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ON THE CAUCHY PROBLEM FOR THE NONLINEAR
KLEIN-GORDON EQUATION WITH
A CUBIC CONVOLUTION

By

Takahiro MOTAI

Abstract. We study the Cauchy problem for the nonlinear Klein-
Gordon equation with a cubic convolution {V,*(w(#))*}w(t), where
Vix)=]x|7, in (x, H)eR"XR. We prove the existence of weak
solutions for 0<y<n. We also prove that for 0<y<Min{4, n} the
weak solution is unique and there exists a regular solution.
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1. Introduction and Results.

We consider the Cauchy problem for the nonlinear Klein-Gordon equation;

{ 2wt)— dwt)+w@)+ F(w(t)=0
(1.1)

- L w@®=¢(x), 0, w(0)=¢(x)
in (x, )eR"XR. Here w(t) is a real valued function and
(1.2) F(w®)={Vf(w)w(),

where f(w)=w? V,/(x)=]|x|7" (0<y<n) and * denotes the spatial convolution.
The study of this equation was begun in Strauss and Menzala and Strauss
[9]. In [9] they proved the existence of a global regular solution of for
0<y=3. The main purpose of the present paper is to prove the same result
for 0<y<Min{4, n}. The upper bound Min{4, n} of y has been already appeared
in the case of nonlinear Schrédinger equation with the same nonlinear term.
The case of Schrodinger equation has been studied by Chadam and Glassey [2],
Glassey [6], Ginibre and Velo and Hayashi and Tsutsumi [7]. It seems that
Min{4, n} is a critical value caused by the Sobolev embedding theorem.

In order to state our results, we give the main notations used in this paper.
We denote by ||:||, the norm in L,=L,(R"). Let Hj=H}R") with s€R and

Received May 29, 1987.



354 Takahiro MOTAI

1=p<co (especially H*=H*(R") for p=2) be the Sobolev spaces which are the
completion of C3$(R") with norms

lulls. o =0F " (AX+1£12)"* @)l -

Here = denotes the Fourier transformation and F-! is its inverse. For any in-
terval JCR and any Banach space B, we denote by C*(/; B) the space of B-
valued C*-functions over I, and by C,(I; B) the space of weakly continuous
functions from I to B, and by C.(/; B) the space of functions from I to B
that are strongly Lipschitz continuous. We denote by C*(I; 9') the space of
9’-valued functions u(t) such that <u(t¢), v> is in C*(I) for any vE 9.

We shall use the operator {(H) for suitable functions {(-) as follows:

C(H)u=F " CKENAE)) in S’
where (&>=(141£|?)"/* and S’ means the tempered distribution.

Now we are ready to state our results.

THEOREM 1. Let 0<y<n (n=l). Assume that (¢, ) H'"\Lin;c2n-p X Lo.
Then there exists a weak solution w(t) of (1.1) which satisfies the following :

(1.3) wt)e Lu(R; HYNC w(R; HYNCL(R; LYNCYR; 9"),
(1.4) Fwit)E L(R; Lonica+r)NC(R; D)
(1.5) (w(t), v)=(é, cos{Ht}v)+(¢p, H'sin {Ht}v)

—S:(F(w(r)), H-'sin {H(t—o)}v)dr,

A w®), v+, (— A D)+ (w(d), 1)=0
(1.6) 4

(w(0), v)=(g, v), —E(w(O), v)=(¢, v).
Here ve C(R") and (,) is Ly-inner product. And we have the energy tnequality
1.7 E(w(t), 0,wt)<E(P, @) for teR.
where

1 1 1 .

(1.8) E(g, gb)‘—‘—z— II¢I|§+7 II¢II?.2+Z Vinsprex ()5

THEOREM 2. Let 0<y<Min{4, n} (n=1) and (¢, ) H'XL,. Let I be an
open interval in R and 0=I. Then there exists at most one w(t) which satisfies

(1.5) and
(1.9) w(t)ye Lis<(I; HY) for 0<yr=3,
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(1.10) wtye Lis(I; HYNLY<(I; L) for 3<y<4,
wher 1/p'=1/2—(y—1)/2n and 1/r=(y—3)/2.
THEOREM 3. Let 0<y<Min{4, n} (n=1).

(i) Let (@, p)€H'X L, Then w(t) which is obtained by Theorem 1 is unique
and satisfies the following :

(1_.11) wit)eCR; HHYNCYR; L,) for 0<y<3,
(1.12) wteCWR; HYNCYR; L))NLY(R; L,) for 3<r<4,
(1.13) E(w(), 0,w(t)=E(¢, ¢) for tER,

where r and p’ are given in Theorem 2.
(ii) Let (¢, p)=H*XH*' (k=N (natural number) and k=2). Then (1.1)
has a unique solution w(t) which satisfies

(1.14) w)e [:\oci(R; HE1,

COROLLARY. (i) If k>n/242, w(t) is in C*R"XR).
(i) If k=oo, w(t) is in C*(R"XR).

REMARK. (i) If 1<y<Min{4, n}, we have H'< L,,;izs-p by the Sobolev
embedding theorem. So the initial condition ¢= H'\L,5/2n-; becomes g= H! in
[Theorem 2 and 3.

(ii) The upper bound Min{4, n} of y has been already appeared in the case
of the nonlinear Schrédinger equation. (See and [7].)

is proved by the compactness method which were used by Segal
in [12]. He used this method for the nonlinear Klein-Gordon equation with the
power nonlinearity. (See also Reed 5.) We can choose a convergent sub-
sequence from solutions of the equation which approximate by the double
convolution mollifier due to Ginibre and Velo [3].

In the case 0<y=<3 the same results of and 3 have been already
proved by [9]. Thus, we shall prove and 3 in the case 3<y<4.

is proved by the contraction method. ,

In order to prove [Theorem 3, we show that a weak solution obtained by
becomes a regular solution. For this purpose we estimate the solu-
tions of the approximating equation used for the proof of [Theorem 1. This
method has been already used by Ginibre and Velo and Motai in the
case where F(w) is the power nonlinearity.
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2. Proof of Theorem 1.

First we approximate the nonlinear term by the double convolution mollifier
due to Ginibre and Velo [3]. We choose an even non-negative function A<
C3(R™) such that ||k||;=1. For any j&N(natural number) we put

(2.1) Fiu)=hp{Vixf(hpxu)hu},
where h;j(x)=j"h(jx). Coresponding to we consider the Cauchy problem;
{ 0fw;(t)—Aw;(t)+w;(t)+ Fy(w(t)=0

(2.2)
w,-(0)=h,~*¢, atwj(o):hj*¢ .

LEMMA 2.1. Let 0<y<n (nzl). Assume that (¢, $)=H'"\Lunicn-pX Lo.
Then for all =N (2.2) has a unique solution w(t) such that

(2.3) wit)e QC‘(R;H”"‘) for any keN.

And wj(t) satisfies the integral equation in H*;

@4 w=wit)— | H-'sin (HE—0)} Fy(w,@)dz,
where
(2.5) " wi(t)=cos{ Ht} hyx¢+H'sin { Ht} hyx¢) .

In addition the conservation of energy holds;

(2.6) - Ejwi?), o,wit)=E;(h*¢, h*xd) for teR,
where

1 2 1 2 1 2
(2.7 Ei¢, p)= > lpll3+ > Pl o+ vy | Vinep i f(hx@)ll3.

PrOOF. Applying Reed in section 1 to [2.2), we can show
the existence of a unique global solution. Employing the same arguments as in

Ginibre and Velo Proposition 3.3, we can also prove [2.6) O

We obtain the following lemma by the compactness method.

LEMMA2.2. Let wyt) (JEN) be a solution of (2.2) obtained by Lemma 2.1.
Then {wit)} has a convergent subsequence (again denoted by {w(t)}) as follows.
For any compact interval ICR and any comsact subset KC R"

(2.8) w;(t) —> w(t) in C; Ly(K)) as j—oo,
Here w(t) satisfies
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(2.9) wit)e Lo(R; HYNCW(R; H)NCL(R; L,).

Proor. Noting [2.6), the Ascoli-Arzela theorem yields and [2.9).

details please refer to Segal and Reed [11] 5. O

The following lemma is the well-known Sobolev’s inequality.

LEMMA 2.3. Let 1<g<p<oo and 0<y<n (n=1). Then we have

(2.10) [ Vixulp=Cllull,

provided that

2.11) 1o_lyr g
p ¢ n

PROOF. See Hormander [8] Theorem 4.5.3 for a proof. [
LEMMA 2.4. Let 0<y<n (n=1). We have

@12) || Vs Xauund s | £ 1 Ve )l ullnscen-p

..S_ C” V(n+r)/2*f(w)”2”u”2“v||2n/(n—r)

for suitable functions u, v and w.

357

For

ProOF. Using the Plancherel theorem and the Schwartz inequality we have

@13) | Vs mutanndw=@ny{181-m Aw)@) g1 rung)dg
< Vensprie f )l Vensras(un)]s.

It follows from [Lemma 2.3 and the Holder inequality that

(2.14) | Vensroros oMo Cluvlanscon->S C el vlenrcny-

(2.13) and show that [2.12) holds. O

LEMMA 2.5. Let 0<y<n (n=1). Let w;t) be a solution of (2.2) obtained

by Lemma 2.1. Then the following estimates holds:

(2.15) I Venappret f(hpew )= C(@, ¢,
(2.16) I Vi f(hprw ) leniy = Cl@, P),
(2.17) IFw;O)llanscnsnp = C(@, ¢)

for jeN and t=R, where C(@, ¢) is a positive constant which is dependent on

(@, ¢) but independent of t and j.
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PrOOF. Noting we have by Lemma 2.3
From it follows that

@18) [ Vs On(0d x| S CUVensppranf h s @)allvlsnscen-py

for veCe(R"). Therefore we obtain [2.16) by [2.15), the density and the du-
ality. Noting [w;®.=ZC(g, ¢), follows from and the Holder in-
equality. O

LEMMA 2.6. Let I be any compact interval in R. Let {w;(t)} be a convergent
subsequence obtained by Lemma 2.2. Then it has the following properties:

(2.19) Vnaprexf(hixw (1)) —> Viaapex f(w(t))
weakly in L, and uniformly on I and
(2.20) Fiw(t)) — F(w()

weakly in Linjcnsp for t€1 as j—oo.
In order to prove this lemma, we prepare two lemmas.

LEMMA 2.7. For any compact interval ICR and any compact subset KCR"
we have
(2.21) hw;(t) —> w(t) in C(; Ly(K)) as j—oo,

ProoF. Noting [2.8), we can prove easily. So we may omit the
proof. [

LEMMA 2.8. Let 0<y<n. For any compact interval ICR we have
(2.22) Vi f(hxwt)) —> Voxf(w(?) in 9’
uniformly on I as j—oo.

PROOF. Let veC%(R") and supp vC{x; |x|<R}. By the Fubini theorem
we have

(2.23) S Vr*{f(h,-*wj(t))—f(w(t))}v(x)dx=S{f(hj*wj(t))—f(w(t))} Vaxu(x)dx

Slr|sR+m Slx|2R+m

:Il—*—lz.

Here m is a suitable number which will be chosen later. If |x|=R-+m, we



On the Cauchy Problem for the Nonlinear 359
have |x—y|=m for |y|<R. Noting this, we obtain

(2.24) Ll o) f () — fw@) | dx o)1 dy
S A OlE+ @D

Next we estimate I,. We have

@25) |Lls| | F(hpwsO)—Fw@)| 1x=31 7w dy}dx.

|x[§R+m{ 1yl

It follows from n—1—y>—1 that

(2.26) S |x— 317" 10(») | dy < CRR+m)*7]|v]l.
ARV

This implies that

2.27) | LIZ=CRR+m)" (lwBl+1wBlvlelhpw ) —w®lr,azisrems -

Choosing m sufficiently large, we have (2.22) by [2.6), [2.9), [2.24), (2.27) and
Lemma 2.7. O

We are ready to prove

PROOF OF LEMMA 2.6. As 0<(n+y)/2<n, we have by and
By we obtain if we can show that

(2.28) Fiw;t)) —> F(w(t)) in @ for te]
as j—oo. For veCH(R™) we have
(2.29) (Fiw;)—F(w@), )=V f(hpw;)hxw;i(t), hxv—v)
+(F(hpxwi()—F(w®)), v)
:.[1""‘.[2.
(2.15) and [2.6) imply that
(2.30) [ 1| S CI Venaprax f(hxw (D)ol w (Ol Axv—0ll2nscr-p>
= C(@, Phxv—vllznrcn-p -
We put
(2.31) L=V f(hpw,E){ hxw(t)—w?)}, v)
F(V{ f(hxw ;) — f(w®)w(t), v)
=121+Izz-

Again by Lemma 2.4 and we have
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(232) | 121 ’ é C(¢: Sb)” hj*wj(t)— w(t>”L2(supp v)HUHan(n—r) .

We can rewrite [,, as follows:

(2.33) Ly=(Vx{f(hjxw;)— f(w)}, wtw).
On the other hand it follows from and that
(2.39) Vier f(hxw () —> Vox f(w(t))

weakly in L,,, and uniformly on I as j—co. By the Hoélder inequality and
we have w(t)vE Lyn/an-p. Noting this, implies that I,,—0 as j—oo.
So [(2.30), and show that holds. [

Now we are in a position to prove [Theorem 1.

PrOOF OF THEOREM 1. Let {w;(t)} be a convergent subsquence obtained by
We multiply v CI(R™) by and integrate on R". Then we
have

(2.35) (w,(t), v)=(h;*¢, cos{ Ht}v)+(h*¢p, H 'sin{Ht}v)
—S:(Fj(w,-(r», H-'sin { Ht—1)}v)dr.
Using the Hausdroff-Young inequality, we can show that H-!'sin{H(—7)}ve
Linicn-p. Thus it follows from that
(2.36) (F{w(t)), H 'sin {H{t—71)}v) —> (F(w(z)), H™'sin { H{t—1)}v)

as j—oo. By the Holder inequality, and the Hausdroff-Young inequality
we have

(2.37) (Fws), H'sin { Ht—0)}0) SIF{ wA)llenscnan | H sin { HE—)} vl enscn-p>
=C(@, PlIolenscnsr -

(2.36) and (2.37) mean that we can use the Lebesgue dominated convergence
theorem. Thus letting j—oo in [2.35), we obtain [1.5).
Noting ¢ Lyn/czn-p, (2.6) and [2.19) imply (L1.7).

Next we show that
(2.38) (w(t), v)e CHR) for any veC3(R").

From [1.5) it follows that (w(¢), v) C(R) and

(2.39) ilt—(w(t), v)=—(¢, H'sin { Ht}v+(¢, cos{ Ht}v)

—S:(F(w(r)), cos{ Ht—1)}v)dr.
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If we show that

(2.40) (F(w@), veC(R).
can be proved. Let t=R and be fixed. Put
(2.41) J()=(F(w(t+9)—F(w®), v)

=(Vp{ fw(t+n)— f(wE)}w@), v)
+(Vex f(w@+p){wit+n—w®)}, v)
=L+ J(n).
By we obtain

(2.42) LIS CIV crapyre* f(wt+ D)l wt+19)— w®)ll2livlienscn-p -

From [1.7) and [2.9) it follows that |Jx(%)|—0 as —0. By and we
can show that

(2.43) Vs f(hsw (D)€ C (R Lonsy).
(2:34) and [243) imply that
(2.44) Ve fw@)ECw(B; Laonsy).

Noting w()vE Lonsen-p, by (2.44) we have |[Ji()|—0 as p—0. Then is
proved. Noting [2.9), [2.17) and [2.20), [(1.3) and [1.4) have already been proved
] implies [1.6). Thus the proof of [Theorem 1 is completed.

3. Proof of Theosem 2.
We begin with the well known estimates for the elementary solution of the
linear Klein-Gordon equation.
PROPOSITION 3.1. Lht 1<p=2 and 1/p+1/p’'=1. Put o(p")=1/2—1/p’".
(i) Let p’, s’ and s satisfy
3.1 (n+1)(p")E14s—s".
Then we have for g CH(R")
(3.2) IH sin {Ht} glly,pr S Clt|*+37 72200 g| .
(ii) Put 1/r=s"4+no(p’)—1. Let p’, r and s’ satisfy
(n+l)

3.3) O§l<—1— and s§$'£1—
r 2

Then we have for g C%H(R™)
(3.9 |H'sin {Ht} gllL,r: ms>=Cllgle.

o(p").
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PROOF. (i) See Brenner Appendix 2 for a proof.
(ii) See Ginibre and Velo Lemma 3.1 for a proof. [

The following lemma is useful to estimate the nonlinear term.

LEMMA 3.2. Let p, a, b and q satisfy

1 1, 1 1 1 1

R T TR T S _r 1,2
(3.5) 5 a+b+q+n 1 and 1 n<a+b<1.
Then we have
(3.6) I|F(u)—Fllp,=Clu—vlallutvlsllullg+lvialvislu—vly)

for suitable functions u and v.

PROOF. By the Holder inequality and we have [3.6).
yields (3.5). 0O

PROOF OF THEOREM 2. As mentioned in the introduction, we will prove in
the case 3<y<4 (n=4). Let I be an open interval and J be any finite interval
such that 0= JcCI. Let I, be an interval such that 0=l,CJ. Put

X(Io)=Lo(Io; HYNL ,(Io; Ly).
The norm of X(/,) is given by
lull x crpy=Max{||ul zeocsg: 215 ||u”ch10; Lp,)} .

From Lemma 2.4, Lemma 2.3 and the embedding H'G L,n/2n-p it follows that

3.7 |[Fa@pedx| < lwoik el

Slwliwnllvi,e.

This means that F(w(t))c H™* for t=J. Thus by we have
(3.8) w(t)= w°(t)-S:H“ sin { H(t—1)} F(w(z))dt

in L, for t<].
Let w,(t) and w,(t) be two solutions which satisfy the assumptioms of

Theorem 2. From we obtain

B9 w—w=—{ Hsin {Hi—0}[Fwi(@)—F (wi)]dr.

By [Proposition 3.1 (i) we have

@10)  Jw@®—wdly =C (] 1t—TIF i)~ F i)l pde |
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and the Sobolev embedding theorem yield that

(3.11) | F(wi()—F(walt)]1.
S C| w1, 2+ we(@) 1, D wi(Dl pr + [ we() ] p )l wi(T)— waT)]l1, 2
+ C(lwi( D1 e NwelD), 2 | wi(T)— wa(D)lpr -

By we have

(3.12) lwi(t)—wa®)lpr < Cllwi—well x crp(lwill x e+ lwell xer)
x[{L 1217w @l + o)z

+C(”wlﬂx<10>+ “w2||x<10>)2

x||C =T~ ol de|

As 3—y>—1, from the Young inequality we obtain
(3.13)  Nwi@®—we)l L, cres Ly =C LI T(lwillxerFlwel x el wi—wallx o> -
Employing the same arguments as we obtain (3.11), we have
(3.14)  NF(wi(r)—F(wx(7))l2

< Clwi (@)l 2+ [wo(D)]1, DD o+ [ we(2) eIl wi(F) = walD)] 5 -
Hence it follows that

(3.15) flwi®)—we)1.2

363

< CllwnllxenHlwalxer) || i@l +lws@l )l wi@)—wi@)l de,

Noting »>2, from the Holder inequality we obtain
(3.16) lw:(t)— w1 e < C | L] T2 (will x e+ Nwall x o) lwi—wall x x> -
(3.13) and (3.16) show that

(3.17) “wr‘wzllxuo)éc | Lo|*7(]| wllIX(J)+|IwleX(J)>2Hw1—’w2HX(Io) .

Taking |I,! sufficiently small in [3.17), we obtain a inequality which implies

that w,=w, on I,. Iterating this process, we can show that w,=w, on J.

J arbitrary, is proved.

4. Proof of Theorem 3.

As

In this section we restrict our attention to 3<y<4 (n=4), too. In order to
investigate the regularity of a weak solution, we estimate the solutions of the

approximating equation.
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LEMMA 4.1. Let 3<y<4 (n=4). Let (¢, p)=H'XL, and wit) (jEN) be a
solution of (2.2) obtained by Lemma 2.1. Let p’ and r be given in Theorem 2.
Then for any compact interval ICR there exists a positive constant C(@, ¢, I)
which is dependent on (@, ¢) and I but independent of j such that

4.1) lwille, s L= C(¢, ¢, I) for jEN.

PRrROOF. It is sufficient to prove in the case I=[0, a]. In the same
way as we obtain we have

(4.2 1w S 13Ol +C(@, P [t 1™ i@l dr

Here we have used [2.6). By Propositon 3.1 (ii) and the Young inequality we
have

4.3)  Nwille,as 2, S CUIBl 2+ 1)+ C(8, gb)IIS: t— " TwiDllp drllz,

=C(IPll .+ Pl +C(@, Pla*Twille, crs 2,-
We can verify the condition easily. Choosing a to satisfy C(¢, ¢)a*7=1/2,
we have
4.4) lwillz s £, »=C(@, ¢, 1) for jEN.

Next we show that holds for any number a<[0, c©). Let M be the
supremum of the number a<[0, «) so that [(4.1) holds with /=[0, a]. We have
already showed that M>0. If M=o, the lemma is proved. We assume that
M< oo, Let a<M and I,=[0, «]. From the definition of M it follows that

(4.5) lwille, s 2,0=C@, o, I,)  for jEN.
Let a<f and I,=[e«, 8]. Employing the same arguments as we obtain (4.3),
we have
(4.6) lwile,cry 1, S CU@l2tlIl)
; .
|- . ,
+c@, 9| 1t—e1w@idr]
+0@, || 1t—elhw@de],
=]1+jz+ja.
From the same arguments of a proof of the Young inequality we obtain
4.7 J=C(@, PXB—a) Twillz 1y 2,55

(4.8) S =C(@, PIB TNwillL,cryz,-
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Choosing f near a to satisfy C(¢, )(f—a)*"7=1/2, by (4.5)~(4.8) we have
4.9) lwillz,copm2,,SC(@, ¢, f)  for jEN.

Since the distence between a and § depends on C(¢, ¢) only, we can choose a
near M to satisfy M—a<f—a. Hence contradicts the definition of M. O

LEMMA 4.2. Let 3<y<4 (n=4). Let (¢, ) H*XH" and wit) jEN) be a
solution of (2.2) obtained by Lemma 2.1. Let 1/¢'=1/2—1/2n. Then for any
compact interval ICR there exists a positive constant C(@, ¢, I) which is dependent
on (@, ¢) and I but independent of j such that

(4.10) 1wl Loocrs mLH>=C(P, @, T) for jEN.

Proor. Let I=[0, a]. From [(2.4) and Proposition 3.1 (i) it follows that

@.11) w0 S DK+ IF0 AN ol

We can verify [3.1) easily. Applying to |[F{wi(t)ll., We have
4.12) | FwAt)lh, o= Cllw (Dl 3 w1, ¢ »

where p’ is given by Lemma 4.1. As the embedding H?c, H} holds, from
and we obtain

@1 (0 Olhg S CUla s+l )+ Clwyl s o] Iws@l3 e

From the Hoélder inequality and it follows that

(4.14) 105l Looczs mh>=C(|@ll2.2H P2, 2)+C(P, P, D2 wll reecr; mY>-

Here choosing a sufficiently small, we have

(4.15) Wil zaocrs wy>=C(P, &, I).

Employing the same arguments of the proof of Lemma 4.1, we can show that
holds for any a<[0, «). So we may omit its proof. [

LEMMA 4.3. Under the same assumptions of Lemma 4.2. we have
(4.16) Wil Leocrs m2x=C(, ¢, I) for jEN

for any compact interval ICR. Here C(¢, ¢, I) is a positive constant which is
dependent on (@, ) and I but independent of j.

Proor. From it follows that

(4.17) [0, s= CAUG s g1, )+ | 1P, @D .
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Applying to |[Fy(w;(t)ll.., we obtain
(4.18) [ Fiw;m)l S Cllwi(o)lIL ¢ |wi(T)llz.2,
where ¢’ is given by Lemma 4.2. To note Lemma 4.2, we have

4.19) w;Oll2. e < CUIBll2. 2+ I ]l1. 2)+ C(P, ¢, I)S:ij(f)llz,zdr.
The Gronwall inequality implies (4.16). O

Now we give the estimates of the weak solution.

LEMMA 4.4. Let w(t) be a weak solution of (1.1) obtained by Theorem 1.
Let 3<y<4 (n=4) and I be any compact interval in R.
(i) Let (¢, p)H'XL,. Then we have

(4.20) lwlz, s 2, =C@, ¢, 1),

where C(@, ¢, I) is a positive constant which is dependent on (¢, ¢) and I, pro-
vided that
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4.21) P 5 and =T
(i) Let (¢, p)EH*XH'. Then we have
(4.22) Wl Lowcr; a2y =C(@, P, I),

where C(@, ¢, 1) is a positive constant which is dependent on (¢, ¢) and I.
Proor. By [4.1), and we can choose a covergent sub-

sequence (again denoted by w/(t)) so that

(4.23) w(t) —> w(t) weakly in L,.([; L),

4.24) w(t) — w(t) weakly in H? and uniformly on [

as j—oo, Thus we have [4.20) and [(4.22). O

We prepare three lemmas on the regularity of the integral equation.

LEMMA 4.5. Assume that for i=0 or 1

(4.25) Fwt)eL(R; H).

Then we have

(4.26) S: H 'sin{H@t—)} F(w(t)dre C(R; H*)N\CY(R; HY).

PROOF. See Motai [9] for a proof. O
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LEMMA 4.6. Assume that for kN

(4.27) we QC"(R; HE9).
Then we have

(4.28) F(w(t)e _[i\oci(R;H”*i) for 0<yp<Min{2k, n}.

PROOF. If we use and the Sobolev embedding theorem, we can
prove (4.28) easily. So we may omit a proof. [

LEMMA 4.7. Assume that for kN

(4.29) Flw(t)e Q Ci(R; H*Y).

Then we have

(4.30) |\ 1 sin {He— 0} Fu)dee [\ CR; HI-9).

ProOF. This result is well-known. So we may omit the proof. [
We are in a positon to prove [Theorem 3

PROOF OF THEOREM 3. (i) Let w(t) be a weak solution obtained by
[Theorem 1. Since w(t)eL(R; H'), from the same argument as we obtain
it follows that

(4.31) w(z‘)zw"(t)—S:H‘1 sin{Ht—7)}F(w(t))dr  in L,

for teR. By (¢, )= H'X L, we have

(4.32) w'®eCR; HYNCYR; L,).
Noting (3.14), from we obtain

(4.33) | [F(w®)].=C(p, HHIlwdI -

As r>2, (i) and imply [4.25). Hence by we have
1.12).

The uniqueness of w(t) follows from (1.12) and [Theorem 2.

If we resolve at initial time #,&R with a initial data (w(¢,), 0,w(t,)), by
we obtain

(4.34) E(w(®), 0,wt)< E(w(ty), 0,w(ty)) for t=R.
The uniqueness, [1.7) and [4.34) imply (1.13).
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(ii) We first note that for (@, )= H* X H*"' (k=2) we have

(4.35)

wolf)E QC"(R; H*),

In the case £=2 we have

(4.36)

Fw@®)=Cllw®l..

by and the Sobolev embedding theorem. From Lemma 4.4 (ii) and
it follows that

4.37)
This
(4.38)

wit)eC(R; HY)NC'(R; H").
implies that

Fw@)eCW®R; H)YNC'(R; L,).

By Lemma 4.7 we have

(4.39)

w(t)e Q CHR; H*Y).

In the case £>2 we can first obtain [4.39). shows that

(4.40)

Flw(t)e [3 CYR; H* ).

And implies that

(4.41)

w)e Q CHR; H* Y.

Iterating this process, we can prove [1.14).
follows from the Sobolev lemma.
The proof is completed.
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