prove the case hhi=1 (mod &)
since hh=—1 (mod k) implies A(—h)=1 (mod k). Also hh=1 (mod k) implies
that (h, k)=1. Thus An covers a reduced residue system modulo % if »n does.
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Thus, by part (1),

s b=, 3 (N5
=, 2, ((ENEE)
=, 2, ()

=S'(h, k).

ProoOF OF (3). If A’+1=0 (mod %), then hh=—1 (mod k). Thus, by part
(2), S'(h, k)=—S'(h, k) or S’(h, k)=0.
This completes the proof.

THEOREM 16. If w(k) counts the number of distinct prime factors of k and
7(k) equals their product, then
(k) | (—1)o®

S'(1, k)= 5 T e o(R)y(k).
PrROOF. We have
k n 2
(6.2) S'a, b= 2 U+
£
k-1 n 1 2
=2 (37
(n,k)=1
. 1 k-1 2__l k-1 l -
TR 7§1 " k g +4 ,,Zj 1
(n,k)=1 (u k) =1 (n,k)=1
1

— Sa(k)— S (R)+— So(k)

say. By definition we see that S,(k)=¢(k). The values of S;(k) and S,(%) are
reasonably well-known (see [6, pp. 51 and 114]). For future reference we give

them explicitly :

(6.3) S(k)= k_‘/’z(fl
and
(6.4) S.(k)= kzgg(k) +(_1)w(k>£<_k_)67_(@__

If we combine (6.2), (6.3) and (6.4) we obtain the result of the theorem and

complete the proof.

THEOREM 17. If {=exp(2ni/k), then
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1 14+L™ k1 1+¢7
4k2 2 g > chn~c(hm+n, k),

where c¢(m, n) is Ramanujan’s sum

S'(h, k)=

PROOF. On p. 114 of [9] the following identity is given

©.5 (D=5 E(r 2k

Thus, by (6.1) and (6.5), we have

’ —_ = ]‘+CT _1__ = 1+Cs nr+hsn
S'h, k)= n(<,§)dk> 2k ?‘f TP Y py T

[ ||
1

— 1 ¥ 1+CT LA 1_|_Cs n(r+hs)
Y= sgl 1-¢¢ n;tr%d___kl)c

1 &-11 T k=11 s
=1 gl liET SZ:}I 1+gs c(r+hs, k),

which proves the result.
COROLLARY 17.1. We have
’ — S s s
S'(h, k)= 4k2 z:, z;, cot ( : ) cot ( - )e(r+hs, k).

ProoF. This follows immediately from Theorem 17 since
Ty r S4+1
ot (%)= gi éfl '

The original aim in deriving the identities of Theorems 16 and 17 was to
follow along the lines of various proofs of the reciprocity theorem for S(i, k),
(5.4), to prove a reciprocity theorem for S’(h, k). Unfortunately, we have not
succeeded in this goal. As seems to be indicated by the above results on
S’(h, k), as well as those that follow, the results for S’(h, k) correspond closely
to those for S(h, k). Thus, a reciprocity theorem like (5.4) does not seem
totally out of the question.

As another indication of how closely related S(h, k) and S’(h, k) we give
the following congruence satisfied by the sum S’(k, k).

and cot (Eks— =

THEOREM 18. If k=3 and (h, k)=1, then
(6.6) 6kS'(h, B)=2hke(k)+(—1)*® he(y(k))—3ke(k)/2 (mod 6).
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Proor. We have

o= B (NCE)

5 ()(0)

- 5 (D)
()L ()

(n,k)=1 (n, k=1

I

Since ((x)) is periodic of period 1 and also an odd function and since (n, k)=1
if and only if (k—n, k)=1 we see that

2 (2)=o

Thus

wlb‘
—~
=
ar|3
|
N =
~

k-1
St b= & 5
(n,

k-1 p? 1 k=1 n k1 n/ hn
=h 2w S p 2 30
(n ) 1 (n k) =1 (n,k)=1

and so, using the notation above,

652S"(h, B)=6hS,(k)—3kS,(k)—6k 2 (

(7l

Since

n,k)=1

is an integer we see that
6£2S'(h, k)=6hS,(k)—3kS,(k) (mod 6&).
Thus, by (6.3) and (6.4), we have
6.7) 6L°S’(h, R)=2hk*p(k)+(—1)*® ho(k)y(k)—3k*p(k)/2 (mod 6k).
Note that

(6.8) q)(k)r(k):kg(l—%)g p=Fk I1 (p—1)=ke(r(k)).
Thus, by (6.7) and (6.8), we have

6£°S’(h, k)=2hk*@(k)+(—1)*® kho(y(k)—3k*p(k)/2 (mod 6k),
or, dividing by &,

6kS"(h, R)=2hke(k)+(—1)** he(y(k))—3ke(k)/2 (mod 6),
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which proves our result.

COROLLARY 18.1. Ifk=3 and (h, k)=1, then
1) 6kS’(h, k) is an integer, and
2) if 3| h, then 6£S’(h, £)=0(mod 3), and so 2kS’(h, k) is an integer.

PrRoor. 1) Since 2=3 implies that ¢(k) is an even integer we see that
the right hand side of (6.6) is an integer and then so is the left hand side,
which is 62S'(h, k).

2) If 3|k, then 3 divides the right hand side of (6.6) and so 3 divides the
left hand side of (6.6). Thus, since the left hand side of (6.6) is 3 times some
integer we see that we must have that 2k£S’(h, k) is an integer.

This completes the proof of the corollary.

As a final indication of the close correspondence between the two sums
S(h, k) and S’(h, k) we give the S’-analogues for the identities (1.2) and (1.3).

We begin with the analogue of Subrahmanyam’s identity. First we prove
a lemma about the classical Dedekind sum.

LEMMA 19.1. If [ is a positive integer, then

Zd d)S(h—l—blk, dk)zrszl]dry(s)S(hs, k(l, sr)),

b(mo

ProoF. We have, by Lemma 9.2,

i oSrbe arn=, 5 5 (GO
I D (G5 NI (G- AR 0)
SIS CR (Crm i)
N (C)(C)

=2 0Z o (GONGE), 2,1

2o 3 (D)

T2 s hod mm« U, stk >)< (Z,u:s};k ))

- rszz=}d rﬂ(s)v(mod%(t,rs))(( Z‘k(ll,) s¥) >)(< l‘ks(tl?:r) ))

H
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zntz:}dr‘a(s)S(hts, tk(l, sr))
———r?dr;z(s)S(hs, k(l, sr)),

by This completes the proof.

THEOREM 19. If d is square-free and (d, k)=1, then

> S'(h+bk, dk)=t§k#(l‘)s§ﬂ(8)5(hst, k)a(d/s),

b(mod d)

PROOF. We have, by Theorem 14 and (3.3),
> S/(h+bk, dRE)= 2 Zky(m)S(h—l—bk, dk/m)

b(mod d) b(mod d) mid
= 2 pu(m) 2 S(hm+-bmk, dk)
midk b¢(mod d)

= ledk y(m)sgd rp(s)S(hms, k(m, sr)),

by Lemma 19.1. If m|dk, we see that since (d, k)=1 we can write m=wm,m,,
where m,|d and m,| k. Then (m, sr)=(m,m,, sr)=(m,, sr) since sr|d and (m,, d)
=1. Since d is square, free we have (m,, sr)=1. Thus

> S'(h+bk, dk)= dey(mlmz) ?drp(s)S(hsmlmz, k)

b(mod d) mymgal
= 33 p(m) Zp(s)S(hs, mk)a(d/s),
midk sid
which completes the proof.
We now give the S’-analogue of the Petersson-Knopp identity
THEOREM 20. If n is square-free and (n, k)=1, then

>3 S'(ah+bk, dR)=c(n)S'(nh, nk).

af>=0" b(mod d)
PROOF. We have, by Theorem 19,

> S'(ah+bk, dk)= ad2=]n t%]kp(t)s%p(s)S(ahst, k)a(d/s).
a>0

aéz>=on b¢mod ¢q)
If we let m=as, then we have

6.9 = > S'(ah+bk, dR)= 3 ,u(t)s%p(s)S(mht, k)a(n/m)

ad=n b(mod d) min tidk
a>0

= p()S(mht, k)a(n/m)s%/«!(s)

= 2 p)S(ht, k)o(n),
by Theorem 4.6 of [6].
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By we have
(6.10) “zn}k/z(z‘)S(ht, k)=“§k,u(t)5(nh, nk/t)

=S(nh, nk),

by Theorem 14. If we combine (6.9) and we obtain the result and com-
plete the proof of the theorem.
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