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ON THE CAUCHY PROBLEM FOR THE NONLINEAR
KLEIN-GORDON EQUATION WITH

A CUBIC CONVOLUTION

By

Takahiro MOTAI

Abstract. We study the Cauchy problem for the nonlinear Klein-
Gordon equation with a cubic convolution $\{V_{\gamma}*(w(t))^{2}\}w(t)$ , where
$V_{\gamma}(x)=|x|^{-\gamma}$, in $(x, t)\in R^{n}\times R$ . We prove the existence of weak
solutions for $0<\gamma<n$ . We also prove that for $0<\gamma<{\rm Min}\{4, n\}$ the
weak solution is unique and there exists a regular solution.
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1. Introduction and Results.

We consider the Cauchy problem for the nonlinear Klein-Gordon equation;

(1.1) $\left\{\begin{array}{l}\partial_{l}^{a}w(t)-\Delta w(t)+w(t)+F(w(t))=0\\w(0)=\phi(x), \partial_{t}w(0)=\psi(x)\end{array}\right.$

in $(x, t)\in R^{n}\times R$ . Here $w(t)$ is a real valued function and

(1.2) $F(w(t))=\{V_{\gamma}*f(w(t))\}w(t)$ ,

where $f(w)=w^{2},$ $V_{\gamma}(x)=|x|^{-\gamma}(0<\gamma<n)$ and $*denotes$ the spatial convolution.
The study of this equation was begun in Strauss [13] and Menzala and Strauss
[9]. In [9] they proved the existence of a global regular solution of (1.1) for
$0<\gamma\leqq 3$ . The main purpose of the present paper is to prove the same result
for $0<\gamma<{\rm Min}\{4, n\}$ . The upper bound ${\rm Min}\{4, n\}$ of $\gamma$ has been already appeared
in the case of nonlinear Schrodinger equation with the same nonlinear term.
The case of Schr\"odinger equation has been studied by Chadam and Glassey [2],

Glassey [6], Ginibre and Velo [4] and Hayashi and Tsutsumi [7]. It seems that
${\rm Min}\{4, n\}$ is a critical value caused by the Sobolev embedding theorem.

In order to state our results, we give the main notations used in this paper.
We denote by $\Vert\cdot\Vert_{p}$ the norm in $L_{p}=L_{p}(R^{n})$ . Let $H_{p^{s}}=H_{p^{S}}(R^{n})$ with $s\in R$ and
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$ 1\leqq p<\infty$ (especially $H^{S}=H^{s}(R^{n})$ for $p=2$ ) be the Sobolev spaces which are the
completion of $C_{0}^{\infty}(R^{n})$ with norms

$\Vert u\Vert_{s.p}=\Vert \mathcal{F}^{-1}((1+|\xi|^{2})^{s/2}\text{{\it \^{u}}}(\xi))\Vert_{p}$ .

Here $\wedge$

denotes the Fourier transformation and $\mathcal{F}^{-1}$ is its inverse. For any in-
terval $I\subset R$ and any Banach space $B$ , we denote by $C^{k}(I;B)$ the space of B-
valued $C^{k}$ -functions over $I$ , and by $C_{w}(I;B)$ the space of weakly continuous
functions from $I$ to $B$ , and by $C_{L}(I;B)$ the space of functions from $I$ to $B$

that are strongly Lipschitz continuous. We denote by $C^{k}(I;\mathcal{D}^{\prime})$ the space of
$\mathcal{D}^{\prime}$ -valued functions $u(t)$ such that $\langle u(t), v\rangle$ is in $C^{k}(I)$ for any $v\in \mathcal{D}$ .

We shall use the operator $\zeta(H)$ for suitable functions $\zeta(\cdot)$ as follows:

$\zeta(H)u=\mathcal{F}^{-1}(\zeta(\langle\xi\rangle)\hat{u}(\xi))$ in $S^{\prime}$ .
where $\langle\xi\rangle=(1+|\xi|^{2})^{1/2}$ and $S^{\prime}$ means the tempered distribution.

Now we are ready to state our results.

THEOREM 1. Let $0<\gamma<n(n\geqq 1)$ . Assume that $(\phi, \psi)\in H^{1}\cap L_{4n/(2n-\gamma)}\times L_{2}$ .
Then there exists a weak solution $w(t)$ of (1.1) which satisfies the following;

(1.3) $w(t)\in L_{\infty}(R;H^{1})\cap C_{w}(R;H^{1})\cap C_{L}(R;L_{2})\cap C^{2}(R;\mathcal{D}^{\prime})$ ,

(1.4) $F(w(t))\in L_{\infty}(R;L_{2n/(n+\gamma)})\cap C(R;\mathcal{D}^{\prime})$

(1.5) $(w(t), v)=(\phi, \cos\{Ht\}v)+(\psi, H^{-1}\sin\{Ht\}v)$

$-\int_{0}^{l}(F(w(\tau)), H^{-1}\sin\{H(t-\tau)\}\iota))d\tau$ ,

(1.6) $\left\{\begin{array}{l}\frac{d^{2}}{dt^{2}}(w(t),v)+(w(t),(-\Delta+1)\iota))+(F(w(t),v)=0\\(w(0),v)=(\emptyset,v),\frac{d}{dt}(w(0),v)=(\psi,v).\end{array}\right.$

Here $v\in C_{0}^{\infty}(R^{n})$ and $(, )$ is $L_{2}$-inner product. And we have the energy inequality

(1.7) $E(w(t), \partial_{l}w(t))\leqq E(\phi, \phi)$ for $t\in R$ .
where

(1.8) $E(\phi, \psi)=\frac{1}{2}\Vert\psi\Vert_{2}^{2}+\frac{1}{2}\Vert\phi\Vert_{1,2}^{2}+\frac{1}{4}V_{(n+\gamma)/g}*f(\phi)\Vert_{2}^{2}$ .

THEOREM 2. Let $0<\gamma<{\rm Min}\{4, n\}(n\geqq 1)$ and $(\phi, \psi)\in H^{1}\times L_{2}$ . Let I be an
open interval in $R$ and $O\in I$. Then there exists at most one $w(t)$ which satisfies
(1.5) and

(1.9) $w(t)\in L_{\infty}^{1oc}(I;H^{1})$ for $0<\gamma\leqq 3$ ,
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(1.10) $w(t)\in L_{\infty}^{1\circ c}(I;H^{1})\cap L_{r}^{1\circ c}(I;L_{p^{\prime}})$ for $3<\gamma<4$ ,

wher $1/p^{\prime}=1/2-(\gamma-1)/2n$ and $1/r=(\gamma-3)/2$ .

THEOREM 3. Let $0<\gamma<{\rm Min}\{4, n\}(n\geqq 1)$ .
(i) Let $(\phi, \psi)\in H^{1}\times L_{2}$ . Then $w(t)$ which is obtained by Theorem 1 is unique

and satisfies the following:

(1.11) $w(t)\in C(R;H^{1})\cap C^{1}(R;L_{2})$ for $0<\gamma\leqq 3$ ,

(1.12) $w(t)\in C(R;H^{1})\cap C^{1}(R;L_{2})\cap L_{r}^{1\circ c}(R;L_{p^{\prime}})$ for $3<\gamma<4$ ,

(1.13) $E(w(t), \partial_{l}w(t))=E(\phi, \psi)$ for $t\in R$ ,

where $r$ and $p^{\prime}$ are given in Theorem 2.
(ii) Let $(\phi, \psi)\in H^{k}\times H^{k-1}$ ( $k\in N$ (natural number) and $k\geqq 2$). Then (1.1)

has a unique solution $w(t)$ which satisfies
(1.14) $w(t)\in\bigcap_{i=0}^{k}C^{i}(R;H^{k-i})$ .

COROLLARY. (i) If $k>n/2+2,$ $w(t)$ is in $C^{2}(R^{n}\times R)$ .
(ii) If $k=\infty,$ $w(t)$ is in $C^{\infty}(R^{n}\times R)$ .

REMARK. (i) If $1<\gamma<{\rm Min}\{4, n\}$ , we have $H^{1}\subset\div L_{4n/(2n-\gamma)}$ by the Sobolev
embedding theorem. So the initial condition $\phi\in H^{1}\cap L_{4n/(2n-\gamma)}$ becomes $\phi\in H^{1}$ in
Theorem 2 and 3.

(ii) The upper bound ${\rm Min}\{4, n\}$ of $\gamma$ has been already appeared in the case
of the nonlinear Schrodinger equation. (See [4] and [7].)

Theorem 1 is proved by the compactness method which were used by Segal
in [12]. He used this method for the nonlinear Klein-Gordon equation with the
power nonlinearity. (See also Reed [11] 5.) We can choose a convergent sub-
sequence from solutions of the equation which approximate (1.1) by the double
convolution mollifier due to Ginibre and Velo [3].

In the case $0<\gamma\leqq 3$ the same results of Theorem 2 and 3 have been already
proved by [9]. Thus, we shall prove Theorem 2 and 3 in the case $3<\gamma<4$ .

Theorem 2 is proved by the contraction method.
In order to prove Theorem 3, we show that a weak solution obtained by

Theorem 1 becomes a regular solution. For this purpose we estimate the solu-
tions of the approximating equation used for the proof of Theorem 1. This
method has been already used by Ginibre and Velo [5] and Motai [10] in the
case where $F(w)$ is the power nonlinearity.
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2. Proof of Theorem 1.

First we approximate the nonlinear term by the double convolution mollifier
due to Ginibre and Velo [3]. We choose an even non-negative function $ h\in$

$C_{0}^{\infty}(R^{n})$ such that $\Vert h\Vert_{1}=1$ . For any $j\in N$($natural$ number) we put

(2.1) $F_{j}(u)=h_{j}*\{V_{\gamma}*f(h_{j}*u)h_{j}*u\}$ ,

where $h_{j}(x)=j^{n}h(jx)$ . Coresponding to (2.1), we consider the Cauchy problem;

(2.2) $\left\{\begin{array}{l}\partial_{l}^{2}w_{j}(t)-\Delta w_{j}(t)+w_{j}(t)+F_{j}(w_{j}(t))=0\\w_{j}(0)=h_{j}*\phi, \partial_{t}w_{j}(0)=h_{j}*\psi.\end{array}\right.$

LEMMA 2.1. Let $0<\gamma<n(n\geqq 1)$ . Assume that $(\phi, \psi)\in H^{1}\cap L_{4n/(2n-\gamma)}\times L_{2}$ .
Then for all $j\in N(2.2)$ has a unique solution $w_{j}(t)$ such that

(2.3) $w_{j}(t)\in\bigcap_{:=0}^{k}C^{i}(R;H^{k-i})$ for any $k\in N$ .

And $w_{j}(t)$ satisfies the integral equation in $H^{k}$ ;

(2.4) $ w_{j}(t)=w_{j}^{0}(t)-\int_{0}^{t}H^{-1}\sin\{H(t-\tau)\}F_{j}(w_{j}(\tau))d\tau$ ,

where

(2.5) $ w_{J}^{0}(t)=\cos\{Ht\}h_{j}*\phi+H^{-1}\sin\{Ht\}h_{j}*\psi$ .

In addition the conservation of energy holds;

(2.6) $E_{j}(w_{j}(t), \partial_{t}w_{j}(t))=E_{j}(h_{j}*\phi, h_{j}*\psi)$ for $t\in R$ ,

where

(2.7) $E_{j}(\phi, \psi)=\frac{1}{2}\Vert\psi\Vert_{2}^{2}+\frac{1}{2}\Vert\phi\Vert_{1.2}^{2}+\frac{1}{4}\Vert V_{(n+\gamma)/2}*f(h_{j}*\phi)\Vert_{2}^{2}$ .

PROOF. Applying Reed [11] Theorem 2 in section 1 to (2.2), we can show
the existence of a unique global solution. Employing the same arguments as in
Ginibre and Velo [3] Proposition 3.3, we can also prove (2.6). $\square $

We obtain the following lemma by the compactness method.

LEMMA2.2. Let $w_{j}(t)(j\in N)$ be a solution of (2.2) obtained by Lemma 2.1.
Then $\{w_{j}(t)\}$ has a convergent subsequence (again denoted by $\{w_{j}(t)\}$ ) as follows;
For any compact interval $I\subset R$ and any comsact subset $K\subset R^{n}$

(2.8) $w_{j}(t)-w(t)$ in $C(I;L_{2}(K))$ as $ j\rightarrow\infty$ .
Here $w(t)$ satisfies
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(2.9) $w(t)\in L_{\infty}(R;H^{1})\cap C_{w}(R;H^{1})\cap C_{L}(R;L_{2})$ .

PROOF. Noting (2.6), the Ascoli-Arzela theorem yields (2.8) and (2.9). For
details please refer to Segal [12] and Reed [11] 5. $\square $

The following lemma is the well-known Sobolev’s inequality.

LEMMA 2.3. Let $ 1<q<p<\infty$ and $0<\gamma<n(n\geqq 1)$ . Then we hav2

(2.10) $\Vert V_{\gamma}*u\Vert_{p}\leqq C\Vert u\Vert_{q}$

provided that

(2.11) $\frac{1}{p}=\frac{1}{q}+\frac{\gamma}{n}-1$ .

PROOF. See Hormander [8] Theorem 4.5.3 for a proof. $\square $

LEMMA 2.4. Let $0<\gamma<n(n\geqq 1)$ . We have

(2.12) $|\int V_{\gamma}*f(w)(x)u(x)v(x)dx|\leqq C\Vert V_{(n+\gamma)/2}*f(w)\Vert_{2}\Vert uv\Vert_{2n/(2n-\gamma)}$

$\leqq C\Vert V_{(n+\gamma)/2}*f(w)\Vert_{2}\Vert u\Vert_{2}\Vert v\Vert_{2n/(n-\gamma)}$

for suitable functions $u,$ $v$ and $w$ .

PROOF. Using the Plancherel theorem and the Schwartz inequality we have

(2.13) $\int V_{\gamma}*f(w)(x)u(x)v(x)dx=(2n)^{-n}\int|\xi|^{(\gamma-n)/2}f(w)(\xi)\wedge|\xi|(\gamma- n)/2^{\wedge}uv(\xi)d\xi$

$\leqq\Vert V_{(n+\gamma)/2}*f(w)\Vert_{2}\Vert V_{(n+\gamma)/2}*(uv)\Vert_{2}$ .

It follows from Lemma 2.3 and the Holder inequality that

(2.14) $\Vert V_{(n+\gamma)/2}*(uv)\Vert_{2}\leqq C\Vert uv\Vert_{2n/(2n-\gamma)}\leqq C\Vert u\Vert_{2}\Vert v\Vert_{2n/(n-\gamma)}$ .
(2.13) and (2.14) show that (2.12) holds. $\square $

LEMMA 2.5. Let $0<\gamma<n(n\geqq 1)$ . Let $w_{j}(t)$ be a solution of (2.2) obtained
by Lemma 2.1. Then the following estimates holds:

(2.15) 1 $V_{(n+\gamma)/2}*f(h_{j}*w_{j}(t))\Vert_{2}\leqq C(\phi, \psi)$ ,

(2.16) $\Vert V_{\gamma}*f(h_{j}*w_{j}(t))\Vert_{2n/\gamma}\leqq C(\phi, \psi)$ ,

(2.17) $\Vert F_{j}(w_{j}(t))\Vert_{2n/(n+\gamma)}\leqq C(\phi, \psi)$

for $j\in N$ and $t\in R$ , where $C(\phi, \psi)$ is a positive constant which is dependent on
$(\phi, \psi)$ but independent of $t$ and $j$ .
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PROOF. Noting (2.6), we have (2.15) by Lemma 2.3.
From Lemma 2.4 it follows that

(2.18) $|\int V_{\gamma}*f(h_{j}*w_{j}(t))v(x)dx|\leqq C\Vert V_{(n+\gamma)/2}*f(h_{j}*w_{j}(t))\Vert_{2}\Vert v\Vert_{2n/(2n-\gamma)}$

for $v\in C_{0}^{\infty}(R^{n})$ . Therefore we obtain (2.16) by (2.15), the density and the du-
ality. Noting $\Vert w_{j}(t)\Vert_{2}\leqq C(\phi, \psi)$ , (2.17) follows from (2.16) and the Holder in-
equality. $\square $

LEMMA 2.6. Let I be any compact interval in R. Let $\{w_{j}(t)\}$ be a convergent
subsequence obtained by Lemma 2.2. Then it has the following properties:

(2.19) $V_{(n+\gamma)/2}*f(h_{j}*w_{j}(t))\rightarrow V_{(n+\gamma)/2}*f(w(t))$

weakly in $L_{2}$ and uniformly on I and

(2.20) $F_{j}(w_{j}(t))-F(w(t))$

weakly in $L_{2n/(n+\gamma)}$ for $t\in I$ as $ j\rightarrow\infty$ .

In order to prove this lemma, we prepare two lemmas.

LEMMA 2.7. For any compact interval $I\subset R$ and any compact subset $K\subset R^{n}$

we have

(2.21) $h_{j}*w_{j}(t)-w(t)$ in $C(I;L_{2}(K))$ as $ j\rightarrow\infty$ .

PROOF. Noting (2.8), we can prove (2.21) easily. So we may omit the
proof. $\square $

LEMMA 2.8. Let $0<\gamma<n$ . For any compact interval $I\subset R$ we have

(2.22) $V_{\gamma}*f(h_{j}*w_{j}(t))-V_{\gamma}*f(w(t))$ in $\mathcal{D}^{\prime}$

uniformly on I as $ j\rightarrow\infty$ .

PROOF. Let $v\in C_{0}^{\infty}(R^{n})$ and $suppv\subset\{x;|x|\leqq R\}$ . By the Fubini theorem
we have

(2.23) $\int V_{\gamma}*\{f(h_{j}*w_{j}(t))-f(w(t))\}v(x)dx=\int\{f(h_{j}*w_{j}(t))-f(w(t))\}V_{\gamma}*v(x)dx$

$=\int_{|x|\leq R+m}+\int_{|x|\geq R+m}$

$=I_{1}+I_{2}$ .
Here $m$ is a suitable number which will be chosen later. If $|x|\geqq R+m$ , we
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have $|x-y|\geqq m$ for $|y|\leqq R$ . Noting this, we obtain

(2.24) $|I_{2}|\leqq m^{-\gamma}\int|f(h_{j}*w_{j}(t))-f(w(t))|dx\int|v(y)|dy$

$\leqq m^{-\gamma}(\Vert h_{j}*w_{j}(t)\Vert_{2}^{2}+\Vert w(t)\Vert_{2}^{2})\Vert v\Vert_{1}$ .
Next we estimate $I_{1}$ . We have

(2.25) $|I_{1}|\leqq\int_{|x|\leqq R+m}\{|f(h_{j}*w_{j}(t))-f(w(t))|\int_{|y|\leqq R}|x-y|^{-\gamma}|v(y)|dy\}dx$ .

It follows from $n-1-\gamma>-1$ that

(2.26) $\int_{|y|\leqq R}|x-y|^{-\gamma}|v(y)|dy\leqq C(2R+m)^{n-\gamma}\Vert v\Vert_{\infty}$ .

This implies that

(2.27) $|I_{1}|\leqq C(2R+m)^{n-\gamma}(\Vert w_{j}(t)\Vert_{2}+\Vert w(t)\Vert_{2})\Vert v\Vert_{\infty}\Vert h_{j}*w_{j}(t)-w(t)\Vert_{L_{2}(|x|\leq R+m)}$ .
Choosing $m$ sufficiently large, we have (2.22) by (2.6), (2.9), (2.24), (2.27) and
Lemma 2.7. $\square $

We are ready to prove Lemma 2.6.

PROOF OF LEMMA 2.6. As $0<(n+\gamma)/2<n$ , we have (2.19) by (2.15) and
Lemma 2.8.

By (2.17) we obtain (2.20) if we can show that

(2.28) $F_{j}(w_{j}(t))\rightarrow F(w(t))$ in $\mathcal{D}^{\prime}$ for $t\in I$

as $ j\rightarrow\infty$ . For $v\in C_{0}^{\infty}(R^{n})$ we have

(2.29) $(F_{j}(w_{j}(t))-F(w(t)), v)=(V_{\gamma}*f(h_{j}*w_{j}(t))h_{j}*w_{j}(t), h_{j}*v-v)$

$+(F(h_{j}*w_{j}(t))-F(w(t)), v)$

$=I_{1}+I_{2}$ .

Lemma 2.4, (2.15) and (2.6) imply that

(2.30) $|I_{1}|\leqq C\Vert V_{(n+\gamma)/2}*f(h_{f}*w_{j}(t))\Vert_{2}\Vert w_{j}(t)\Vert_{2}\Vert h_{j}*v-v\Vert_{2n/(n-\gamma)}$

$\leqq C(\phi, \psi)\Vert h_{j}*v-v\Vert_{2n/(n-\gamma)}$ .
We put

(2.31) $I_{2}=(V_{\gamma}*f(h_{j}*w_{j}(t))\{h_{j}*w_{j}(t)-w(t)\}, v)$

$+(V_{\gamma}*\{f(h_{j}*w_{j}(t))-f(w(t))\}w(t), v)$

$=I_{21}+I_{22}$ .
Again by Lemma 2.4 and (2.15) we have
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(2.32) $|I_{21}|\leqq C(\phi, \psi)\Vert h_{j}*w_{j}(t)-w(t)\Vert_{L_{2}(\sup pv)}\Vert_{t)}\Vert_{2n/(n-\gamma)}$ .

We can rewrite $I_{22}$ as follows:

(2.33) $I_{22}=(V_{\gamma}*\{f(h_{j}*w_{j}(t))-f(w(t))\}, w(t)v)$ .
On the other hand it follows from (2.16) and Lemma 2.8 that

(2.34) $V_{\gamma}*f(h_{j}*w_{j}(t))-V_{\gamma}*f(w(t))$

weakly in $L_{2n/\gamma}$ and uniformly on $I$ as $ j\rightarrow\infty$ . By the Holder inequality and
(2.6) we have $w(t)v\in L_{2n/(2n-\gamma)}$ . Noting this, (2.34) implies that $I_{22}\rightarrow 0$ as $ j\rightarrow\infty$ .
So (2.30), (2.32) and Lemma 2.7 show that (2.28) holds. $\square $

Now we are in a position to prove Theorem 1.

PROOF OF THEOREM 1. Let $\{w_{j}(t)\}$ be a convergent subsquence obtained by
Lemma 2.2. We multiply $v\in C_{0}^{\infty}(R^{n})$ by (2.4) and integrate on $R^{n}$ . Then we
have

(2.35) $(w_{j}(t), v)=(h_{j}*\phi, \cos\{Ht\}v)+(h_{j}*\psi, H^{-1}\sin\{Ht\}v)$

$-\int_{0}^{t}(F_{j}(w_{j}(\tau)), H^{-1}\sin\{H(t-\tau)\}v)d\tau$ .

Using the Hausdroff-Young inequality, we can show that $ H^{-1}\sin\{H(t-\tau)\}v\in$

$L_{2n/(n-\gamma)}$ . Thus it follows from (2.20) that

(2.36) $(F_{j}(w_{j}(\tau)), H^{-1}\sin\{H(t-\tau)\}v)\rightarrow(F(w(\tau)), H^{-1}\sin\{H(t-\tau)\}v)$

as $ j\rightarrow\infty$ . By the Holder inequality, (2.17) and the Hausdroff-Young inequality
we have

(2.37) $(F_{j}(w_{j}(t)), H^{-1}\sin\{H(t-\tau)\}v)\leqq\Vert F_{j}(w_{j}(\tau))\Vert_{2n/(n+\gamma)}\Vert H^{-1}\sin\{H(t-\tau)\}v\Vert_{2n/(n-f)}$

$\leqq C(\phi, \psi)\Vert\hat{v}\Vert_{2n/(n+\gamma)}$ .

(2.36) and (2.37) mean that we can use the Lebesgue dominated convergence
theorem. Thus letting $ j\rightarrow\infty$ in (2.35), we obtain (1.5).

Noting $\phi\in L_{4n/(2n-\gamma)},$ $(2.6)$ and (2.19) imply (1.7).

Next we show that

(2.38) $(w(t), v)\in C^{2}(R)$ for any $v\in C_{0}^{\infty}(R^{n})$ .
From (1.5) it follows that $(w(t), v)\in C^{1}(R)$ and

(2.39) $\frac{d}{dt}(w(t), \nu)=-(\phi,$ $H^{-1}\sin\{Hi\}v+(\psi, \cos\{Ht\}v)$

$-\int_{0}^{t}(F(w(\tau)), \cos\{H(t-\tau)\}v)d\tau$ .
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If we show that

(2.40) $(F(w(t)), v)\in C(R)$ .
(2.38) can be proved. Let $t\in R$ and be fixed. Put

(2.41) $J(\eta)=(F(w(t+\eta))-F(w(t)), v)$

$=(V_{\gamma}*\{f(w(t+\eta))-f(w(t))\}w(t), v)$

$+(V_{\gamma}*f(w(t+\eta))\{w(t+\eta)-w(t)\}, v)$

$=J_{1}(\eta)+J_{2}(\eta)$ .
By (2.12) we obtain

(2.42) $|J_{2}(\eta)|\leqq C\Vert V_{(n+\gamma)/2}*f(w(t+\eta))\Vert_{2}\Vert w(t+\eta)-w(t)\Vert_{2}\Vert v\Vert_{2n/(n-\gamma)}$ .

From (1.7) and (2.9) it follows that $|J_{2}(\eta)|\rightarrow 0$ as $\eta\rightarrow 0$ . By (2.3) and (2.16) we
can show that

(2.43) $V_{\gamma}*f(h_{j}*w_{j}(t))\in C_{w}(R;L_{2n/\gamma})$ .
(2.34) and (2.43) imply that

(2.44) $V_{\gamma}*f(w(t))\in C_{w}(R;L_{2n/\gamma})$ .
Noting $w(t)v\in L_{2n/(2n-\gamma)}$ , by (2.44) we have $|J_{1}(\eta)|\rightarrow 0$ as $\eta\rightarrow 0$ . Then (2.40) is
proved. Noting (2.9), (2.17) and (2.20), (1.3) and (1.4) have already been proved.
(1.5) implies (1.6). Thus the proof of Theorem 1 is completed.

3. Proof of Theosem 2.

We begin with the well known estimates for the elementary solution of the
linear Klein-Gordon equation.

PROPOSITION 3.1. $Lht1<p\leqq 2$ and $1/p+1/p^{\prime}=1$ . Put $\delta(p^{\prime})=1/2-1/p^{\prime}$ .
(i) Let $p^{\prime},$

$s^{\prime}$ and $s$ satisfy

(3.1) $(n+1)\delta(p^{r})\leqq 1+s-s^{\prime}$ .
Then we have for $g\in C_{0}^{\infty}(R^{n})$

(3.2) $\Vert H^{-1}\sin\{Ht\}g\Vert_{s^{r}.p^{\prime}}\leqq C|t|^{1+S-S}‘-2n\delta(p^{\prime})\Vert g\Vert_{s.p}$ .
(ii) Put $1/r=s^{\prime}+n\delta(p^{\prime})-1$ . Let $p^{\prime},$ $r$ and $s^{\prime}$ satisfy

(3.3) $0\leqq\frac{1}{r}<\frac{1}{2}$ and $s^{\prime}\leqq 1-\frac{(n+1)}{2}\delta(p^{\prime})$ .

Then we have for $g\in C_{0}^{\infty}(R^{n})$

(3.4) $\Vert H^{-1}\sin\{Ht\}g\Vert_{L_{r}(R;H_{p^{\prime}\prime}^{s})}\leqq C\Vert g\Vert_{2}$ .
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PROOF. (i) See Brenner [1] Appendix 2 for a proof.
(ii) See Ginibre and Velo [5] Lemma 3.1 for a proof. $\square $

The following lemma is useful to estimate the. nonlinear term.

LEMMA 3.2. Let $p,$ $a,$
$b$ and $q$ satisfy

(3.5) $\frac{1}{p}=\frac{1}{a}+\frac{1}{b}+\frac{1}{q}+\frac{\gamma}{n}-1$ and $1-\frac{\gamma}{n}<\frac{1}{a}+\frac{1}{b}<1$ .

Then we have

(3.6) $\Vert F(u)-F(v)\Vert_{p}\leqq C(\Vert u-v\Vert_{a}\Vert u+v\Vert_{b}\Vert u\Vert_{q}+\Vert v\Vert_{a}\Vert v\Vert_{b}\Vert u-v\Vert_{q})$

for suitable functions $u$ and $v$ .

PROOF. By the Holder inequality and Lemma 2.3 we have (3.6). (2.11)

yields (3.5). $\square $

PROOF OF THEOREM 2. As mentioned in the introduction, we will prove in
the case $3<\gamma<4(n\geqq 4)$ . Let $I$ be an open interval and $J$ be any finite interval
such that $O\in J\subset I$ . Let $I_{0}$ be an interval such that $0\in I_{0}\subset J$. Put

$X(I_{0})=L_{\infty}(I_{0} ; H^{1})\cap L_{r}(I_{0} ; L_{p^{\prime}})$ .

The norm of $X(I_{0})$ is given by

$\Vert u\Vert_{X(I_{0})}={\rm Max}\{\Vert u\Vert_{L(I_{0}:H^{1})}\infty’\Vert u\Vert_{L_{r}(I_{0};L_{p},)}\}$ .
From Lemma 2.4, Lemma 2.3 and the embedding $H^{1}\subset\div L_{4n/(2n-\gamma)}$ it follows that

(3.7) $|\int F(w(t))v(x)dx|\leqq\Vert w(t)\Vert_{1.2}^{3}\Vert v\Vert_{1,2}$

$\leqq\Vert w$ 11& $(J)\Vert\nu\Vert_{1,2}$ .
This means that $F(w(t))\in H^{-1}$ for $t\in J$. Thus by (1.4) we have

(3.8) $ w(t)=w^{0}(t)-\int_{0}^{l}H^{-1}\sin\{H(t-\tau)\}F(w(\tau))d\tau$

in $L_{2}$ for $t\in J$.
Let $w_{1}(t)$ and $w_{2}(t)$ be two solutions which satisfy the assumptioms of

Theorem 2. From (3.8) we obtain

(3.9) $ w_{1}(t)-w_{2}(t)=-\int_{0}^{t}H^{-1}\sin\{H(t-\tau)\}[F(w_{1}(\tau))-F(w_{2}(\tau))]d\tau$ .
By Proposition 3.1 (i) we have

(3.10) $\Vert w_{1}(t)-w_{2}(t)\Vert_{p^{\prime}}\leqq C|\int_{0}^{t}|t-\tau|^{3-\gamma}\Vert F(w_{1}(\tau))-F(w_{2}(\tau)\Vert_{1.p}d\tau|$ .
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Lemma 3.2 and the Sobolev embedding theorem yield that

(3.11) $\Vert F(w_{1}(\tau))-F(w_{2}(\tau))\Vert_{1,p}$

$\leqq C(\Vert w_{1}(\tau)\Vert_{1.2}+\Vert w_{2}(\tau)\Vert_{1,2})(\Vert w_{1}(\tau)\Vert_{p^{\prime}}+\Vert w_{2}(\tau)\Vert_{p^{\prime}})\Vert w_{1}(\tau)-w_{2}(\tau)\Vert_{1,2}$

$+C(\Vert w_{1}(\tau)\Vert_{1,2}+\Vert w_{2}(\tau)\Vert_{1,2})^{2}\Vert w_{1}(\tau)-w_{2}(\tau)\Vert_{p^{\prime}}$ .

By (3.10) we have

(3.12) $\Vert w_{1}(t)-w_{2}(t)\Vert_{p^{\prime}}\leqq C\Vert w_{1}-w_{2}\Vert_{X(I_{0})}(\Vert w_{1}\Vert_{X(J)}+\Vert w_{2}\Vert_{X(J)})$

$\times|\int_{0}^{l}|t-\tau|^{3-\gamma}(\Vert w_{1}(\tau)\Vert_{p^{\prime}}+\Vert w_{2}(\tau)\Vert_{p^{\prime}})d\tau|$

$+C(\Vert w_{1}\Vert_{X(I_{0})}+\Vert w_{2}\Vert_{X(I_{0})})^{2}$

$\times|\int_{0}^{t}|t-\tau|^{3-\gamma}\Vert w_{1}(\tau)-w_{2}(\tau)\Vert_{p^{\prime}}d\tau|$

As $3-\gamma>-1$ , from the Young inequality we obtain

(3.13) $\Vert w_{1}(t)-w_{2}(t)\Vert_{L_{r}(I_{0};L_{p},)}\leqq C|I_{0}|^{4-\gamma}(\Vert w_{1}\Vert_{X(J)}+\Vert w_{2}\Vert_{X(f)})^{2}\Vert w_{1}-w_{2}\Vert_{X(I_{0})}$ .

Employing the same arguments as we obtain (3.11), we have

(3.14) $\Vert F(w_{1}(\tau))-F(w_{2}(\tau))\Vert_{2}$

;11111 $C(\Vert w_{1}(\tau)\Vert_{1,2}+\Vert w_{2}(\tau)\Vert_{1,2})(\Vert w_{1}(\tau)\Vert_{p^{\prime}}+\Vert w_{2}(\tau)\Vert_{p^{\prime}})\Vert w_{1}(\tau)-w_{2}(\tau)\Vert_{p^{\prime}}$ .

Hence it follows that

(3.15) $\Vert w_{1}(t)-w_{2}(t)\Vert_{1.2}$

$\leqq C(\Vert w_{1}\Vert_{X(J)}+\Vert w_{2}\Vert_{X(J)})|\int_{0}^{t}(\Vert w_{1}(\tau)\Vert_{p^{\prime}}+\Vert w_{2}(\tau)\Vert_{p^{\prime}})\Vert w_{1}(\tau)-w_{2}(\tau)\Vert_{p^{\prime}}d\tau|$ .

Noting $r>2$ , from the Holder inequality we obtain

(3.16) $\Vert w_{1}(t)-w_{2}(t)\Vert_{1,2}\leqq C|I_{0}|^{(r- 2)/r}(\Vert w_{1}\Vert_{X(J)}+\Vert w_{2}\Vert_{X(J)})^{2}\Vert w_{1}-w_{2}\Vert_{X(I_{0})}$ .

(3.13) and (3.16) show that

(3.17) $\Vert w_{1}-w_{2}\Vert_{X(I_{0})}\leqq C|I_{0}|^{4-\gamma}(\Vert w_{1}\Vert_{X(J)}+\Vert w_{2}\Vert_{X(J)})^{2}\Vert w_{1}-w_{2}\Vert_{X(I_{0})}$ .

Taking $|I_{0}|$ sufficiently small in (3.17), we obtain a inequality which implies

that $w_{1}=w_{2}$ on $I_{0}$ . Iterating this process, we can show that $w_{1}=w_{2}$ on $J$. As
$J$ arbitrary, Theorem 2 is proved.

4. Proof of Theorem 3.

In this section we restrict our attention to $3<\gamma<4(n\geqq 4)$ , too. In order to
investigate the regularity of a weak solution, we estimate the solutions of the
approximating equation.
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LEMMA 4.1. Let $3<\gamma<4(n\geqq 4)$ . Let $(\phi, \psi)\in H^{1}\times L_{2}$ and $w_{j}(t)(J\in N)$ be a
solution of (2.2) obtained by Lemma 2.1. Let $p^{\prime}$ and $r$ be given in Theorem 2.
Then for any compact interval $I\subset R$ there exists a positive constant $C(\phi, \psi, I)$

which is dependent on $(\phi, \psi)$ and I but independent of $j$ such that

(4.1) $\Vert w_{j}\Vert_{L_{r}(I;L_{p},)}\leqq C(\phi, \psi, I)$ for $j\in N$ .

PROOF. It is sufficient to prove (4.1) in the case $I=[0, \alpha]$ . In the same
way as we obtain (3.12) we have

(4.2) I $ w_{j}(t)\Vert_{p},\leqq\Vert w_{j}^{0}(t)\Vert_{p^{\prime}}+C(\phi, \psi)\int_{0}^{l}|t-\tau|^{3-\gamma}\Vert w_{j}(\tau)\Vert_{p^{\prime}}d\tau$

Here we have used (2.6). By Propositon 3.1 (ii) and the Young inequality we
have

(4.3) $\Vert w_{j}\Vert_{L(I;L)}rp’\leqq C(\Vert\phi\Vert_{1,2}+\Vert\psi\Vert_{2})+C(\phi, \psi)\Vert\int_{0}^{l}|t-\tau|^{3-\gamma}\Vert w_{j}(\tau)\Vert_{p^{\prime}}d\tau\Vert_{L_{r}(I)}$

$\leqq C(\Vert\phi\Vert_{1.2}+\Vert\psi\Vert_{2})+C(\phi, \psi)\alpha^{4-\gamma}\Vert w_{j}\Vert_{L_{r}(I;L_{p},)}$ .
We can verify the condition (3.3) easily. Choosing $\alpha$ to satisfy $C(\phi, \psi)\alpha^{4-\gamma}\leqq 1/2$ ,

we have

(4.4) $\Vert w_{j}\Vert_{L_{r}(I;L_{p},)}\leqq C(\phi, \psi, I)$ for $j\in N$ .
Next we show that (4.1) holds for any number $\alpha\in[0, \infty$ ). Let $M$ be the

supremum of the number $\alpha\in[0, \infty$ ) so that (4.1) holds with $l=[0, \alpha]$ . We have
already showed that $M>0$ . If $ M=\infty$ , the lemma is proved. We assume that
$ M<\infty$ . Let $\alpha<M$ and $I_{1}=[0, \alpha]$ . From the definition of $M$ it follows that

(4.5) $\Vert w_{j}\Vert_{L_{r}(I_{1};L_{p},)}\leqq C(\phi, \psi, I_{1})$ for $j\in N$ .
Let $\alpha<\beta$ and $I_{2}=[\alpha, \beta]$ . Employing the same arguments as we obtain (4.3),

we have

(4.6) I $w_{j}\Vert_{L_{r}(I_{2}:L_{p},)}\leqq C(\Vert\phi\Vert_{1.2}+\Vert\psi\Vert_{2})$

$+C(\phi, \psi)\Vert\int_{\alpha}^{t}|t-\tau|^{3-\gamma}\Vert w_{j}(\tau)\Vert_{p^{\prime}}d\tau\Vert_{L_{r}(I_{2})}$

$+C(\phi, \psi)\Vert\int_{0}^{\alpha}|t-\tau|^{3-\gamma}||w_{j}(\tau)\Vert_{p^{\prime}}d\tau\Vert_{L_{r}(I_{2})}$

$=J_{1}+J_{2}+J_{3}$ .
From the same arguments of a proof of the Young inequality we obtain

(4.7) $J_{2}\leqq C(\phi, \psi)(\beta-\alpha)^{4-\gamma}\Vert w_{j}\Vert_{L_{r}(I_{2};L_{p},)}$ ,

(4.8) $J_{3}\leqq C(\phi, \psi)\beta^{4-\gamma}\Vert w_{j}\Vert_{L_{r}(I_{1}:L_{p^{\prime}})}$ .
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Choosing $\beta$ near $\alpha$ to satisfy $C(\phi, \psi)(\beta-\alpha)^{4-\gamma}\leqq 1/2$ , by $(4.5)\sim(4.8)$ we have

(4.9) $\Vert w_{j}\Vert_{L_{r}([0.\beta];L_{p},)}\leqq C(\phi, \psi, \beta)$ for $j\in N$ .
Since the distence between $\alpha$ and $\beta$ depends on $C(\phi, \psi)$ only, we can choose $\alpha$

near $M$ to satisfy $ M-\alpha<\beta-\alpha$ . Hence (4.9) contradicts the definition of M. $\square $

LEMMA 4.2. Let $3<\gamma<4(n\geqq 4)$ . Let $(\phi, \psi)\in H^{2}\times H^{1}$ and $w_{j}(t)(]\in N)$ be a
solution of (2.2) obtained by Lemma 2.1. Let $1/q^{\prime}=1/2-1/2n$ . Then for any
compact interval $I\subset R$ there exists a positive constant $C(\phi, \psi, I)$ which is dependent

on $(\phi, \psi)$ and I but independent of $j$ such that

(4.10) $\Vert w_{j}\Vert_{L(I;H_{q}^{1},)}\infty\leqq C(\phi, \psi, I)$ for $j\in N$ .

PROOF. Let $I=[0, \alpha]$ . From (2.4) and Proposition 3.1 (i) it follows that

(4.11) $\Vert w_{j}(t)\Vert_{I,q^{\prime}}\leqq\Vert w_{j}^{0}(t)\Vert_{1,q^{\prime}}+\int_{0}^{t}\Vert F_{j}(w_{j}(\tau))\Vert_{1.q}d\tau$ .

We can verify (3.1) easily. Applying Lemma 3.2 to $\Vert F_{j}(w_{j}(\tau))\Vert_{1,q}$ , we have

(4.12) $\Vert F_{j}(w_{j}(\tau))\Vert_{1.q}\leqq C\Vert w_{j}(\tau)\Vert_{p}^{2},$ $\Vert w_{j}(\tau)\Vert_{1,q^{\prime}}$ ,

where $p^{\prime}$ is given by Lemma 4.1. As the embedding $H^{2}c_{\div}H_{q}^{1}$ , holds, from (4.11)

and (4.12) we obtain

(4.13) I $w_{j}(t)\Vert_{1,q^{\prime}}\leqq C(\Vert\phi\Vert_{2.2}+\Vert\psi\Vert_{1,2})+C$ I $w_{j}\Vert_{L(I;H_{q}^{1},)}\infty\int_{0}^{t}$ I $ w_{j}(\tau)\Vert_{p}^{2},d\tau$ .

From the Holder inequality and Lemma 4.1 it follows that

(4.14) $\Vert w_{J}\Vert_{L(I;H^{1})}\infty q’\leqq C(\Vert\phi\Vert_{2,2}+\Vert\psi\Vert_{1,2})+C(\phi, \psi, I)\alpha^{(r-2)/r}\Vert w_{J}\Vert_{L(I;H_{q\prime}^{1})}\infty$ .
Here choosing $\alpha$ sufficiently small, we have

(4.15) $\Vert w_{J}\Vert_{L(I;H_{q}^{1})}\infty’\leqq C(\phi, \psi, I)$ .
Employing the same arguments of the proof of Lemma 4.1, we can show that
(4.10) holds for any $\alpha\in[0, \infty$ ). So we may omit its proof. $\square $

LEMMA 4.3. Under the same assumptions of Lemma 4.2. we have

(4.16) I $w_{J}\Vert_{L(I;H^{2})}\infty\leqq C(\phi, \psi, I)$ for $j\in N$

for any compact interval $I\subset R$ . Here $C(\phi, \psi, I)$ is a positive constant which is
dependent on $(\phi, \psi)$ and I but independent of $j$ .

PROOF. From (2.4) it follows that

(4.17) $\Vert w_{j}(t)\Vert_{2,2}\leqq C(\Vert\phi\Vert_{2,2}+\Vert\psi\Vert_{1.2})+\int_{0}^{l}\Vert F_{j}(w_{j}(\tau))\Vert_{1.2}d\tau$ .
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Applying Lemma 3.2 to $\Vert F_{j}(w_{j}(\tau))\Vert_{1.2}$ , we obtain

(4.18) $\Vert F_{j}(w_{j}(\tau))\Vert_{1,2}\leqq C|w_{j}(\tau)\Vert_{1.q^{\prime}}^{2}\Vert w_{j}(\tau)\Vert_{2.2}$ ,

where $q^{\prime}$ is given by Lemma 4.2. To note Lemma 4.2, we have

(4.19) I $w_{j}(t)\Vert_{2,2}\leqq C(\Vert\phi\Vert_{2,2}+\Vert\psi\Vert_{1,2})+C(\phi, \psi, I)\int_{0}^{t}$ I $ w_{j}(\tau)\Vert_{2.2}d\tau$ .

The Gronwall inequality implies (4.16). $\square $

Now we give the estimates of the weak solution.

LEMMA 4.4. Let $w(t)$ be a weak solution of (1.1) obtained by Theorem 1.
Let $3<\gamma<4(n\geqq 4)$ and I be any compact interval in $R$ .

(i) Let $(\phi, \psi)\in H^{1}\times L_{2}$ . Then we have

(4.20) $\Vert w\Vert_{L_{r}(I;L_{p},)}\leqq C(\phi, \psi, I)$ ,

where $C(\phi, \psi, I)$ is a positive constant which is dependent on $(\phi, \psi)$ and $I$ , pro-
vided that

(4.21) $\frac{1}{p\prime}=\frac{1}{2}-\frac{\gamma-1}{2n}$ and $\frac{1}{r}=\frac{\gamma-3}{2}$ .

(ii) Let $(\phi, \psi)\in H^{2}\times H^{1}$ . Then we have

(4.22) $\Vert w\Vert_{L(I;H^{2})}\infty\leqq C(\phi, \psi, I)$ ,

where $C(\phi, \psi, I)$ is a positive constant which is dependent on $(\phi, \psi)$ and $I$ .

PROOF. By (4.1), (4.16) and Lemma 2.2 we can choose a covergent sub-
sequence (again denoted by $w_{j}(t)$ ) so that

(4.23) $w_{j}(t)-w(t)$ weakly in $L_{r}(I;L_{p^{i}})$ ,

(4.24) $w_{j}(t)-w(t)$ weakly in $H^{2}$ and uniformly on $I$

as $ j\rightarrow\infty$ . Thus we have (4.20) and (4.22). $\square $

We prepare three lemmas on the regularity of the integral equation.

LEMMA 4.5. Assume that for $i=0$ or 1

(4.25) $F(w(t))\in L_{1}^{1oc}(R;H^{i})$ .
Then we have

(4.26) $\int_{0}^{t}H^{-1}\sin\{H(t-\tau)\}F(w(\tau))d\tau\in C(R;H^{1+i})\cap C^{1}(R;H^{i})$ .

PROOF. See Motai [9] Lemma 4.2 for a proof. $\square $
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LEMMA 4.6. Assume that for $k\in N$

(4.27) $w(t)\in\bigcap_{i=0}^{k}C^{i}(R;H^{k-i})$ .

Then we have

(4.28) $F(w(t))\in\bigcap_{i=0}^{k}C^{i}(R;H^{k-i})$ for $0<\gamma<{\rm Min}\{2k, n\}$ .

PROOF. If we use Lemma 3.2 and the Sobolev embedding theorem, we can
prove (4.28) easily. So we may omit a proof. $\square $

LEMMA 4.7. Assume that for $k\in N$

(4.29) $F(w(t))\in\bigcap_{i=0}^{k}C^{i}(R;H^{k-i})$ .

Then we have

(4.30) $\int_{0}^{l}H^{-1}\sin\{H(t-\tau)\}F(w(\tau))d\tau\in\bigcap_{i=0}^{k+1}C^{i}(R;H^{k+1-i})$ .

PROOF. This result is well-known. So we may omit the proof. $\square $

We are in a positon to prove Theorem 3.

PROOF OF THEOREM 3. (i) Let $w(t)$ be a weak solution obtained by

Theorem 1. Since $w(t)\in L_{\infty}(R;H^{1})$ , from the same argument as we obtain (3.8)

it follows that

(4.31) $ w(t)=w^{0}(t)-\int_{0}^{t}H^{-1}\sin\{H(t-\tau)\}F(w(\tau))d\tau$ in $L_{2}$

for $t\in R$ . By $(\phi, \psi)\in H^{1}\times L_{2}$ we have

(4.32) $w^{0}(t)\in C(R;H^{1})\cap C^{1}(R;L_{2})$ .

Noting (3.14), from (1.7) we obtain

(4.33) $\Vert F(w(t))\Vert_{2}\leqq C(\phi, \psi)\Vert w(t)\Vert_{p^{\prime}}^{2}$ .

As $r>2$ , Lemma 4.4 (i) and (4.32) imply (4.25). Hence by Lemma 4.5 we have
(1.12).

The uniqueness of $w(t)$ follows from (1.12) and Theorem 2.
If we resolve (1.1) at initial time $t_{0}\in R$ with a initial data $(w(t_{0}), \partial_{t}w(t_{0}))$ , by

Theorem 1 we obtain

(4.34) $E(w(t), \partial_{l}w(t))\leqq E(w(t_{0}), \partial_{l}w(t_{0}))$ for $t\in R$ .

The uniqueness, (1.7) and (4.34) imply (1.13).
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(ii) We first note that for $(\phi, \psi)\in H^{k}\times H^{k-1}(k\geqq 2)$ we have

(4.35) $w_{0}(t)\in\bigcap_{i=0}^{k}C^{i}(R;H^{k-i})$ .

In the case $k=2$ we have

(4.36) $F(w(t))\leqq C\Vert w(t)\Vert_{2,2}^{3}$

by Lemma 3.2 and the Sobolev embedding theorem. From Lemma 4.4 (ii) and
Lemma 4.5 it follows that

(4.37) $w(t)\in C(R;H^{2})\cap C^{1}(R;H^{1})$ .

This implies that

(4.38) $F(w(t))\in C(R;H^{1})\cap C^{1}(R;L_{2})$ .
By Lemma 4.7 we have

(4.39) $w(t)\in\bigcap_{l=0}^{2}C^{i}(R;H^{2- i})$ .

In the case $k>2$ we can first obtain (4.39). Lemma 4.6 shows that

(4.40) $F(w(t))\in\bigcap_{i=0}^{2}C^{i}(R;H^{2-i})$ .

And Lemma 4.7 implies that

(4.41) $w(t)\in\bigcap_{i=0}^{3}C^{i}(R;H^{3-\ell})$ .

Iterating this process, we can prove (1.14).

Corollary follows from the Sobolev lemma.
The proof Theorem 3 is completed.
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