TSUKUBA J. MATH.
Vol. 12 No. 2 (1988), 273319

APPROXIMATIVE SHAPE 1V
—UV"-MAPS AND THE VIETORIS-SMALE THEOREM-—

Dedicated to Professor Yukihiro Kodama on his sixtieth birthday

By

Tadashi WATANABE

§0. Introduction.

This paper is a continuation of [35-37]. We introduced approximate shape
in [35], discussed approximative shape properties of spaces and generalized
ANRs in [36], and fixed point theorems in [37]. In this paper we investigate
approximative shape properties of maps and show the Vietoris-Smale theorem
in shape theory.

Many mathematicians studied UV "-maps. See the references of Lacher
for their studies. Smale gave a Vietoris type theorem for homotopy groups
and UV™maps, called the Vietoris-Smale theorem. Kozlowski [13] gave a
factorization theorem for UV ™-maps. Borsuk introduced approximatively n-
connected spaces. This is a basic notion in shape theory. Various Vietoris-
Smale theorems in shape theory were given by Bogatyi [2, 3], Dydak [4-7],
Kodama [11, 12], Kuperberg [16], Kozlowski-Segal and Morita [27, 28].

In this paper we discuss the following topics: In §1 we introduce the
approximative lifting property and investigate its properties. In §2 we prove
restriction and product theorems for the approximative lifting property. In §3
we introduce approximatively n-connected maps and give their characterizations.
We show the Vietoris-Smale theorem and the Whitehead theorem for approxi-
matively n-connected maps. In §4 we introduce the approximative extension
property. We characterize approximatively n-connected spaces by this property.
In §5 we introduce partial realizations for decomposition spaces. We introduce
the approximative full extension property and investigate its properties. In §6
we show that our approximatively n-connected maps and usual UV"-maps are
equivalent. Hence by using results in §3 we show the Vietoris-Smale theorem
and the Whitehead theorem in shape theory for closed UV"-maps between
paracompacta.

We assume that the reader is familiar with theory of ANRs and shape
theory. As reference books we use Hu for theory of ANRs and Mardesié
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and Segal [23], quoted by MS [23], for shape theory. For undefined notations
and terminology see these books. We use the same notations and terminology
as in [35-37]. We quote results in [35-37] as follows: For example (I.3.3),
(I1.5.5) and (IIl. 1.1) denote theorem (3.3) in [35], theorem (5.5) in and
theorem (1.1) in [37], respectively.

The author thanks Professor Y. Kodama who encouraged him to develop
this theory, and also Dr. A. Koyama and the refree. They carefully read the
first manuscript and gave valuable advices.

§1. Approximative lifting property.

In this section we introduce the approximative lifting property for maps and
discuss its properties.

Let KX be a collection of pairs of spaces. Let C be a subcategory of TOP.
Let (¥, U)={(Xa, Va), ba'.a» A} and @, V)={(Ys, Vs), g».», B} be approxi-
mative inverse systems in C. Let f={f, f,: beB}: (¥, U)—(¥4, <V) be an
approximative system map in C. We say that f has the approximative lifting
property, in notation ALP, with respect to X provided it satisfies the following
condition : -

(ALP) For each admissible pair (a, b) of f there exists an admissible pair
(ao, bo)>(a, b) with the following property; for each (K, K,) X and for any
maps g:K—Y,, h:Ki—=Xq, With (fo,Daq. roerh, &1Ko)<stVs,, then there exists a
map H:K—X, such that (pq, oh, HIK)<stU, and (gsy.58, fobPa. rwH) stV

(1.1) LEMMA. Let £, g: (X, U)—>(Y, V) be approximative system maps in C.
If f=:g9 and f has ALP with respect to X, then so does g.

ProOF. We put g={g, g»: b= B}. We may assume f=:g without loss of
generality. Take any admissible pair (a, b) of g. By (AI3) there exists b,>b
such that ¢;!,V,>stcV,. Since f=:g and b,>b, there exists a,>a, f(b), f(b)
such that

(D (goPay. gcvyr fobay. r) <V, and
(2) (foDa,. 13 @oy.6 0, Pay, reo) <V

By the assumption there exists an admissible pair (a,, b,)>(a,, b,) satisfying ALP
with respect to X for f and (a,, b,). By (AI3) there exists b;>b, such that
Gy, Vo, >st*V, . Since f=:g, there exists a,> f(bs), g(bs) such that

3) (fogPay. rct3>r BosDag ge0g) <V, .
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(4) (foyDay 10935 Qogity fo5Pag, 1030 <V,

We show that (as, b;) is the required admissible pair for g. Take any
(K, Ko)€ X and any maps s: K—Y,, h:K,—X,, such that

®) (gbspas.g(ba)h; S| Ko)<stVy, .

By (3)-(5) and the choice of b,, (fo,Day roghs Gog.,5| Ko)<stVs,. Thus by the
choice of (a., b;) there exists a map H: K—X,, such that

(6) (pas, alh; Hl K0)<StCL]u1 and (fblp(ll. f(bl)H’ qb3. bls)<StCVD‘ .

By (1), (2), (6) and the choice of by, (P, ah, Pay. o HIKo)<stU. and (gspa,. grH,
@r,,58)<stV,. Hence g has ALP with respect to X. m

Thus by (1.1) we may say that [f] has ALP with respect to X provided
that £ has ALP with respect to X.

(1.2) LEMMA. Let f: (¥, U)—> Y, V) and g:(Y, V)—=(Z, W) be approxi-
mative system maps in C. If [f] and [g] have ALP with respect to X, then so
does [g][f].

Proor. We put g={g, g.:c=C}: @, V)L, W)={(Z., W), t¢,c, C} and
take a l-refinement function u:C—C of (Z,%). We show that r(u)(gf)
has ALP. Take any admissible pair (a, ¢) of r(u)(gf) and take c¢,>c¢ such that
Yer W >stW,,. Since r(u)(gf) is an approximative system map, there exists
a,>a, fgu(c,) such that

(1) (ru(c). cgu(c)fgu(c)pal. rauceys Yuclep, cgu(cl)fgu(cl)pal, fgu(cl))<cvc-

By the assumption there exists an admissible pair (a,, b,)>(a,, gu(c,)) satisfying
ALP for f and (a,, gu(c,)). Take any b,>b, such that gz}, Ve, >stV,,. By the
assumption there exists an admissible pair (bs, ¢2)>(b,, u(c,)) satisfying ALP for
g and (b, u(c,)). Take any c¢;>c. such that rgl ., W, >st*W.,. By (AM2) there

exist b,>b,, gu(cs) and a,>a,, fgulcs), f(bs) such that

2 (gcqu4, 2Ccdr Tucey), ca8uted)oy, gu(cs)) <W.,,
(3) (fgu(c3)pa4. S gulegds Qb4. gu(c3)fb4pa4. f(b4)) <CVgu(c3) and
4) (fo,Pay s Qogvy fo,Day ro0) <V,

We show that the admissible pair (a4, ¢;) of r(u)(gf) has the required
property. Take any (K, K;)eX and maps s: K—Z,, h:K,—X,, such that
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(ru(c3),c3gu(c3)fgu(c3)pa4.fgu(ca)h; S]Ko)<StCW63. Then by (2), (3); (AMI) for g and
the choice of ¢3 (gc,qv,. e foaPas ro0hs Vey eySI1 Ko)<StW.,. Thus by the choice
of (bs, c;) there exists a map H,: K—Y,, such that

) (QD4.b2fb4pa4.f(b4)h; H1|K0)<stCV,,2, and

(6) (gu(cl)QOz. gu(cl)Hly rc3, u(cl)s)<StCWu(q) .

By (4), (5) and the choice of b, (fo,Pa,. rop>R) Goy. 5, Hi| Ko) <5tV Then by the
choice of (a,, b,) there exists a map H,: K—X,, such that

(7) (Pay arh, H|Ki)<stU,, and
® (fgu(cl)pal.fgu(cl)Hé’ b, gu(cl)Hl)<StCVgu(c,)-

By (1), (6); (8) and the ChOice Of Cy (ru(c).cgu(c)fgu(c)pax,fgu(c)HZ: 7’03_03)<5th
and by (7) (pa,.oh, H | Ko)<stU,. Thus r(u)(gf) has ALP with respect to X
and hence [g][f] has the required property ALP. m

(1.3) LEMMA. [If [f]:(x, U)—(Yy, V) 1s an isomorphism in Appro-C, then
[f] has ALP with respect to any collection of pairs.

(1.3) follows from (I.2.16). m

Let X and Y be spaces and f: X—Y a map. Let p: X— (X, U), p': X—
(x,U)Y, q: Y-y, V) and q’:Y—>(Yy, V) be approximative AP-resolutions.
Let f: (¥, U)»W, &V) and f': (X, U)Y—(Yy, <V) be approximative resolutions
of f with respect to p, ¢ and with respect to p’, q’, respectively. By (I.5.1)
[F1=[1yle.¢ [f1[1x], ., Since [1x], ., and [1y], o are isomorphisms in Appro-
AP by (I.5.1), we have the following from (1.2) and (1.3):

(1.4) LEMMA. If [f] has ALP with respect to X, then so does [f’]. ®

Let p={po:acA}: X>X={Xq, Puo.a, A} and q={q:b=B}:Y Y=
{Ys, gs.», B} be AP-resolutions. Let f={f, f,:b=B}:2X—4y be a resolution
of f:X—-Y with respect to p and q. We say that (f, p, q) has the approxi-
mative lifting property, in notation ALP, with respect to X provided it satisfies
the following condition:

(ALP)* For each admissible pair (a, b) of f and for any Ue&Cov(X,),
VeCov(Y,) there exist an admissible pair (ao, by)>(a, b) and YV,=Cou(Y,,) With
the following property; for any (K, K,)& X and any maps & : K;—X,,, g:K—Y,,
with  (fyoPae reoph, 81 Ko)<V,, there exists a map H:K—X, such that
(Pag. o, HIKo)<U and (fopa, rinH, oy.68)<V.
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(1.5) LEMMA. Let (f, p. q) and (g, r, 8) be AP-resolutions of f:X-Y. If
(f, p, @) has ALP with respect to X, then so does (g, r, 8).

Proor. We put r={r.:c€C}: X>R={R;, rc.¢, C}, s={sqs:d=D}: Y-S

={Sq, sa'.4, D} and g={g, ga: d=D}. We assume that (f, p, q) satisfies (ALP)*
and show that (g, r, s) satisfies (ALP)*.

Take any admissible pair (¢, d) of g and WECov(R,), LECou(Sy). There
exist Ly, Ly, L, L. ECov(Sg) such that st.L,<.L, .L, satisfies (R2) for p and
L, L, satisfies (R2) for s and .£,, and stL,<L,AL:;NLs. Also there exist
Wi, Ws, Wss=Cov(R,) such that stow,<W, W, satisfies (R2) for r and 9,

SIWs<WLAW2/\(gaTe, gcar) 'L+ By (R1) there exist b€ B and a map ¢:Y,,—S,
such that

) (Sa, 1gs) <Ly

By (R1) there exist a,> f(b;) and a map u: X, — R, such that
2 (re, upa )<Ws.

Then by the choice of 9,

3 (ga¥gcars GaTe, geartPa)<La.

Since (f, p, q) and (g, r, 8) are resolutions of f, tgs, f=tfs,Prwv,> aNd Saf =ga? zca>-
Then since (saf, tg5, /)<L. by (1), (3) follows (ga7e, gcastbays tfo,Pay. ro3Pay)
<st.L,<.L, Thus by the choice of .L, there exists a,>a, such that

4) (aTe, gcarPay ays Lo Pas reo) <L+

By the assumption there exist an admissible pair (a;, bs)>(a,, b;) and
V’'&Cou(Y,,) satisfying (ALP)* for £, (as, b1), Wpay a)) ' WsECor(X4,) and
'L, eCou(Y,,). There exist Vi, CV;, CViECou(Y,,) such that stcVi<V’, <
~satisfies (R2) for r and <V, and stV;<V;A(tge,5,) '-Ls. By (R1) there exist
d,>d and a map v:Sq,—Y,, such that

® (VSdy qo,) <Vis.

By (5) and the choice of Vi, (tgb, 5,054, 1qs,)<-Li and then by (1),
(tgby. 5,VSay> Say.aSa,)<St-Ly<.Ls. By the choice of .£; there exists d,>d, such
that

(6) (105, 5,V ag, ay» Sag a)<L1.
By (R1) there exist ¢,>¢, g(d,) and a map w: R, —X,, such that

(7) (wrcl’ pa3)<(upa3'a1>_1W3/\(szpa3vf(bz)>—lcv:;-
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By (5), (Usdlf, szf)<CV§- By (7), (sz.baa.fcbg)wrcp szpf(bz))<CV!;- Since (f, p, q)
and (g, r, 8) are resolutions of f, fo,prw,y=¢s,f and Sa,f =S4, 4,84, gca» Then
(fo,Pay 10> WP )y VSdy, 4,845 ¢y geapdle) <SEVE< V5. By the choice of <V, there
exists ¢,>c¢, such that

&) (fo,Pay £codp WP ey cpp VSay 185" co gCand) < V1.

By (7), (Upag, a,wre,, upa)<Ws and by (2), Upay. a,Wecyp. e, cyr Veg eV ey) <SIWs < W,
By the choice of 9,, there exists ¢;>c, such that

9 (upas, a;W¥eq,cy5 Ve, d<W,.

We show that the admissible pair (cs;, d2) for g and (vs4,,q,) ' ViECou(Sy,)
are the required ones. Take any (K, K,)€ X and any maps k:K—R., h:K—
Sa, such that (gq,rc, gcapk, h|Ko)<(vS4,q,)7'Vi, and then (USay, 4,8 45" cq gCdpd R,
USay, a, R Ko)<V]. Then by (8), (fo,Pay. rppWrey. Ry USay, a,h| Ko)<sSIV<V’. By
the choice of (a;, b,) there exists a map H: K—X.,, such that

(10) (Dag, agWeq, e By H|Ko)<(Upa, a,)"'Ws and

(11) (foyDag sy Hy Goy0,VSay o, )<t 'Ly

By (UPay, a, WP ey e, Ry UDay, oy HI Ko)<Ws and by (9), (Upay, o, WFey e Ry Tey oy ) <W.
Then

(12) (Feg.cky UPay, o HI Ko) SIW <W.

By [IL), (tfs,Day reorH, gy 5,084, 0, R)<L< Ly, by (4), (8a7e gcarPay, o H,
tfo,Pay raopH)<Ly and by (6), (tgs,.5,VS4,, 4,0, Sa, ah)<L,. Thus

(13) (gdrc,g(d)upaz.alH; sdz,dh)<3t-£1<-£.
Hence, by and g satisfies (ALP)* with respect to X. =

By (I.4.9) there exist approximative ANR-resolutions p: X—(¥, U), q:Y—
(¢, V) and an approximative resolution f: (¥, U)—(4y, V) of f with respect
to p and q such that (f, p, ¢) is an ANR-resolution of f.

(1.6) LEMMA. Under the above conditions, f satisfies (ALP) with respect to
KX iff (f, p, q) satisfies (ALP)* with respect to XK.

PrROOF. We assume that f satisfies (ALP) and show that it satisfies (ALP)*.
Take any admissible pair (a, b) of f, UECov(X,) and WeCouv(Y,). There exist
b,>b, a,>a, f(by) such that p3l .U>stUa,, g5} oV>stV, and fypa,, rmr=
@oy.5f0,Pay. reopy.  There exists an admissible pair (a,, b,)>(a,, b,) satisfying
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(ALP) for (a,, b;). Thus it is easy to show that (a., b,) and stcV,, satisfy
(ALP)* for (a, b), U and <.

Next we assume that f satisfies (ALP)* and show that it satisfies (ALP).
Take any admissible pair (a, b) of f. Then there exist an admissible pair
(ai, b))>(a, b) and V' eCou(Y,)) satisfying (ALP)* for (a, b), U. and<V,. Take
bs>b, and a,> a,, f(b.) such that gz, o, V' >5tVs, and fo, Pay, 5> =00y, fo,Pay, £ vy
It is easy to show that (a,, b,) satisfies (ALP) for (a, ). m

(1.7) THEOREM. Let X be a class of pairs. Let f:X—Y be a map. Then
the following statements are equivalent :

(i) Any/some approximative AP-resolution of f has ALP with respect to X.

(ii) Any/some AP-resolution of f has ALP with respect to X.

(1.7) follows from (1.4)-(1.6). m

Thus by (1.7) we say that a map f:X—Y has the approximative lifting
property, in notation ALP, with respect to X provided that it satisfies any one
of the conditions in (1.7).

(1.8) COROLLARY. Let f:X->Y and g:Y—Z be maps.

(i) If CT(f):CT(X)—CT(Y) is a homeomorphism, then f has ALP with
respedt to any XK.

(ii) If f is a homeomorphism, then f has ALP with respect to any X.

(ili) If f and g have ALP with respect to X, then so does gf.

(1.9) COROLLARY. A map f:X—Y has ALP with respect to X iff so does
CT(f):CT(X)-CT(Y).

(i) in (1.8) follows from (I.7.10) and (1.3). (ii) follows from (i). (iii) fol-
lows from (1.2). (1.9) follows from (I.6.9), (I.6.11), (I.7.10), (1.2) and (1.3.). =

Let TOP(ALP, X) be the subcategory of TOP consisting of all spaces and
all maps having ALP with respect to X. Thus by (1.8) we have the following:

(1.10) THEOREM. TOP(ALP, X) forms a subcategory of TOP including all
homeomor phisms for any collection X of pairs. M

Let X, be a subspace of a space X. We say that (X, X,) is a closed pair
provided that X, is closed in X. We recall that coverings are always normal
open coverings (see [1]). We say that X, is P-embedded in X provided that
for any covering U, of X, there exists a covering U of X such that U|X,=
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{UNX,: UeU}<U,. In MS [23] “normally embedded” is used instead of
“ P-embedded ”.

Let TOP,,;,, be the category consisting of all pairs and all map between
pairs. TOP¢..;,s and TOPp,.,, denote the full subcategories of TOP,,;,, con-
sisting of all closed pairs and all P-embedded pairs, respectively. TOPcp.pairs
denotes the full subcategory consisting of all closed P-embedded pairs. TOPE,;,,
and "TOP,,;,, denote the full subcategories of TOP,,,, consisting of all pairs
(X, Xo) with dim X<n»n and dim(X—X,)<n, respectively.

We say that (X, X,) is a polyhedral pair provided that there exists a sim-
plicial complex K and a subcomplex K, of K such that |K|=X and |K,|=X..
Here |K| denotes the realization of K endowed with CW-topology. We say
that (X, X,) is an ANR-pair provided that X, is closed in X and X, X, are
ANRs. POL,,;,, and ANR_,;,, denote the full subcategories of TOP¢p. y.is cON-
sisting of all polyhedral pairs and ANR-pairs, respectively. Similarly we may
define categories POL%;., "POL,,;.,, ANRZ;., "ANR,,;,, and so on.

Let K, and K, be subcategories of TOP,,;,. We say that K, is expandable
by K, in notation K,<.K, provided that any (X, X,)€ObK, admits a K,-
resolution. We say that K, and K, are expansively equivalent, in notation
K,=_.K,, provided that both K,<.K, and K,<.K,. We say that f: (¥, U)—(Yy, <V)
and f:X—Y have ALP with respect to K, provided that they have ALP with
respect to ObK,, respectively. (1.3.15) and (I.3.16) (see and [23]) mean
the following :

(1.11) LEMMA. TOP,,,,=.TOPs ..rs=cPOL .., =.ANR,...,, TOP=,POL
=.ANR, TOP2,,.=,TOP: ....=.POL%,,, and TOP"=,POL". m

(1.12) THEOREM. Let K, and K, be subcategories of TOPp ... We assume
that K,<.K,. If a map f has ALP with respect to K,, then f has ALP with
respect to K,.

To prove (1.12) we need the following lemma.

(1.13) LEMMA. Let Z be an AP. Then for each UECou(Z) there exists
U’'cCov(Z) satisfying (R2) for any resolution and vU.

PROOF. For any UECov(Z) we take U’'ECov(Z) with stU’<U. We show
that €U’ has the required one. Take any resolution p: X—2 of any space X.
Take any a=A and any maps g, h: X,—Z such that (gp., hp)<U’. Put
W=g ' U' Nh'U' ECov(X,).
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(1 (glst(pa(X), W), h|st(p(X), W)<U.

Take any yest(p.(X), %) and then there exist U}, U}’ and x< X such
that po(x)Ep(X)Ng ' U Nh U, and yeg 'UNLh'U;. Thus gp.(x), gy)eU;,
hpo(x), h(y)eUj;. Since (gpa, hp.)<U’, there exists Uj=U’ such that gp,(x),
hpo(x)eUs. Thus g(y), h(y)estUi, U’)CU for some U<U. Hence we have (1).

By (1. 3.3) p satisfies (B4) and then there exists a’>a such that pg o(Xa)
Cst(pa(X), W). Hence by (1) (gpa’,ar hpar,a)<U. M

PrOOF OF (1.12). Take any approximative AP-resolutions p:X—2% and
q:Y—>qy. Let f:(X, U)—(Y, V) be an approximative resolution of f with
respect to p and q. We assume that f has ALP with respect to K, and we
show that it has ALP with respect to K,.

Take any admissible pair (a, b) of f. Then there exist b;>b such that
Grl sV >stVy . By (AMI)-(AM2) there exists a,>a,>a, f(b,) such that
(foPay, 13 Qog0foyPay, 10y <Vp and pal o, Ua,>stUa,. By the assumption there
exists an admissible pair (as, b;)>(a,, b,) satisfying (ALP) for K, and (a,, by).
By (1.13) there exists <VECou(Y,,) satisfying (R2) for any resolution and <V,,.
Take any b,>b, and a,>as, f(b,) such that g3}, V>st*V,, and (fi,Pa,. sy,
Go4. 55 fo,Pay, £00) <Vpy.

We show that the admissible pair (a,, b,) has the required property. Take
any (Z, Z, )€K, and maps g: Z—Y,,, h:Z,—X,, such that

ey (foaPay rawph, 81 Zo)<SIV,,.

By the assumption there exists a K,-resolution r={r.:cC}:(Z, Z,) (X, X,)
={(Z., Zo), ¥er,e, C} of (Z, Z,). Then by Theorems 2-3 of Mardesié
rz={rc:c€C}: Z->2Z={Z, re.., C} and rgz={rl:c€C}: Zy—>2Z={Zo, 1 C}
form resolutions. Here #%: Z,—Z,. and »% .: Z,»—Z,. are induced by r. and
re,e. By (R1) there exist ¢;€C andmaps h': Zo,—X,,, g’ Z.,—Y,, such that

2) (hy, W'ri)<U,., and (g, g'r.)<Vs,.
By (1), (2) and the choice of by, (go,.0,/5,Pas roh' T8, @o,.0,8'70)<V. By the

choice of <V there exists c,>c¢, such that (gs, s,/ oePay r0>P 7 crr Qo458 75 cy)
<CVb3. Thus (fbapa4,f(bs)h,r22,cl, 4b4,b3g’7’62,cllZOc2)<StCVb3~ By the choice of
(as, bs) there exists a map H: Z,,— X,, such that

(3) (H| ZOCZ; pa4,a2h,rgz.cl)<3tcua2 and

4) (fblpag,f(bl)H’ QD4,b1g./7’c2,c1)<StCVbl .
By (2), (3) and the choice of a,
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(5) (PayaHre,| Zo, payah)<stU,.
By (2), (4) and the choices of a,, b,
(6) (fbpaz.f(b)Hrc2; 404.bg)<StCVb.

By (5) and (6) (a4, b,) satisfies the required conditions. Hence f has ALP with
respect to K;,. ®m

(1.14) COROLLARY. Let K, and K, be subcategories of TOPp s and
K,=.K,., A map f has ALP with respect to K, iff f has ALP with respect to
K, m

(1.15) COROLLARY. The following statements are equivalent:
(i) A map f has ALP with respect to TOPp_ ,airs.

(ii) f has ALP with respect to ANR, ;...

(iii) f has ALP with respect to POL,;.,.

(1.16) COROLLARY. For each integer n the following statements are equiva-
lent :

(i) A map f has ALP with respect to TOPR ,uirs.

(ii) f has ALP with respect to POLL,;...

(1.15) and (1.16) follow from (1.11) and (1.14). =

(1.16) REMARK. Let X be a collection of pairs of spaces. Let #(X) be the
full subcategory of TOP,,. consisting of X as objects. Then X uniquely
determines #(.X). Since Obt(X)=X, t(X) uniquely determines X. Hence we
may identify X and #(x). For example, for collections X, and X, of pairs of
spaces we say that X, is expandable by X,, in notation X,<.X,, provided that
H(K,)<.t(K,). Similarly we can define X,=.,X,. Thus (1.12) and (1.14) hold
for collections.

(1.17) REMARK. Approximative homotopy lifting property was introduced
for [maps between compacta by Mardesi¢ and Rushing [22] and for maps be-
tween arbitrary spaces by Mardesi¢ [20]. In the sequel we shall show that
the approximative homotopy lifting property is a special case of our approxi-
mative lifting property.
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§ 2. Restrictions and products of the approximative lifting property.

Let (X, X,) be a pair of spaces. Let p={p.:acA}: X—>(X, U)=
{(Xa, Ua), Par.a, A} be an approximative resolution. We put X,,=st(p(Xo), Ua)
and U,e=%U,| Xoq for ac A. Then p,: X—X, and p,,.: Xor— X, induce maps
P%: Xo—Xoe and pY o1 Xoor— X,oe for a’>a.

(2.1) LEMMA. If X, is P-embedded in X and all X, are paracompact, then
pP'={ps:acA}: Xo— (¥, Up)={(Xoa, Usa), D% .4, A} is an approximative re-
solution.

Proor. First we show that (2¢,, U, forms an approximative inverse sys-
tem. (AIl) and (AI2) for (3¢, U, follows from (All) and (AI2) for (&£, ).

We show (AI3). Take any a=A and any VeCou(Xoo). Since po(Xo)C Xoa
and X, is paracompact, U=V U{X,—p.(X,)} is an open normal covering of
X,. Take any U’'€Cov(X,) such that st/ <U. By (AI3) for (¥, U) there
exists a’>a such that pzt , U’ >U,:.

We show that (p%, ) 'SV >U,sa-. Take any non-empty UynEU,,r and then
Up=st(pa(X,), Ua)NU,; for some U,=U, . Thus there exists U,=U, such
that UsNpa(Xo)#= @ and U,N\U,#= @. By the choice of a’ there exist U{, UjsU’
such that p3}, UiDU;, =1, 2. Then UiNp(Xo)#*=@ and UNU;#=@. By the
choice of U’ there exists U= such that st(U{, U )CU. Since UNp(X)+* D,
by the definition of U, U=y and (p%,.) ' U=Xoa NP3t JUDXoa NU,=U,,.. We
thus have the required property. Hence (2¢,, U,) forms an approximative inverse
system.

Next we show that p°: X,—(X,, U,) is an approximative resolution. We
show (AR1l). Take any V&Cov(X,). Since X, is P-embedded, there exists
Y& Conv(X) such that >V | X,. By (AR1) for p there exists a= A such that
pU.<U. It is easy to show that (p%) U, <V. We show (AR2). Take
any a=A and any Ve&Cou(Xy,). Put U, U'&Cov(X,) and a’>a as in the
second paragraph. Since (p%, o) 'V >Uoqr, 3. a(Xoa)TStH(Poa(Xs), V). Hence
p° is an approximative resolution. m

\ (2.2) COROLLARY. If p: X—(&x, U) is an approximative ANR-resolution and
Xy is P-embedded in X, then p°: X,—(2,, U,) is an approximative ANR-resolu-
tion. ®

(2.3) COROLLARY. Any space X admits an approximative ANR-resolution
D: X—=(X, U) such that st(p.(X), U)=X, for all acA. m
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Let (X, X,), (Y, Y, be P-pairs and f:(X, Xo)—(, Y, a map. Then f
induces a map fo: Xo—Y, Let g={g:0=B}:Y >y, V)={(Ys, V), qv'.v, B}
be an approximative resolution. We assume that all X, and all Y, are para-
compact. We put Y ,=st(gy(Y,), V) and Vo=V, |Y ,&Cou(Y ) for all b= B.
Then ¢,:Y—Y, and ¢y ,,: Yy —Y, induce maps ¢): Y=Y and g ,: Yo=Y 0
for ’>b. By (2.1) ¢°={g}:b=B}:Y = Yo, Vo)={Y 05, Vo), ¢%.5, B} is an
approximative resolution. Let f={f, f,: b= B}: (¥, U)—(Yy, ¢V) be an approxi-
mative resolution of f with respect to p and q. Let 2: B—B be a l-refinement
function of (¢, V). We put f3=qrw.sfewr| Xorrwr : Xosrwy—Y o for b&B. In
a straightforward way we can easily show the following:

(2.4) LEMMA. Under the above conditions f,={fk, f3:b=B}:(2X,, Uy—
(Yo, V) is an approximative resolution of fo: Xo—Y, with respect to p° and q°.

(2.5) THEOREM. Let f:(X, Xo)—=(Y,Y,) be a map and X a collection of
pairs of spaces. We assume the following two conditions:

(1) X, and Y, are P-embedded in X and Y, respectively.

(ii) For each VECov(X) there exists VeCou(Y) such that f'st(Y,, V)
Cst(X,, U).
If f:X>Y has ALP with respect to X, then so does fo: Xo—Y,. Here f, is
induced by f.

PrOOF. By (2.3) there exist approximative ANR-resolutions p: X—(2¢, U)
and q:Y—(qy, V) satisfying X,=st(po(X), U,) and Y,=st(g,(Y), V,) for ac A
and b= B. By (i) and (2.2) p°: X,:—(X,, U,) and q°:Y —(Y,, V,) are approxi-
mative ANR-resolutions. Let f: (¥, U)—(4y, €V) be an approximative resolution
of f with respect to p and q. By (2.4) f,: (X, Uo)—(Y,, V,) is an approxi-
mative resolution of f,: X,—Y, with respect to p°® and ¢°.

By the assumption £ has ALP with respect to K. We show that also f,
has ALP with respect to X. Take any admissible pair (a, b) of f,, that is,
a> fk(b). Here k: B—B is a l-refinement function of (¢4, <V). By (AI3) there
exists a,>a such that p;l ,U.>stU,,. By (ii) there exist CVeCou(Y) such
that f'st(Y,, V)CTst(Xo, paiU.,). By (AR1) and (AI3) there exist b,>b,> k(b)
such that ¢3!V, <V and g¢;, 5V, >stV,,. By (AM2) there exists a,>a,,
fk(b;) such that

ey (frrPag ey Qreoyd, ko ey Pag. rrwe) <k -

By the assumption there exists an admissible pair (as, bs)>(a,, k(b,)) satisfying
(ALP) for f and (a,, k(b,)). Take b,>b; such that g3} ,,V,,>stV,,. By (AM2)
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there exists a,>a;, fk(b,) such that

3¢(l » b Q B »
( b 4 f< 3)) k(b4) b3fk(b4)¢ ay fk(b4))< [ b3 aIl:l
(q k(b4), b4fk(b4)z ay» fk(b4)? fb4¢ ay, fk(b4))< [' b4 *

We show that (a,, b,) has the required properties. Clearly (a,, b,) is an
admissible pair of f, and a,>a, b,>b. Take any (K, K,)=X and take maps
g: Ky Xoa,, h:K—Y o, such that (h|K,, 13,05, rrw,»8)<StVe,. By the choice
of b, (004.b3].1h!Ko, Qk(b4),bgfk(b4)pa4,fk(b4)].2g><q/b3- Here j,: Y0b4"’Yb4 and
J2? Xoa,— X, are inclusion maps. By (2) (fo,Da,. rv57285 Qrcop. o5 roDay. frwI28)
<DVp, and then (fy,Da, 157,85 G, 057101 Ko)<st<V,,. By the choice of (as, bs)
there exists a map H: K—X,, such that

(3) (H[KO; pa4,a2].2g><3tcua2 and

4) (fropDay rewpH, Qo koI 1H)<SEV kpy5 -

We show that
(5) Day HEK)CT X, -

Take any k=K. Since st(pqa(X), U,)=X, for all ac A, there exist xX and
U,e9U,, such that

(6) H(k), pa,(x)€U,;.

By (AMI) and (Al2) there exists V&V, q,, such that (frwyPay recwy) (V1)UL
Then by (6)

(7) FrwpPag s yHR), fravpPrrw,(X)EV .

Since f is an approximative resolution of f, there exists V,EV,«,, such that

8) TrawpPrrwy(X); Qrapf(X)EV,.

By (4) there exists V,&V,u,, such that frw,Pa, rrwpH(R), @b, rwyiih(R)
ESZ‘(V;;, CVk(bz)>- Since qb4,k(bz)]'lh(k)eyok(bg), there exist yOEYo and V4ECVk(b2)
such that gu,, ecvy>/14(R), Grwy(¥e)EV,. Thus by (7) and (8)

9) GrapnS (%), qray (Vo) ESt(SEV 1, Vi) SEV i) -

Since % is a l-refinement function of (47, <V), by the choice of b, ¢il,>. 5, Vs, >
St*V 4w,y Then by (9) there exists V'V, such that g, f(x), ¢,,(¥0)EV’. By
the choice of b, there exists V&<V such that f(x), y°Egp'V'CV. Since y,&Y,,
f(x)est(Y,, V). By the choice of <V, x& f'st(Y,o, V)CTst(Xo, pziU,.,) and then
there exist x,=X, and U,=vU,, such that p.,(x), pa,(x0)EU, By (6) there
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exists UsEU,, such that po, o H(R), po,(x)EU,. Thus pa, a H(R), pa(x0)E

st(U,, U.,) and then by the choice of a, there exists U=U, such that p,, H(k),

pa(xo)€U. This means p,, H(k)Est(pa(Xs), Ua)=X,a. Hence we have (5).
By (3) and the choice of a,

(10) (pag,aIﬂKo, %4,ag><°an<St‘an-

Since k£ is a l-refinement function, by (1) and (4) it is easy to show that
(@rorofrwrDay recrH, go,0J1h)<stV,. By (5) this means

(11) (f30% rrorPay aH, g, 0h)<StV0p.

(5), and mean that p,, «H: K—X,, has the required properties. Then
f, has ALP with respect to X and hence so does f,. ®

(2.6) LEMMA. Let f: XY be a map and let Y bz a normal space. Let X,
and Y, be subspaces of X and Y, respectively. If f is a closed map and f~(Y,)
=X,, then for each UECov(X) there exists VECou(Y) such that f~'st(Y,, V)
Cst(X,, U).

PROOF. Take any U<Cou(X). Since st(X,, U)=st(X,, U)=st(f~YY,), V)
and f is closed, W=Y — f(X—st(X,, U)) is an open set in ¥ and WY, Since
Y is normal, &W={W, Y —Y,} forms a normal open covering of ¥ by Theorem
1 of MS [23, p.324]. Hence f'st(Y,, V)=/f"tst(Y,, V)=f"WCst(X,, U)=
st(X,, U). M

(2.7) COROLLARY. Let (X, X,) and (Y, Y,) be P-pairs and [ : (X, Xo)—(Y, Y,
a map. Let f: XY be a closed map, Y a normal space and f~Y(Y)=X, If
f:X->Y has ALP with respect to X, them so does fo: Xo—Y, Here f, is
induced by f.

(2.8) COROLLARY. Let f:X—>Y be a closed map. We assume any one of
the conditions (i)-(iii) below. If f has ALP with respect to X, them so does
fI1fYYo): f-Y (Y o)—Y, for any closed subset Y, of Y.

(1) X and Y are collection-wise normal.

(ii) X and Y are paracompact.

(iii) X and Y are pseudo-compact normal.

(2.7) follows from (2.5) and (2.6). (2.8) follows from (2.7) and the fact that
every closed subset of a space satisfying one of the conditions (i)-(iii) is
P-embedded (see Corollary 15.7, Theorem 15.11 and Corollary 15.15 of Al§-Shapiro
ip. m
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(2.9) THEOREM. Let all f.: X.—Y. be maps between compact spaces for c<C.
Then f=I{f.:ccC}: X=II{X,:c=C}->Y=II{Y,:c=C} has ALP with respect
to X iff all f. have ALP with respect to X.

PROOF. We use the same notations as in the proof of (Il 2.1).

First we assume that all f, have ALP with respect to X. Then all f¢
satisfy (ALP) with respect to K. We show that f={f, fn: heF(B)}: (X, U)
—(@7, &) has ALP with respect to X. Take any admissible pair (g, h) of f,
that is g> f(h). Put h:m={cy, ¢y, -+, cr}—B and g: m'=m\U{crs1, -+, Ca }—A.
Since g> f(h), glc)>fh(c;) and then (g(c;), h(c;)) is an admissible pair of £
for 1<:<k. By the assumption there exist admissible pairs (a;, b;) of f°,
a;>g(cy), bi>h(c;), satisfying (ALP) for £¢ and (g(c.), h(c;)) with respect to
X, 1=i<k. We define choice functions h’:m—B and g’:m’—A as follows:
h'(c;)=b; for 1=i<k, and g’(c)=a; for 1=i<k, g'(c;)=g(c,) for k-+1=Zi< Pk’
Then g’>g, h’>h and (g’, h’) is an admissible pair of f.

We show that (g’, h’) has the required properties. Take any (K, Ko)eX
and maps u=(u¢, Ucs, "+, Ucr): K=Y, v=c1, Vs, **, Ver, =5 Verr): Ko Xy
such that (fa e, v, ulK)<stVyu. Then (f§ corDg o rein ccirVes, Ueil Ko)
<StCV$E oy for 1<i<k. By the choice of (ay, b;) for 7, 1=<7<Fk, there exists a
map U, : K— X%, satisfying
ey (DS ey, geeirVes, Ueil Ko) <stU% ., and
(2) (fgli(ci)p?(ci),fCih(ci)Uci; (]% (ci),h(ci)uci)<3tcv(i1i(ci) .

We define U=Uq, U, -+, Uck, Vers1, =+, Verr): K—X,. By (1) and (2) it is
easy to show that (p,., v, UIK)<stU, and (frpe rn>U, qn, nu)<stV,. Then
f has ALP with respect to X.

Next we assume that f has ALP with respect to X and show that all f°
have ALP with respect to X. Take any c&C and any admissible pair (a, b)
of f¢. We define choice functions g: m={c}—A and h:m—B by g(c)=a and
h(c)=b. Then (g, h) is an admissible pair of f. By the assumption there
exists an admissible pair (g’, A’) of £, g’>g, h’> h, satisfying (ALP) for f and
(g, h). Put h’:m—B and g’:m,—A. Since g’>g, h’>h and g’>f(h’),
mCm,, mCm, and m,Cm,. Then we may put m;={c, ¢, ¢, =+, ¢} and
My=m\J{Cp41, =+, Cp }. '

We put a’=g’(¢) and b’=h’(c). Trivially (a’, b’) is an admissible pair of
f°. We show that it has the required property. Take any (K, K,)& X and
maps v: Ke— X4, u: K—Y§ such that
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3) (f§ Do rew v, ulKo)<stVs .

Take any point x=(x., xc, -, xca')E X, and put fr pg.w(x)=e, Ye1, " » Ver)
€Y .. We define v': K,— X, and u’: K—Y, as follows: v'(2)=(z), x¢1, Xcz,
-, Xex) and w'(2)=(u(2), Ye1, Ve, =+, Yer) for ze K. By (3) it is easy to show
that (fa pg.ranv’, w' | Ko)<stV,.. By the choice of (g’, h’) there exists a map
U: K—-X,=X; such that (p,, v/, Ul Ko)<stU, and (frpgz s, qur,ntt’) <StCV,,.
This means that (p%:, v, UIK,)<stU$ and (f§p5. secslU, g5, ou)<stV§. Thus f¢
has ALP with respect to X and hence so does each f.. m

§3. Approximatively n-connected maps.

Using the approximative lifting property we introduce approximatively
n-connected maps and investigate their properties.

Let X be a collection of pairs of spaces. Let (X, U)={(Xa, VUa), Pa.a, A}
and (Y, )={(Y,, Vs), g».», B} be approximative inverse systems. Let f=
{f, fo:b=B}: (X, U)—(Yy, <&V) be an approximative system maps.

We say that f:(x, U)— (Y, <V) has the x-approximative lifting property, in
notation ALP*, with respect to X provided that it satisfies the following:

(ALP*) For each admissible pair (a, b) of f there exists an admissible pair
(ao, bo)>(a, b) with the following property; for each (K, K,) X and any maps
g:K-Y,, h:K—X,, with (fooDag reoph, g1 Ko)<stV,, there exists a map
H:K—X, such that pa, .A=H|K, and (gs,.v8, foDa.rw H)<stV,.

We say that £ has the xx-approximative lifting property, in notation ALP**,
with respect to X provided that it satisfies the following:

(ALP**) For each admissible pair (a, b) of f there exists an admissible
pair (a,, bo)>(a, b) with the following property; for each (K, K,) X and any
maps g:K—Y,, h:K—X,, with fy e, reph=g|K, there exists a map
H: K—X,, such that p,, .h=H|K, and (gs,.58, foPa. swH)< StV

(3.1) LEMMA. Let X be a collection of polyhedral pairs. Let (X, U) and
(Y, V) be approximative inverse systems in POL or in ANR.

(i) An approximative system map f:(X, U)—(Y, V) has ALP with respect
to X iff f has ALP* with respect to X. ‘

(i) Let f be commutative. f has ALP* with respect to X iff f has ALP**
with respect to X.

PrROOF. We show that (ALP) implies (ALP*). Take any admissible pair
(a, b) of f. Since X, is a polyhedron or an ANR, there exists UECov(X,)
satisfying (x) in (I.5.5) for U,. There exist b,>b and a,>a, f(b,) such that
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05 6Vo > StVy,, pat, e U>stU,, and

(1 (fbpal.f(b), 0b1,bfb1pa1.f(b1))<cvb-

By the assumption there exists an admissible pair (a,, b,)>(a., b;) satisfying
(ALP) for f and (a,, b,). '

We show that (a,, b,) has the required property. To do so take any
(K, Ko))eX and maps g:K—Y,, h:K—X,, such that (f5,Pa, sk, 81K0)
<stV,,. By the choice of (a,, b,) there exists a map H:K—X,, such that

2) (Pay ah, HIK)<stU,, and
3 (fo,Pay. raopH, @b, 0,8)<SIVy, .

By the choice of a, and (2) (pa, oh, Da, o HIKy)<U. By the choice of U there
exists a homotopy F:K,XI—X, such that F is a U,-homotopy, Fo=71.,.«H| K,
and Fi=p,, .h. By the homotopy extension theorem (see Th. 3 of MS [23,
p. 291]) there exists a homotopy F:KXxI—X, such that Fo=p,., .H and
F|K,xI=F. Since F is a U,-homotopy, there exists an open neighborhood U
of K, in K such that FIUXI:UxI—X, is a U,-homotopy. Take a map
v: K—1I such that v(z)=1 for z€ K, and v(z)=0 for ze K—U. We define a map
H: K—X, as follows: H(z)=F(z, v(z)) for ze K. It is easy to show that

(4) H_]Kﬂr‘pal,ah and
(5) (Pay. o H, H)<U,.

By (1), (3), (5) and the choice of b, we have that (fyha, rerH, Gy, 58) <StVp.
Thus by this and (4) f satisfies (ALP*). Thus (ALP) implies (ALP*). The
converse is trivial and hence we have (i).

We assume that f is commutative and satisfies (ALP**). We show that £
satisfies (ALP*). Take any admissible pair (a, b) of f. Since f is commutative,
there exist 5,>b and a,>a, f(b,) such that g3}, V,>stV, and foPa,, rr=
@oy.0 S0, Pay. reoy.  There exists an admissible pair (a,, b;)>(a;, b;) satisfying
(ALP**) for f and (a,, by). Since Y,, is a polyhedron or an ANR, there exists
VECou(Ys,) satisfying (x) in (I1.5.5) for <v,,. There exist b;>b, and a;>a,,
f(bs) such that g3l o, V>tV and fi,Day, 105=0sg. 05 55D as. 1 0g>-

We show that (as, b,) has the required properties. Take any (K, Ko X
and any maps g:K—Y,, h:K—X., such that (fy,pa, ro,oh, glKe)<stUVs,.
Then by the choices of a; and bs, (fo,Da,. rwehs Gog 0,81 Ko)<V. Then by the
choice of <V there exists a <V,,-homotopy G : K,XI—=Y,, such that Go=¢qs,.15,8| Ko
and G,=fy,Pa, ropph. By the same way as in (i) there exist a homotopy
G : KXI—Y,, an open neighborhood V of K, in K and a map v:K—I such
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that Go=qs,.0,8, G| Ko XI=G, G|V XI: V XI-Y,, is a <V,,-homotopy and v(z)=0
for ze K—V, v(2)=1 for ze K,. We define a map g:K-Y,, by 22)=GCG(z, v(2))
for ze K. It is easy to show that

(6) &l Ko=fo,Pay sropoh and (g, gs,.5,8) <V, .

By (6) and the choice of (a,, b,) there exists a map H: K—X, such that
H|Ky=pa,a,h and (fy, pa,. s H, Qoy.0,8) <StVy,. Thus pa, o H|Ke=pa, .h. By
the choices of a, and b,, (foba, ranH, qb,.08) <V, and then by (6), (foPa,. renH,
@b,.58) <stVs. Thus f satisfies (ALP*). Hence (ALP**) implies (ALP*). Trivially
(ALP*) implies (ALP**). Hence we have (ii). m

Let 4* be the standard k-simplex. 04* denotes the boundary of 4*. We
put (D, S),={(4*, 04*): k=0, 1, ---, n+1} and (D, S)u={(4*, 84*%): k=0, 1, 2, ---}
for each n=—-1,0,1, 2, ---.

(3.2) LEMMA. The following statements are equivalent for each n, n=—1, 0,
1,2, -
(i) £ has ALP* with respect to (D, S),.
(i) £ has ALP* with respect to "*'POL,,.

PROOF. Trivially (ii) implies (i). By induction on n we will show that
(i) implies (ii).

First we take n=-—1. Take any admissible pair (a, b) of f. There exist
b;>b and a,>a, f(b)) such that g¢;!,V,>st*cV,, and (foDa,. reo3 @o,.0f61Pay. reoy>)
<<V,. There exists an admissible pair (a,, b,)>(a,, b,) satisfying (ALP*) with
respect to (S, D)., for (a,, b,). There exists as>a, such that (fo,Pag sco
Qg0 05Dy £055)) <Vp,.

We show that the admissible pair (a,, b,) has the required property. Take
any (P, P,)€°POL,,;;, and maps g: P—Y,, h:P,—X,, such that (fs,a, roh,
gl Py)<stV,,. There exist a simplicial complex K and a subcomplex L of K
such that |K|{=P, |L|=P, and dim(K—L)<0. Take any vertex veK—L.
Since (4°, d4°)=(4°, ¢), by the choice of (a,, b,) there exists a map g,: {v}—Xq,
such that (fy,pa,. ;>80 Go5.0,8 1 {v})<stV,. Now we define a map H: P—X,
as follows: H(z)=pa, oh(z) for z€|L| and H()=)pa, .g8«(v) for ve|K|—|L]|.
Clearly H is continuous. It is easy to show that H|P,=p., oh and (foba. rrH,
Qo,.08)<stV,. Hence f has the required property.

Next we assume that (i) implies (ii) for each k., £2<n, and show it for
n+1. Take any admissible pair (a, b) of f. There exist b,>b and a,>a, f(b,)
such that ¢3!,V >stV, and (foPa,. rvrr @b, 00, Pay. reo) <Vs. There exists an



Approximative Shape IV 201

admissible pair (a,, b,)>(a,, b,) satisfying (ALP*) with respect to (S, D),., for
(ai, by). There exists a;>a, such that (fo,Pay s Gog 0 fosPay 100)<Vs. By
the inductive assumption there exists an admissible pair (a., b,)>(a,, b,) satis-
fying (ALP*) with respect to "*'POL,,;,, for (as, b,).

We show that (a,, b,) is the required one. Take any (P, Po)E"**POL,.;.
and maps g:P—Y,, h:Py—>X,, such that (f5,pa, reph, g1P)<stV,,. There
exist a simplicial complex K and a subcomplex L of K such that |K|=P,
|L|=P, and dim(K—L)<n+2. Let K"*! be the (n-+1)-skeleton of K. We put
P’=|K"*|\U|L| and then (P’, P,)"*'POL,.;;c. By the choice of (a,, b,) there
exists a map H’:P’—X,, such that

(1) H’ | PO':pa4- a3h and (szpa3, f(bg)H,: dv,.0,8 I P,)<Stcvbz .

Take any (n+2)-simplex c=K—(K***UL) and then doCP’. By (1)
(fopPay roppPay ay 100, gv,.5,8100)<stV,, and then by the choice of (a., b.)
there exists a map g,:0—X,, such that

(2) gglaozpaa,alH’lao and (folﬁal.f'wl)ga, 404,b1g|0')<3tq/o,-

Now we define a map H:P—X, as follows: H(z)=pa.,, o« H'(2) for z&P’ and
H(z)=pa,, og,(2) for zee= K—(K"*"\UL). It is easy to show that H is well-
defined, continuous, HIP(,:p%,ah‘ and (foPa. s, @o,.08)<StV, by (1) and (2).
Hence f has the required property. =

(3.3) THEOREM. The following statements are equivalent for each n, n=
—1,0,1, -

(i) A map f has ALP with respect to (D, S),.

(ii) f has ALP with respect to POLZL,.

(iii) f has ALP with respect to "*'POL,,;ys.
(iv) f has ALP with respect to TOPRL; ...

Proor. By (1.16) (ii) and (iv) are equivalent. Trivially (iii)—(ii)—(i) hold.
By (3.1) and (3.2) (i) implies (iii). m

We say that an approximative system map f£:(X, U)—(Y, V) is approxi-
matively n-connected, in notation f= AC", provided f has ALP with respect to
(D, S),. We say that f is approximatively oo-connected, in notation fe AC*,
provided f=AC™ for each integer n=—1. We say that f is approximatively
ocooco-connected, in notation f= AC~, provided f has ALP with respect to
(D, S)w.

We say that a map f:X—Y is approximatively n-connected, in notation
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fe AC", provided that f has ALP with respect to (D, S),. Thus feAC" iff
it satisfies any one of the conditions (i)-(iv) in (3.3). Similarly we may define
approximative oo-connectedness, in notation f& AC~, and approximative cooo-
connectedness, in notation fe AC™™.

(3.4) THEOREM. If a map f: X—>Y is approximatively n-connected, then for
each xEX pro-m,(f): pro-m (X, x)—pro-mo(Y, f(x)) is an isomorphism in pro-
groups for k<n and an epimorphism for k=n-+1.

Proor. By (I.4.9) there exist approximative ANR-resolutions p: X—(&¥, V),
q:Y—(q, <) and an approximative resolution f of f with respect to p and ¢
satisfying (RM1) and (RM2). Take any point xX. Then by (I.3.16) p: (X, x)
—(X, x, U)={(Xa) Xa) Ua), Par.ay A} and  q: (Y, f(x)—(Y, f(x), V)={T,
f(x)s, Vs), qor.s, B} form approximative ANR-resolutions. Here x,=p.(x) and
f(x)s=gqsf(x) for ac A and beB. By (RM2) f,: X,;u—Y, induces fy:(Xsw,
xrw)—(Ys, f(x)) for beB. Then f:(X, x, U)—(Y, f(x), V) forms an approxi-
mative resolution of f:(X, x)—(Y, f(x)). By (.5.10) H(p): (X, x)—H(%¥, x)
and H(q):(Y, f(x)»H, f(x)) form HANR,-expansions and H(f): H(&, x)—
H(9, f(x)) forms a HANRy-expansion of f:(X, x)—(Y, f(x)). Here ANR, is
the pointed category of ANRs. By (I.4.4) and (I.5.5) we may assume that each
<V, has the property:

(x) if r, s:(Z, 2)—(Ys, f(x),) are st<V,-near, then r=s rel. z for any pointed
space (Z, z).

By (3.2) and (3.3) £ has ALP* with respect to POL}%). Take any admis-
sible pair (a, b) of f. Then there exists an admissible pair (a,, b,)>(a, b)
satisfying (ALP*) with respect to POL2.L, for (a, b).

When we take the polyhedral pair (4**!, d4*+'), by the choice of (a,, b,) it
is easy to show that

(1) Ker n'k(fb‘pa‘,f(,,l))CKer ﬂ'k(pal,a) for kén.

When we take a polyhedral pair (d4**!, v) where v is a vertex of 04**!, by the
choice of (a,, b,) and (%) it is easy to show that

(2) Imn‘k(qbl,b)CIm kk(fbpa,f(b)) for k§n+1.

Here Ker(h) and Im(h) denote the kernel of A and the image of h for any
homomorphism h. :

By Th. 2 of MS [23, p. 108] (1) means that pro-w,(f) is a monomorphism
for k<n. Also by Th. 4 of MS [23, p.112] (2) means that pro-z,(f) is an
epimorphism for £<n-+1. Hence by Th. 6 of MS [23, p. 114] pro-m,(f) is an
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isomorphism for 2<n. m

(3.5) COROLLARY. Let f:X—Y be a map. If f€AC>, then pro-m,(f):
pro-m (X, x)—=pro-m, (Y, f(x)) is an isomorphism for all k and for any x=X. B

(3.6) COROLLARY. Let f:X—Y be a map.

(1) If f€AC™, then #,(f): ¥ (X, x)—%,(Y, f(x)) is an isomorphism of shape
groups for any x X.

(i) If f€AC™», then % ,(X, x)—#,(Y, f(x)) is an isomorphism for all k and
for any x€X. ®

For a space X, sd X denotes the shape dimension of X. This notion was
introduced by Dydak and he showed that sd X<dim X and sd(X, x)=sd X (see
Th. 7 of MS [23, p. 103]).

(3.7) THEOREM. Let f:X—Y be a map and n+1=Max(sdY, sd X+1)<oco.
If f€AC", then for each x=X f:(X, x)—(Y, f(x)) induces a shape isomorphism.

PROOF. Let p: X—(x, V), q:Y—(Yy, <V) and f: (X, U)—(Yy, V) be as in
the proof of (3.4). Then (¥, <V) satisfies (x) in the proof of (3.4). By (3.2)
and (3.3) £ has ALP* with respect to "*'POL,,;,,. Take any admissible pair
(a, b) of f and then there exists an admissible pair (a,, b;)>(a, b) satisfying
(ALP*) with respect to "*'POL,,,, for (a, b). Since sd(X, f(x))=sdY, by
Theorem 2 of MS [23, p.96] there exist b,>b,, a pointed polyhedron (P, p)
and maps 7,: (P, p)—=(Y s, f(x)s,), S1:(Ys,, f(x),)—(P, p) such that

€)) dimP=sdY and 7:5,=@e,.s rel. f(x)s,.
Since f satisfies (RM2), there exists a,>a,, f(b,) such that
(2) fblpaznf(bl):qngblszpdzyf(bz)'

Since sd(X, x)=sd X, by Theorem 2 of MS [23, p.96] there exist a;>a, a
pointed polyhedron (@, ¢) and maps 7,:(Q, ¢)—(Xa,, Xa,), S2:(Xay, Xa)—(Q, q)
such that

3 dim Q=sd X and 7,5,=pa,,qa, 7el. Xq,.

By the simplicial approximation theorem (see [32, 33]) there exist simplicial
complexes K, L, vertexes g=K, p= L, and a simplicial map %4: K—L such that
|K|=@Q, |L|=P and

(4> slszpazr f(bz)rzz k rel' Q'
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Let M(k) be the mapping cylinder of k. Let u: |K|XI®|L|—->M(k) be the
identification map. We identify (x, 1) and k(x) for x=|K|. Let T=|K| X {0}
\U{q}XxI. Since % is simplicial, (M(k), u(T)) is a polyhedral pair by Theorem 6
of MS [23, p.295]. By (1) and (3) (M(k), u(T))=™"'"POL,,;.s.

By (1) and (4) there exist pointed homotopies H': Q@ XI—P and H*:Y,,xI
—Y, such that Hi=k, Hi{=5:fo,Da, rwyta H'(gxI)=p and Hi=r,s,, Hi=qy,.s,
and H*(f(x),,XI)=f(x)s,. We define a map H: |K|XI->Y, as follows: H(x, t)
=H*(fs,Da, rayr(x), 2t) for (x, )& | K| X[0, 1/2] and H(x, t)=r,H'(x, 2t—1) for
(x, )e | K| x[1/2,1]. Then HDr,: |K|XID|L|—>Y,, induces a map H’': M(k)
—Y, such that HPr,=H'u. We define a map h:u(T)—X, as follows:
h(u(x, 0))=pa,. q,72(x) for (x,0ET and h(ulg, t))=x., for (g, )&T. Since
u| | K| x{0}:|K|x{0}—=u(]|K|x{0}) is a homeomorphism, & is well-defined and
continuous. By (2) fs,pa,. s A=H’|u(T). By the choice of (a,, b)) there exists
a map G: M(k)—X, such that

() Glu(T)=pa,.och and (frpa, rrG, Go, s H')<stV,.

Let m=Gu||L|:|L|—>X,. By the definition of H’ and (5) (fypa, s,
qbl,brl)<StCVb. Then by (*) in the prOOf Of (3.4) fbpa,f(b)mslzqol,bhs, rel. f(X)bZ
and hence by (1)

(6) foba.r>mS1=qo,,» vel. f(x),.

The homotopy Gul||K|X[I:|K|XI—X, gives that p,, .r.=mk rel. ¢ and hence
by (3) and (4)

) paa.a:mslfozpas,f(oz) rel. Xay-

By Morita’s diagonal lemma (see MS [23, p. 112]) (6) and (7) mean that H(f):
H(x, x)—H(Yy, f(x)) induces an isomorphism in pro-HANR, Hence f:(X, x)
—(Y, f(x)) induces a shape isomorphism. ®

(3.8) COROLLARY. Let f:X-Y be a map, sd X<co and sdY <oo. If
fEAC™, then [ : (X, x)—>(Y, f(x)) induces a shape isomorphism for each x=X. R

In the same way as in (3.7) without the dimension condition, we can show

the following:

(3.9) LEMMA. If f:X—>Y has ALP with respect to POL,,;, then f:(X, x)
—(Y, f(x)) induces a shape isomorphism for each x=X. W

(3.10) REMARK. (i) When X and Y are connected, (3.7) follows from (3.4)
and Th. 7 of MS [23, p. 152]. (ii) Since any pointed shape equivalence induces
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a shape equivalence, (3.7)-(3.9) hold for unpointed case.

Kozlowski introduced the notation of hereditary shape equivalence. We
say that a map f: X—Y is a hereditary shape equivalence provided that for
each closed subset Y, of ¥V, f|f (Y o: f '(Y,—Y, is a shape equivalence.

By (2.8), (3.9) and (ii) of (3.10) we have the following:

(3.11) THEOREM. Let f:X—>Y be a closed map batween paracompact spaces.
If f has ALP with respect to POL,,;.,, then f is a hereditary shape equivalence. M

§4. Approximative extension property.

We introduce the approximative extension property, and investigate relations
between it and approximative n-connectedness.

Let X be a collection of pairs of spaces. Let (¥, U)={(Xa, Ua), Da'.ar A}
be an approximative inverse system in TOP. We say that (&, U) has the
approximative extension property, in notation AEP, with respect to J provided
it satisfies the following condition:

(AEP) For each a= A there exists a,>a satisfying that for any (K, K, X
and for any maps h:K,—X,, there exists a map H:K—X, such that
(H| Ko, pay,oh)<U,.

Let X={X,, Pa.a, A} be an inverse system in TOP. We say that X has
the approximative extension property, in notation AEP, with respect to X
provided it satisfies the following condition:

(AEP*) For each a= A and for each U<Cov(X,) there exists a,>a such
that for any (K, K,)eX and for any map h:K,—X,, there exists a map
H: K—X, such that (H| Ko, pa,,ah)<U.

(4.1) LEMMA. Let (Y, V) be an approximative inverse system. We assume
that (Y, V) is dominated by (€, U) in Appro-TOP. If (¥, U) has ALP with
respect to X, then so does (Y, V).

(4.2) COROLLARY. The property AEP with respect to X is invariant in
Appro-TOP.

(4.3) LEMMA. Let (¢, X) be an approximative inverse system. Then (X, U)
has AEP with respect to KX iff so dose X.

By the way similar to (II. 1.1) or (II. 1.6) we can easily show (4.1) and (4.3).
(4.2) follows from (4.1). m
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We say that (¥, U) and ¥ have the extension property, in notation EP,
with respect to KX provided they satisfy the following condition:

(EP) For each a= A there exists a,>a such that for each (K, K,)& X and
for any map h: K,—X,, there exists a map H: K—X, with H|Ko=p,,.qh.

(4.4) LEMMA. Let X be a collection of polyhedral pairs. Let (€, U) be an
approximative inverse system in POL or ANR. Then (¥, U) has AEP with
respect to KX iff it has EP with respect to X.

Using (I.5.7), by the way similar to (3.2), we can show (4.4) for approxi-
mative inverse systems in POL or ANR. m

Let p={p,: acs A} : X—>(X, U) be an approximative.resolution and p: X—X
a resolution of a space X. We say that p: X—(&¥, U) has AEP with respect
to X provided that (¢, ) has AEP with respect to K. Similarly we define
EP for p: X-—»(&%, U). Similarly we define AEP and EP for p: X—2. By the
way similar to (II. 1.3) and (II.1.7) we can show the following:

(4.5) LEMMA. (i) Let p: X—(¥, U) and p’: X—(X, U)’ be approximative
AP-resolutions. If p has AEP with respect to X, then so does p’.

(i) Let p: X—X and p’: X—X’ bz AP-resolutions. If p has AEP with
respect to K, then so does p’.

From (4.3)-(4.5), by the way similar to (Il. 1.8) we have the following:

(4.6) THEOREM. Let X be a space and KX a collection of pairs of spaces.
Then (i) and (ii) below are equivalent, and moreover if KX is a polyhedral pair,
then (i)-(iv) below are equivalent.

(i) Any/some approximative AP-resolution has AEP with respect to X.

(ii) Any/some AP-resolution has AEP with respect to X.

(iii) Any/some approximative ANR- or POL-resolution has EP with respect
to X.

(iv) Any/some ANR- or POL-resolution has EP with respect to X. W

Thus by (4.6) we say that a space X has the approximative extension
property, in notation AEP, with respect to X provided it satisfies any one of
the conditions in (4.6).
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By the way similar to (1.12) we have the following:

(4.7) LEMMA. Let X, and X, be collections of P-pairs of spaces and K;<.X,.
If a space X has AEP with respect to X,, then so does X with vespect to X,. M

Borsuk introduced the notion of approximative n-connectedness for spaces.
We say that a space X is approximatively n-connected, in notation X AC™,
provided pro-z,(X, x)=0 for each x= X and for each &, 0<k<n. We say that
X is approximatively co-connected, in notation X< AC*=, provided that X AC”
for each n, n=0,1, 2, ---.

(4.8) LEMMA. pro-mo(X, x)=0 for some x&X iff X is connected.

PROOF. Let p: X—X be an ANR-resolution and x be a point of X. We
put x,=pu(x) for a=A. Then p:(X, x)—(F, x)={(Xe, Xa), Par.a, A} is an
ANR,-resolution of (X, x).

First we assume that X is connected and show that pro-z,(X, x)=0. Take
any a=A. Since X, is an ANR, X, is locally path-connected. Then all path-
connected components are open and closed. Since X is connected, there exists
a path-connected component T of X, such that p,(X)CT. Since T is open, by
(B3) there exists a’>a such that p, (X )CT.

We show that p,r,, induces the zero homomorphism p,r,qe: To(Xar, Xar)—
o Xa, xo). Take any map r:(@0I, 0)—(Xg, xqa-). By the choice of a’,
bar,ar(@)CT. Since T is path-connected, there exists an extension 7’ : [-TC X,
of par,a¥. Thus p,, e« is the zero homomorphism and hence pro-z (X, x)=0.

Next we assume that X is not connected and show that pro-m(X, x)+0.
By the assumption there exist open subsets X, X; of X such that X, UX,=JX,
XN X,=@, X, Xi,#+@. There exists a map f: X—dl={0, 1} such that f(X,)=0
and f(X,)=1. By (R1l) there exist a=A and a map g:X,—0l such that
(f, 8Pa)<U, where U={{0}, {1}}=Cov(0]). By the choice of U, f=gp, and
then p,(Xo)C g 0) and p.(X,)Cg~'(1). We assume that pro-my(X, x)=0. Then
there exists a’>a such that p,r., induces the zero homomorphism.

We may assume that x&X,. Take any point x,=X,. We define a map
k:(0I, 0)—>(X,., xoa') by E(0)=x4 and k(1)=p.(x,). By the choice of a’ there
exists an extension k’:I—X, of p, k. Then gk’:[—0dl is an extension of
gbar.ak. Since par, o k(0)=x.€g70) and por, k(D)=pu(x)Eg7 (1), gPar,ak: 0l
—0I is the identity map. Thus 1;;:0/—0[ is extendable to gk’:[—dl. This
is a contradiction and hence pro-mo(X, x)=0. m
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(4.9) LEMMA. Let (X, x) be a pointed space. Then pro-mo(X, x)=0 iff any
POL- or ANR-resolution of X has EP with respect to {(4', 04")}.

PrROOF. We use the same notation as in the proof of (4.8). We assume
that pro-m(X, x)=0, and show the property EP. Take any a<A. Since
pro-m (X, x)=0, there exists a’>a such that pg, .x: To(Xar, xo)ome(Xa, x4) i8S
the zero homomorphism. Take any map f:0/={0, 1}—X,.. Take another
point 2. We define maps fo: {0, 1} X, and f,: {1, 2}—> X, as follows: f,(0)=
fQ0), fol)=xq.=f1(1) and fi(2)=f(1). By the choice of a’ there exist maps
20:10,1]—-X, and g,:[1, 2]—X, such that g, and g, are extensions of p,-,.fo
and pg,qf1, respectively. Thus we define a map g: I—X, as follows: g(t)=g,2¢)
for 0<t<1/2 and g(t)=g,(2t) for 1/2<t<1. It is easy to show that g is well-
defined and is an extension of p, , .f. Hence p has the required property. The
converse is trivial. H

(4.10) LEMMA. Let (X, x) be a pointed space and let n be an integer. Then
pro-mo(X, x)=0 and pro-m,(X, x)=0 iff any POL- or ANR-resolution of X has
EP with respect to {(4, o4"), (4™**, a4™*")}.

PrOOF. We use the same notations as in the proof of (4.8). We assume
that pro-mo(X, x)=0 and pro-r,(X, x)=0. Take any a=A. Since pro-m,(X, x)
=0, there exists a,>a such that pg, ex: Ta(Xa,, %a,)—>7a(Xa, xo) is the zero
homomorphism. By (4.9) there exists a,>a, satisfying (EP) with respect to
{(4*, 04")} for p and a.

We show that a, has the required property. Take any map f:04"*'—X,,
and any point ved4"*'. By the choice of a, there exists a map h:[—X,,
such that A(0)=x,, and A(l)=p,, +, f(v). Put T=04"*'X{1}\U{v} xXICo4"** X I.
We define a map k:T—X,, as follows: k(x, 1)=p,, o, f(x) for x€0d4"*' and
kv, )=h() for tel. By the homotopy extension theorem there exists a map
K:04™*'xI—X,, such that K|T==Fk. We define a map w:(04"*, v)—(X,,, xq,)
by w(x)=K(x,0) for xcdd"*'. By the choice of a, there exists a map
W:4**'—>X, such that W |94 '=p,  w. Put S=4"*'Xx{0} a4 xXIC4+ XI.
We can define a map m: S—X, as follows: m(x, 0)=W(x) for (x, 0)4™** X {0}
and m(x, )=pa, K(x, t) for (x, t)€04™**xI. By the homotopy extension theo-
rem there exists a map M: 4**'XI—X, such that M|S=m. We define a map
g:4""'—>X, by g(x)=M(x,1) for xe4"'. It is easy to show that g|a4"+
=Dayalf

By the choice of a, for any map f:0/—Xa,, Pa,.f is extendable to I.
Hence p has the required property. The converse is trivial. m
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(4.11) LEMMA. Let (X, x) be a pointed space. Then pro-rm (X, x)=0 for k,
0sk=n iff any POL- or ANR-resolution of X has EP with respect to
{(4%+, 04**Y): k=0, 1, ---, n}.

(4.12) LEMMA. Let (X, x) be a pointed space. Then pro-m (X, x)=0 for k,
0<k<n iff any POL- or ANR-resolution of X has EP with respect to (D, S),.

By induction on »n we easily show (4.11) from (4.9) and (4.10). (4.12) fol-
lows from (4.11) and the fact that any resolution has EP with respect to
‘POL,,;,s. m

(4.13) COROLLARY. Let X be a spacz and let n bz an integer.

(i) For any points x,, x, of a connacted spacz X, pro-m,(X, x,)=0. 1iff
pro-m (X, x,)=0.

(ii)) For any x,, x,€X, pro-m,(X, x,)=0 for b, 0Sk<n iff pro-mi(X, x,)=0
for k, 0Sk<n.

(4.13) follows from (4.8)-(4.12). =

(4.14) THEOREM. For each integer n=0 thz following statements are equiva-
lent :

(1) pro-mu(X, x)=0 for any x&X and for k, 0<k<n.

(ii) pro-mw(X, x)=0 for some x=X and for kb, 0<k<n.

(ili) X has AEP with respect to (D, S),.

(iv) X has AEP with respect to POLZSL.

(v) X has AEP with respect to "*'POL,;,s.

(vi) X has AEP with respect to TOPELL; .

PrRoOOF. (i) and (ii) are equivalent by (4.13). (ii) and (iii) are equivalent
by (4.6) and (4.12). (iv) and (vi) are equivalent by (I.3.16) and (4.7). Trivially
(v)—(@v)—(iii). By the way similar to (4.12) we can show that the property
EP with respect to (D, S), implies the property EP with respect to "*'POL,,;,,
for polyhedral resolutions. Hence (iii) implies (v). =

Approximative n-connectedness can be defined by (i) in (4.14). Thus it is
equivalent to the other conditions in (4.14). We say that X is approximatively
ococo-connected, in notation X< AC=>, provided that it has AEP with respect
to (D, S)=. Also we need to consider spaces having AEP with respect to
POL,.;,,. These properties are characterized as follows:
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(4.15) THEOREM. The following statements are equivalent :
(1) A space X has trivial shape.

(ii) X has AEP with respect to POL,,;,s.

(iii) X has AEP with respect to TOPp_ ,qire.

(ii) and (iii) are equivalent by (I.3.16) and (4.3). By the way similar to
(4.16) below we can show the equivalence of (i) and (ii). =

(4.16) THEOREM. Let X be a space and sd X=n<co. Then X is approxi-
matively n-connected iff X has trivial shape.

PrROOF. Let p: X—%¥ be an POL-resolution. We assume that X< AC™.
Take any a=A. By (4.4) and (4.14) there exists a’>a satisfying EP with
respect to POLZ:L for a. Since sd X=n, by Theorem 2 of MS [23, p.96]
there exist a”>a’, a polyhedron P and maps f: X,—P, g:P—X, such that
Dar o =gf and dimP=n. Put T=PXx{0, 1}CPXxI and take any point x, € X,.
We define a map h:T—X, as follows: h(x, 0)=g(x) and h(x, 1)=x, for
xeP. Since (PxI, T)ePOLZ, by the choice of a’ there exists a map
H:PxI—X, such that H|T=p,,.h. Thus p,., .g is homotopic to a constant
map. Since pas o =gf, Dan o iS homotopic to a constant map. Hence X has
trivial shape.

We assume that X has trivial shape. We show that p has EP with respect
to POL,,;,.. By the assumption for any a<=A there exists a’>a such that
par.e 1S homotopic to a constant map k: X, —X,. We put &(X, )=x,. Let
H: X, xI—-X, be a homotopy such that H,=p.,, and H,=k. Take any
polyhedral pair (P, P,) and any map f:P,—X,. We define a map G: Px {1}
UP,XI—-X, by G(x, 1)=x, for x&P and G(x, t)=H(f(x),t) for (x, H)eP,X]I.
By the homotopy extension theorem (see MS [23, p.291]) there exists an
extension G: PxI—X, of G. We put g: P-»X, by g(x)=G(x, 0) and then g
is an extension of p.r,.f. Thus p has EP with respect to POL,,;,.. Hence
XsAC" by 4.14). =

(4.17) COROLLARY. Let X be a space and sd X<<oco. Then X AC~ iff X
has trivial shape. W

§ 5. Partial realizations for decompositions.

In this section we introduced partial realizations for decompositions and
the approximative full extension property.
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We say that (K, L) is a simplicial pair provided L is a subcomplex of a
simplicial complex K. S8C,.. denotes the category of all simplicial pairs and
simplicial maps among them. Let n be an integer. "SC,.., denotes the full
subcategory of SC_,;., consisting of all simplicial pairs (K, L) with dim(K—L)<n.
SC/.is denotes the full subcategory of SC,.;s consisting of all simplicial pairs
(K, L) with dimK<n. K" denotes the n-skeleton of K. ,SC,.;, is the full
subcategory of SC,,;s consisting of all simplicial pairs (K, L) with K°CL. We
PUt 3SCpaire="SCpairs6SCpaire ANA 18CLire=SCluirs N oSChaire-

Let X be a space and U a collection of subsets of X. Let (K, L)
€0b,SC,,;,s. We say that a map g:|L|—X is a partial realization of (X, L)
in X relative to U provided for each (closed) simplex s of K there exists U= U
such that g(|sNL|)CU. In case L=K, we say that g is a full realization of
(K, L) in X relative to ¢J. Sometimes we identify a simplicial complex K and
its geometrical realization |[K| (endowed with the CW-topology).

Hereafter we assume that Y is a paracompact space and f:X—Y is a
closed onto map with the following property:

(#) f~Y(Y,) is P-embedded in X for each closed subset Y, of Y.

Let K be a subcollection of 0bSC,.is. Let p={p.:acsA}: X—(x, V)
={(Xa, Ua), Par.a, A} be an approximative resolution. We put D,=f"(y),
D(y, U)=st(pa(D,), U) for any acA, yeY and UECon(X,), and thus D(V)
={D(y, U):yeY}=Co(X,). We put D(y, a)=D(y, U,) and D,=9(U,) for
y€Y and e A.

We say that p has the approximative full extension property, in notation
AFEP, with respect to X and f provided it satisfies the following property:

(AFEP) For each a= A there exists a’>a such that for each (K, L)X
and each partial realization g:L—X, of (K, L) in X, relative to 9, there
exists a full realization G: K—X, of (K, L) in X, relative to 9, such that
(GIL, par,ag)<U,.

We say that p: X—(, U) has the full extension property, in notation FEP,
with respect to X and f provided that it satisfies the following condition:

(FEP) For each a= A there exists a’>a such that for each (K, L)X
and each partial realization g: L—X, of (K, L) in X, relative to 9, there
exists a full realization G:K—X, of (K, L) relative to 9, such that
GlL=pa,ag.

(5.1) LEMMA. Let p and p’ be approximative AP-resolutions of X. If p has
AFEP with respect to X and f, then so does p’.
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(5.2) LEMMA. Let p be an approximative POL- or ANR-resolution of X.
Then p has AFEP with respect to X and f iff p has FEP with respect to X
and f.

Let p={po:acsA}): X—>X={X,, pa',a, A} be a resolution. We say that p
has the approximative full extension property, in notation AFEP, with respect
to X f provided it satisfies the following condition :

(AFEP)* For each a=A and each U&Cou(X,) there exist a’>a and
U’ ECov(X,) such that for each (K, L)e X and each partial realization g: L— X,
of (K, L) in X, relative to 9(U’) there exists a full realization G: K—X, of
(K, L) in X, relative to 9(U) such that (G| L, pa,.g)<U.

We say that p has the full extension property, in notation FEP, with
respect to X and f provided it satisfies the following property :

(FEP)* For each a=A and each UsCo»(X,) there exist a’>a and
VU’'eCov(X, ) such that for each (K, L)X and each partial realization
g:L—-X, of (K,L) in X, relative to 9(U’) there exists a full realization
G:K—X, of (K, L) in X, relative to 9(U) such that G|L=p,, .g.

(5.3) LEMMA. Let p and p’ be AP-resolutions of X. If p has AFEP with
respect to X and f, then so does p’.

(5.4) LEMMA. Let p: X—(X, U) bz an approximative AP-resolution. Then
D: X—(X, U) has AFEP with respect to X and f iff p: X—X has AFEP with
respect to X and f.

(5.5) LEMMA. Let p bz an ANR- or POL-resolution of X. Then p has
AFEP with respect to X and f iff p has FEP with respect to X and f.

(5.6) THEOREM. The following statements are equivalent:

(i) Any/some approximative AP-resolution of X has AFEP with respect to
KX and f.

(ii) Any/some AP-resolution of X has AFEP with respect to X and f.

(iii) Any/some approximative ANR- or POL-resolution has FEP with respect
to X and f.

(iv) Any/some ANR- or POL-resolution has FEP with respect to X and f.

Proofs of (5.1)-(5.6). (5.6) follows from (5.1)-(5.5). In a way similar to
(4.4) we can show (5.2) and (5.5). (5.4) is an easy consequence of the defini-
tions. (5.1) follows from (I.3.3), (5.3) and (5.4).
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We show (5.3). We need an elementary fact:

Claim. Let p: X—R, q: X—S and g: R—S be maps. Let ReCov(R) and
SECon(S). If g7(S)>R and (gp, ¢)<S, then g(st(p(D,), R)HTstg(D,), stS) for
each yeY.

Let p: X—% and q={g,: b=B}: X—>y={Y", qv».», B} be AP-resolutions.
We assume that p has AFEP with respect to X and f, and show that g has
also AFEP.

Take any b= B and any SV=Cov(Y,). Then there exist GV, V,, V& Cov(Yy)
such that stCV, <Y, CQV,<V,, stV,<V, and <V, satisfies (R2) for ¢ and <V,.
By (R1) there exist a= A and a map g: X,—Y, such that

ey (qo, gPa)<Vs.

By the assumption there exist a,>a and U<Cov(X,,) satisfying (AFEP) for a
and g-'cy,. Take U,=Cov(X,,) such that stU,<UA(gpa,.a)”'Vs. By (R1)
there exist b,>b and a map h:Y, —X,, such that

2) (Pays hge,) <V,

By the choice of U, and (2) (gpa, &Pa; oNGs)<Vs. Then by (1) (go,.49s,,
&Pay, ahqs,) <StV3 <V, By the choice of <V, there exists b,>b, such that

3 (955,00 &Day. alGsy.0,) <V

We show that b, and V’'=(hg,,.s,) 'U,ECov(Y,,) have the required proper-
ties. Take any (K, L)X and any partial realization t: L—Y,, of (K, L) in
Y,, relative to 9(<V’). By (2) and the Claim, hgy,»t: L—X,, is a partial
realization of (K, L) relative to 9D(stU,) and then relative to 9D(U), because
stU,<U. By the choice of a, and U there exists a full realization 7': K— X,
of (K, L) relative to 9(g~'cV;) such that

4 (T'|L, pay ahgsy,0,t)<g™'Vs.

By (3) and (4) (gT’|L, gs, ot)<stcV,<<V. By the Claim and (1), gT’: K—Y, is
a full realization of (K, L) relative to 9(st¢V,) and then relative to D(<V),
because stcV,<<Y. Hence q has AFEP. =

Thus by (5.6) we may say that f and the decomposition D={D,: yeY} of
X have the approximative full extension property, in notation AFEP, with
respect to X provided they satisfy any one of the conditions in (5.6). Let K
be a subcategory of (SC,.... We say that f and D have AFEP with respect
to K provided that they have AFEP with respect to ObK, respectively.
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Hereafter we assume that p: X—(¥, ) is an approximative ANR-resolution
such that st(p.(X), U.,)=X, for all a€ A. By (2.3) any space admits an ANR-
resolution satisfying the above condition.

(5.7) LEMMA. For each a€ A there exists a,>a such that p3l .De>stD.,.

PROOF. Take any a< A and then there exists a,> a such that p;}, aUa>stUg,.
Since f: X—Y is closed, for each yeY there exists an open neighborhood V,
of y in Y such that D,Cf- V ,Cst(D,, p2i(U,g,)). Since Y is paracompact,
Y={V,:yeY}=Cov(Y) and then there exists <V, Cov(Y) such that ¥ >s2Cp,.
There exists a,>a, such that FHV)>pa(Ua,). Put Us,={U.:e=E}. Since
Xa, is metrizable, by Theorem 2 of Kuratowski [17, p.226] for each e=E
there exists an open subset G(U,) of X, satisfying

(1) UeNpa(X)=GU.)NPe,(X) and
(2) for each finite set {e,, s, -+, e} CE, U N\U e, N+ NU e, NP oy (X)=0
implies G(U.)NGU )N-+NGU, )=@ .

By (1) W={X.,— pa,(X)}U{GWU,.): ecE} is an open covering of X,,. Then
there exists a;>a, such that pzl . ,(W)> Ug,.

We show that a, has the required property. Take any y&Y and then
there exists V,&<V, such that yeV,. By the choice of <V, there exists V,,eV
such that st(V,, st(V,))CV,,. Take any y’€Y such that D(y, a;)ND(y’, as)# @.
Thus there exist U,, U,EU,, such that p, (D )NU,#D, pa (D, )NU.#+@ and
U,NU.#@. By the choice of a; there exist ¢,, e, E such that p3l 4,(G(U,,))
DU, and pg}.,(GWU,,)DU, Then

3 Pa,(DINGCUe)#D, pa)(Dy)NGU)#D and GUINGWUe,)#D.

By (2) and (3), UNUc,Npa(X)#=@ and then U, NU.,Npa(X)#=@. This
means that

4) pay(Ue)NpayUe,)# D .

By (1) and (3), pe,(Dy)NUe;=pay(Dy)NPay(XINUe,=Pay(Dy)NPa XINGWUe,)
=pa,(DINGWU.)# D and po, (D, )NU,,+@. This means that D,NpsiU.,)* D
and D, NpziU.)#*@. By the choice of a, there exist V,, V,&<V, such that
FV)DpaUe,) and [~} (V,)Dpay(Ue,). Then by (4), DN V)#D, DyN
' V)#@ and [ (VoNf'(Vyo#+@. That is, f(D,)eV, f(D,)sV, and
VinV,#@. This means that y’esi(y, stcV,). Since yeV,, 3y’ &st(V,, stV;)
CVy, By the choice of V,, D,.Cf*(V,,)Cst(Dy,, paiU,.,) and then D(y’, a,)
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Cst(pa,(Dy,), stUa4,). By the choices of a; and as, pa,, ., D', as)CD(Y’, ay),
Pay. aSt(Pa(Dyy), StUG, )T D(yo, a) and then D(y’, as)C pay,aD(Yo, a). By the
choice of Dy st(D(y, as), Do) pat. o D(¥o, a) and hence pgl D >5tDy,. M

Let X be a collection of polyhedral pairs. Let Y, be a closed subset of Y.
Let a€ A and UCov(X,). We say that ¥, has the extension property with
respect to a, U and X, in notation EP(a, U, X), provided it satisfies the
following condition:

EP(a, U, X): There exists a,>a with the property; for each poxnt y of
Y,, for any (K, K;)&X and for each map g: K,—st(p.,(Dy), U,,) there exist a
point y’ of YV, and a map G: K—st(p.(D, ), U) such that G|K¢=pa,.q8.

(5.8) LEMMA. Let Y, and Y, be closed subsets of Y. If Y, has EP(a, U, X)
and Y,CY,, then Y, has EP(a, st{st(p.(D,), U): yY}, X).

PrOOF. By the assumption there exists a,>a satisfying EP(a, U, X) for
Y,. By (AI3) there exists a,>a; such that pg} ., U>U.,. We show that a,
has the required property. Take any point y of Y, and any map g:K,—
st(pay(Dy);, Uay). Since pa,,a,8: Ko—st(pa,(Dy), Ua,), by the choice of a, there
exist a point y’ of ¥, and a map G: K—st(pa(D,), U) such that p., .g=G|K,.
By the choice of as, pa, og: Ke—st(pa(Dy), U). Thus GK)CTst(pu(Dy), U) and
G(Ko)=1a, ag(Ko)Tst(pa(Dy), U). Thus GEK)CTst(pa(Dy), st{st(pa(Dy), U):y<
Y}). Hence Y, has the required property. m

(5.9) LEMMA. Let Y,, Y, ---,Y, be closed subsets of Y If all Y; have
EP(a, U, X), then so does Ye=U{Y;:i=1, 2, -, n}.

(5.9) is an easy consequence of the definition. m

(5.10) LEMMA. Let {Y,:s=S} be tz discrete family of closed‘ subsets in Y.
If all Y, have EP(a, U, X), then Y ,=U{Y,: SEES_} has EP(a, st‘U, JC).

PROOF Since Y is paracompact then by Theorem 5.1.17 of Engelkmg 09,
p. 879] there exists a collection {V,: 58} such that Y CVS, V, are open sub-
sets of Y, V,A\Ve=@ for s, 'S with s#s’. Since {V,:s=S} is discrete,
Y, is closed and then <W={V,: seS}U{Y-Y, }ECO(U(Y) " There exists a,>a
such that V> p3iU,,. Put Ve, ={U.: ¢€E} and E'={¢€E:U, \pa,f (Vo)
+@}. By Theorem 2 of Kuratowski [17 p 226] there exxsts a collection
{G(Ue) ecE’ } such that



306 Tadashi WATANABE

1 GU,) are open in Xo, GUINpa, f 'Y o)=UcNpa,fY5)

for all e E’ and

2) for each finite subset {e,, e¢,, ---, e¢,} of E’,
UeN-NUeNpa, f Y =@ implies GU)NGU.)N--NGU,,)=@.

By the choice of E’ and (1) U,={GU¢): e€E'}I{Xo,—pa,f 'Y o)} ECov(Xa)).
By (AI3) there exists a,>a, such that pzl . U,>YU,,.
We put Xi=st(p.f'(Y,), U,) for ac A and s=S. We show that

3 X$,NX4,=@ for s#s’.

To prove (3) we assume that for some s#s’ (3) does not hold. Then there
exist Uy, U,&U,, such that UiNpe,f 'Y )#=D, UsNpae,f (Y )#=@ and U,NU,
+@. By the choice of a, there exist e,, e, E’ such that G(U,,)Dpa,.q,(U,)
and GU,,)Dpa, «,(Us). Then GU INGCUe)#D, GUe)Npa, f 'Y )#=@ and
GWUe)Npa, f'Ys)#@. Thus by (1) and (2)

) UeNpo f 'Y )FD, UeyNpo, S (Ye)#@ and
Uo,NUeN\po [N Y )#D .

By the choice of <V and (4), V,Dfpai(Ue), Vs Dfpai(Ue,) and fpzi(U. )N\ fPai(U.,)
#=@. Thus ViV Dfp U )N fPai(Ue,)+ @D and then s=s’ by the choice of
{V,}. However s+s’ by the assumption. This is a contradiction. Hence we
have (3).

We put Xi=st(paf'(Ys), Ua), Ut=U,| XY for ac A. The maps p, and
par.a induce p%: fY(Yo)—Xy and p%..: Xy — XS for a’>a. By (2.1) p°=
{ph:acA}: 7Y )= (X, Uo)={(XS, V), p% .4, A} is an approximative ANR-
resolution. By (I.3.2) p°: f~'(Y,)— X, is an ANR-resolution.

By the assumption for each s=S there exists a,>a satisfying EP(a, U, X)
for Y,. We put Z=@H{X: X{s}:s&S} (topological sum). We define maps
g: f'(Yo)—Z and ¢': Z— X, as follows: g(x)=(pa,x), s) for x&f(Y,) and
q’(z, S)=Dpa,. a(2) for z& X§ X{s}. Since {Y,:s&S} is discrete in Y, {f(Y,):
s&S} is discrete in X. Using Theorem 5.1.17 of Engelking [9, p. 379] we can
easily show that f (Y )=\U{f'(Y,):sES):s&S}=P{f'(Y,):s&S} (topologi-
cal sum). Then ¢ is well-defined and continuous. Also ¢’ is well-defined and
continuous, and ¢’q=p.|f (Y ,).

Since X§ is an ANR, there exists <V, =Cov(X}) satisfying (x) in (I.5.7) for
UY. There exists V,=Cov(XY) satisfying (R2) for p°® and <v’,. Since Z is a
topological sum, there exist W*€Cov(X§,), sES, such that ¢’ 'V, >W=U{W* X
{s}:s=S} and stW*'<U, | X5, for s&€S. By (R1) for p° there exist a;>a, and
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a map g:Xg,—Z such that

) (g, gPo,)<W.

By the choice of W, (¢'q, ¢'gp%,)<V, and then by the choices of ¢ and ¢’,
(Dag abl, ¢'80%,)<Vs By the choice of <V, there exists a,>a, such that

(6) (Pagabisag '8Pasay) <Vi.

Take any s&S and any point x&f ' (Y,). Since g(x)&X§,X{s}, by (5)
there exists W,e%*® such that ¢(x), gp.,(x)EW X{s}CXi,X{s}. Then
gha, S Y )T X5, X {s} and hence mcRs:—Xiaﬂg“(Xzsx{s}), because
X3, X{s} is closed in Z. Since as>a, by (3),

7 Xe,NXE, =@ for s+s'.
Since X§, X {s} is open in Z, by (7)
(8) R, is open in X.,, po,/ (Y )C R, and RNRy=Q

for s, s’=S with s#s’'.

We will show the following:

(9) TI={pqs,f (Y, :s&S} is a discrete collection in X,,.

Indeed, let u be any point of X,,, We will find an open neighborhood N
of u in X,, such that N meets at most one member of &.

If ue X,,—X5,, we choose for N any member of U,, which contains u.
Then N misses all members of 4. To see this assume that for a given s&S
we have NNp. f Y )#=@®. Then also NNpa,f'(Y)+@ and this implies
UENCSst(paf (Y ), Ua,)=X5,CX),, which is a contradiction.

Now assume that ucXy,. Then g(u)eZ=PX;,X{s}. Therefore, there
exists an s’ES such that g(u)e Xy, X{s'}. We put N=g (Xi, X{s’}). This
set is open in Xj, and therefore open in X,,. Moreover, uN. Finally, by
(8), for all s#s’ we have p,,f (Y, CR,Cg (X5, X{s}), which is disjoint from
N=g"(X¢, x{s'}). Consequently, only p,,f'(Yy) can meet N. Hence we
have (9).

By (9) and the definition of collectionwise normality (see Engelking [9, p.
379]), there exists a discrete family of open sets {R;: sS} such that po,f'(¥)
CR;, s€S. We may assume that R;CR,, s€S. Then po,f (Y )=\U{pae,f (¥s):
seESICU{R;: seSjcXy,. By (B3) for p° there exists a;>a, such that
DPag ay( X9 )CT\U{R;: sES}. Since pa,, o, (X5,)CTXE, we see that pag . (XN
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RyC Xy "Ry C Xy NXE,=@ for s#s’. Consequently, pag, o, (X&)C Pag a,(X5;)
CU{R;: s€S} implies pa,q,(Xe)TR; and then pog o (X%)C Pag. a,(X5,)T
Ubag ay)( X5,) CURi=URICURCUXS,=X%,. Also note that gpa, a(X5,)C
g(R)C g(R)C Xy, X {s} for s€S. Now it is clear that W, =\U{(gPag. a,) ' (W* X
{s}):seShU{Xe,— X3, }ECov(Xa,). Then there exists a>a; such that pzl, oW,
> U,

We will show that a; has the required property. Take any point yeY,
and any map h: Ko—st(pa(D,), Ua,). Then there exists s,&S such that ye¥,,
and then gpae,aah(Ko)CXZ‘;ox{so}. Take any t=K, Then there exist x&D,
and U,EYU,, such that h(t), p.,(x)€U,. By the choice of a, there exists
W,eW?* such that gpa,, o h(t), gpa (X)EW X {se}. By (5) ¢(x), gpa (x)EW X {s,}
for some Wy,=9%%. Then by the choice of.‘wso there exists U,EU,,, such that
g(x), &bag ah()EUX{se}. Thus, rgpas,a3h(Ko)Cst(pa30(D,,), Ua,,) Where r:
Xf,%ox{so}—»X:f,o is the projection. By the choice of a,, there exist y’eY,,
and a map g': K—st(p,(D,), U) such that

(10) g’IK():pa%.argpae.ash:q'gpae.aah-

By (6), (Pagah, ¢'8Pag a,h)<V,. By the choice of <V, there exists a
U-homotopy u: K,XI—Xj such that uy=¢'gpaga,h and u;=p.,.h. We define
a map g”: KX{0}UK,XI—-X} as follows: g”(t, 0)=g'(t) for (¢, 0)eKXx{0} and
g’ th=u(t, t') for (t, t')eK,xI. By [10), g” is well-defined and continuous.
Since g'(K)Cst(po(Dyr), U) and u is a U-homotopy, Im g"Cst(p.(D,), stU).
Since (K, K,) is a polyhedral pair, by the homotopy extension theorem (see Th.
3 of MS [23, p.291]) there exists an extension G”:KXI—st(pa(Dy,), stU) of
g”. Then we put G: K—st(p.(D, ), stU) as follows; G(x)=G"(x, 1) for x=K.
Thus G is an extension of p,,.h. Hence Y, has the required property. m

(5.11) LEMMA. If D, has AEP with respect to K, then for each a= A there
exists an open neighborhood V, of y in Y such that V,, has EP(a, U,, X).

Proor. By (I.3.2) and (2.1) p°={p%:acsA}:D,—{D(y, a), p% .., A} is an
ANR-resolution of D,. Here p% and pj, . are induced by p, and p,:,,, respec-
tively. Since X is a collection of polyhedral pairs, by (4.4) p° has EP with
respect to K. Thus for each a=A there exists a,>a satisfying (EP) with
respect to X for a. Since Pay(D)Cst(pa,(Dy), Ua,), there exists an open subset
W in X,, such that p. (D, )CWC WCst(pa,(D,), Ua,)=D(y, a,). Since pz(W) is
an open neighborhood of D, in X and f: X—Y is a closed map, Y — f(X—pzi(W))
is an open neighborhood of ¥ in Y. Since Y is paracompact, there exists an
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open neighborhood V, of y in ¥ such that yeV,CV,CY — f(X—pz'(W)), and
then

(1) Pa f UV )CWCTst(pa,(Dy), Ua)TSt(Pa, [ V), Uay)-

By (1.3.2) and (2.1) p"={pi:acA}: (V)= {st(paf"*V,), Va), P, a, A}
is an ANR-resolution. Here pZ and p%.,, are induced by p, and p,., ., respec-
tively. By (1) and (B3) for p” there exists a,>a,; such that

(2) Dag ay(5t(Payf V), Ua )T SHpay(Dy), Usa,).

We show that V, and a, have required property. Take any y'e Vy and
any map h:Ke—st(pe,(Dyr), Ua,). Since pa,.q,h: Ke—st(pa,(Dy), Ua,) by (2),
by the choice of a, there exists a map G: K—st(p.(D,), U,) such that G| K,
=pa, och. Hence we have the required property. ®

(5.12) PROPOSITION. Let X be a collection of potyhedral pairs. If D,=f"'(y)
has AEP with respect to X for any yEY, then any approximative ANR-resolution
p: X—=(X, U) has the following property:

() For each ac= A there exists a,> a such that for any yY, any (K, Kp)E X
and any map h:Ky—st(pa,(Dy), U,,), there exist y'€Y and a map H:K—
st(pa(Dyr), Ua) satisfying H|Ko=pa,, oh.

To prove (5.12) we need the Michael method as follows: Let Z be a space
and <V a collection of subsets of Z. We introduce the following notations:

p¥v)={AcCZ: A is closed in Z and A is a subset of some element of cV}.

o¥(V)={ACZ: A is the union of a finite collection of closed subsets of Z,
whose interiors with respect to A cover 4, and which are elements of <V},

2¥)y={AcCZ: A is the union of a discrete collection of closed subsets of
Z which are elements of <V}.

(5.13) LEMMA (Michael [24]). If Z is a paracompact space and <V covers Z,
then Zeg*3*g*3*p*(cy).

Proof of (5.12). From any approximative ANR-resolution p: X—(¥, U), by
(2.1) we have an approximative ANR-resolution p’={p,:acA}: X—(&¥, U)'=
{(Xg, Us), pur.a, A}. Here X,=st(p.(X), U.) and maps pi, ps.. are induced
by pa, Par,a for a’>a. Trivially if p’ has the property (x), then so does p.
Thus without loss of generality we may assume that p satisfies st(pq(X), Ua)
=X, for all a= A.
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Take any a= A. By (5.7) there exist a,>a,>a such that P2t aDa>St Dy,
and P}, a,De,>st°D,,. By the assumption and (5.11) there exist open neighbor-
hoods V, of y such that V, has EP(a,, U,,, X) for any yeY. Since Y is
paracompact, <V={V,: y€Y} covers Y and then by (5.13) Y g*I*g*I*u*(cp).
By (5.8)-(5.10) any element of ¢*2*g*X*pu*(cV) has EP(a,, st*D,,, K) and hence
so does Y. Then there exists a,>a, satisfying EP(a,, st*9,,, X).

We show that a, is the required index. Take any yeY, any (K, K,)= X
and any map h:K,—ost(pa,(D,), Ua,). By the choice of a, there exist y’'€Y
and a map H: K—st(pqa,(Dy), st*Da,) such that H|Ky=pa, .,h. By the choices
of a, and a, it is easy to show that there exists y”&Y such that Pay o HK)
Cst(po(Dyr), U,). Hence we have the required property. ®

(5.14) THEOREM. Let Y be a paracompact space and f: X—Y a closed onto
map with (§). Let n=0 be an integer. If f~'(y) is approximatively n-connected
for each y€Y, then f has FEP with respect to "*}SC,,irs.

PROOF. Let p: X—(&X, U) be an approximative ANR-resolution such that
st(pa(X), Uy)=X, for acA. By (4.14) and D, has AEP with respect to
"HPOL,.irs.

We show (5.14) by induction on n. First we show this for n=0. Take
any a= A and then there exists a,>a satisfying () in (5.12) for 'POL,,;s and
a. We show that a, is the required index. Take any (K, L)=}SC,,;,s and any
partial realization g:L—X,, of (K, L) relative to 9,,. Take any l-simplex
s=[vo, viJEK—L. Then g(@s)=g(sN\L)CTst(pa,D,), Us,) for some ysY. By
the choice of a, there exists a map g,:s—X, such that g,|ds=p,,.g|0s and
g+(8)Cst(pa(Dyr), U,) for some y'€Y. We define a map G: K—X, as follows:
G(x)=pag ag(x) for x&L and G(x)=g,x) for x&seK—L. Obviously G is a
full realization of (K, L) relative to 9, and G|L=p,,, .8.

We assume that (5.14) holds for »n and show it for n+1. Take any ac A
and then there exists a,>a satisfying (x) in (5.12) for ***POL,,;,, and a. By
(5.7) there exists a,>a, such that p3l ., D, >stD,,. By the inductive assumption
there exists a;>a, satisfying (FEP) for a, and "*}SC,,;.

We show that a, is the required index. Take any (K, L)e"*3SC,.;;, and
any partial realization g:L—X,, of (K, L) relative to 9,,. By the choice of
a, there exists a full realization g’: K"*'—X,, of (K"*"UL, L) relative to Da,
such that g'|L=pa, .,g. Take any (n+2)-simplex s of K—L. Since g’(ds)C
st(st(Ppay(Dy), Uay), Da,) for some ye&Y, by the choice of a; Pa, q.,8(0s)C
St(pa,(Dyr), Uq,) for some y’cY. Then by the choice of a, there exist y’€Y
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and a map g}: s—st(pa(D,»), U,) such that gilds=pa, .g’|0s. Now we define
a map G: K—X, as follows: G(x)=pa, .g'(x) for x&€K""'UL and G(x)=gx)
for xes€K—(K"*"UL). Obviously G| L=p,, .g and for each simplex s of K,
G(s)Cst(pa(D,), U,) for some y<Y. Hence f has FEP with respect to
"*28Cairs- M

§6. The Vietoris-Smale theorem in shape.

In this section we shall give a characterization of approximatively n-con-
nected maps and the Vietoris-Smale theorem in shape theory.

Let f: X—>Y be amap. Let p={p,: acA}: X—(X, U)={(Xq, Ud), Pa'.a, A}
and q={q,:b=B}: Y-y, W)={Y4s, Vs), q».», B} be approximative ANR-re-
solutions. Let f={f, f,:b=B}: (¥, U)—(Yy, V) be an approximative resolution
of f with respect to p and gq.

(6.1) PROPOSITION. Let f: X—Y be a map and Y a normal space. Then f
is approximatively (—1)-connected iff f(X)=Y.

Proor. First we assume that f is approximatively (—1)-connected. Take
any ye€Y and any open neighborhood V of y in Y. Since Y is normal, V=
{V,Y—{y}}=Cov(Y). By (Al3) there exists b= B such that <V>g;'st?<V,. Since
f is an approximative resolution of f,

¢y (Gofs fobra)<HVs.

By (AR2) there exists a> f(b) such that st(pswy(X), Usw))DPa, s Xe). Since
f is approximatively (—1)-connected, there exists an admissible pair (a,, b,)>(a, b)
satisfying (ALP) with respect to {(4°, ¢)} for (a, b).

Take a map g:4°-Y, such that g(4°)=¢,,(vy). By the choice of (a,, b))
there exists a map H: 4°—-X, such that

(2) (foDa. s> H, Gb,,08)<StVs.

By the choice of a, pa., sy HA)EsHpswy(X), Uswy) and then there exist xeX
and U Uy, such that proy(x), Pa,sreH(A)EU. By (AM1) there exists V, =V,
such that

3) foPraxx), foPa sy HADYEV ;.
By (1) and (2) there exist V,, V=<V, such that
4) gof (%), fsbrw(x)EV,, and

) Joba, rao>H(A), qo,,08(4°)E sH(V 5, V).
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Since g5,,,8(4°)=g,(y), by (3)-(5), gsf(x), go(¥)Est(st(Vs, V), V). By the choice
of b and the definition of V, f(x), yeV and then VNf(X)#+@. Hence f(X)
is dense in Y.

Next we assume that f(X) is dense in Y. Take any admissible pair (a, b)
of f. By (B4) there exists b,>b such that st(g,Y), V) Dgs,,s(Ys,). Take any
a,;>a, f(b)). We will show that the admissible pair (a,, b;) has the required
property. Take any map g:4°-Y,. By the choice of b, there exist yeV
and V,=<, such that

6) axy), qb,.og(d°)€V4.
Since f(X) is dense in Y, there exists x& X such that
) f(EqV,.

We define a map H: 4°— X, by H(4")=p.(x). By (1) there exists V,=<V, such
that

3) o f(x), fobsrx(X)EVS.

Since foprwy(X)=foDa. sy H(A®), by (6)-(8) foba.rirH(A), s, 08(A°)E StV 4, V).
Thus (fopa. sy H, qo,,08)<st<V, and hence f is approximatively (—1)-connected. m

(6.2) COROLLARY. Let f: XY be a closed map and Y a normal space. Then
f is approximatively (—1)-connected iff f(X)=Y.

(6.3) THEOREM. Let Y be a paracompact spacz and f: X—Y a closed map
with (8):

#) fYY, is P-embedded in X for any closed subset Y, of Y.

For each integer n=—1 the following statements are equivalent:

(i) f is onto and f~*(y) is approximatively n-connected for any y&Y.

(ii) f is onto and the decomposition D={f""y): y€Y} has AFEP with
respect to "*3SCpqirs.

(ili) f is approximatively n-connected.

PrOOF. When n=-—1 (6.3) follows from (6.2). We assume n=0. We show
(iii)—(i). By (6.2) f is onto. By (3.3) f has ALP with respect to "POL,,;.
and then by (2.7) and (%) so does f|f~%(¥): f~(y)—{y} for each yY. By (3.4)
pro-w(f1 £ () : pro-m(f (), x)—pro-m;({y}, *)=0 is an isomorphism for 0=
E<n. Then pro-m,.(f '(»), »)=0 for 0=<k<n. By (4.14) f~(y) is approxima-
tively n-connected.

(5.14) means that (i)—(ii). We show (ii)—(ii). By (I.4.9) there exist
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approximative ANR-resolutions p: X—(¥, U), q:Y—(y, &) and an approxi-
mative resolution f: (3, U)—(Yy, V) of f with respect to p and ¢ satisfying
(RM1) and (RM2). By (RM2) and (2.1) we may assume that st(pq(X), U,)=2X,
and st(gy(Y), <V,)=Y, for all a= A and all beB.

Claim 1. f has (ALP**) with respect to (D, S),.

Take any admissible pair (a, b) of f and then there exists b;>b such that
gt sVe>stV, . By (RM1) for f there exists a;>a, f(b,) such that fipa,. re»
=@s,.5/0,Pay. r»>- By the assumption and (5.2) there exists a,>a, satisfying
(FEP) with respect to "*}SC for a,. By (5.7) there exists a;>a, such that
D3l 0, Da,>5t2Da,. Here D(y, a)=st(pa(D,), U.) and D,={D(y, a): yeY} for
acA and yeY. Since f is closed, there exists an open neighborhood V, of y
in Y such that

(1) D, C f UV )T pal(st(pay(Dy), Uay) for each yeY.

Since Y is paracompact, <SV={V,:yeY}eCov(Y) and then there exists b,>b,
such that <V>gq;,<V,,.

Let Wy, ={Vm:meM} and M'={meM:V .Ng,y(Y)+@}. By Theorem 2
of Kuratowski [17, p. 226] there exist open sets G(V ) in Y,, for meM’ such
that

) VN0V )= GV )Ng5(¥) and G(V n)CV  for meM’,

(3) for each finite subset {my, my, -+, ms} Of M’, Vo AV p M-
NV i N\go,(Y)=@ implies G(V u INGV n)N\-NG(V 0 )= .

Since ¢,(Y)CTU{G(Vn): meM'} by (2), by (B3) there exists bs>b, such that
Qog.0,(Y 5, ) CU{G(V ) :meM’}.  Since {g5;5,G(V )i mEM'}ECov(Ys,), by (Al3)
there exists b,>b, such that {¢;.,,G(Vn):meEM'} >V,,. By (RM1) for f there
exists a,>a,, f(b,) such that fo,Da, r0=0b, 0 fo,Pasrwp. Let Us,={U.:esE}
and E’={eEE:Uef\pa4(X)%&Qj}. Since M)T)CU{UC: eEE' t=5stpq(X), Ua,),
by (B3) there exists as>a, such that pa,, q,(X.)C\U{U.: e E’}, and then there
exists a,>a; such that {pz} . Uc:e€E"} >U,,.

We will show that the admissible pair (as, b,) has the required property.
To do so we take any (4**!, d4**)e(D, S), and any maps g:d4**'—>Y,,
h:0d*+'—X,, such that g|04*"'=fy,pas reph. Take WECov(4**') such that
W<g (V) and W|[04**'<h™*U,,. There exists a simplicial complex K and
a subcomplex L of K such that |K|=4**, |L|=04*+', L is a full subcomplex
of K and for each simplex s of K there exists W,e9% such that |s|CW,. Take
any simplex s of K. By the choices of b, and W, there exist V,&<V, and
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m(s)eM’ such that g(W,)CV, and 95, 5,(V)CG(V mesy). Thus
4) @5,.0,8(1 SNC GV n(s,) for each simplex s of K.

Since VN (Y)# @, by the choice of b, there exists y(s)€Y such that
Vi Dq5,Vmey, and then there exists x(s)eX such that x(8)E f75V mHnC
S V4. Then by (1)

(5) Pay(x(8)Est(Ppa,(Dycsy), Ua,) for each simplex s of K.

Now we define a map g1 K" UL—-X,, as follows: g%(2)=pa, a,h(z) for z& L
and g°%(z)=pa,(x(v)) for z=veK°—L. It is easy to show that g° is well-defined
and continuous.

Claim 2. For each simplex s of K there exists y=Y such that g°(sN\(K°UL))
Cst(Pay(Dy), Ua,).

To prove Claim 2 we take any simplex s=[uv,, v, -, v,] of K. By (4) for
each 7, 0=/<p, §b,,5,8V)ECV ) NGV nv;5)#+ @ and then by (2) VNV aow)
F\mi @. Since VsV nwpNgo,(Y)# D, VoMV 30205 (Vs NV mco;d)
#@ and then by (1) sHpay(Dysr)y Uad \SHDPay(Dycon)s Va)DPay(f H(V yesrn
Vywp)#* @D, that is,

(6) s’(pa;;(Dy(s)), Cl]a3)m3t(pa3(Dy(vi)); (:Uaa)i@ for 0§Z§p

We consider the following cases: (i) All vertexes of s are in K°—L. (ii)
All vertexes of s are in L. (iii) Some vertexes of s are in K°—L and some
vertexes of s are in L.

We consider the case (i). In this case sSN(K°UL)={v,, vy, .-+, v,} and then
SN E UL ={ pay(x(00)), Pay(x(v1)), =+, Day(x(v)}.  Since pa,(x(ve)) e
st(pay(Dycwp), Ua,) for i=0, 1, -, p by (5), then by (6) {pa,(x(v:)):i=0, 1, ---, p}
Cst{st(pa,(Dycsr)y Uay), Da,}. By the choice of a, there exists y”(s)eY such
that pa,, o (st{st(Pay(Dycsr)s Uay)s Da DTSt (Pay(Dyncsy), Ua,). Hence g°(sM(K°UL))
Cst(pa,(Dynesy), Uay).

Next we consider the case (ii). Since L is a full subcomplex of K, s&L
and then g°(sN(K°UL))=pa, a,h(s). By the choice of W, there exists U, U,,
such that A(s)ch(WNL)cU,. By the choice of a, there exists e(s)e E’ such
that pag o,(U)CTUesy. Since UsrNpa (X)# @D, there exists x'(s)eX such that
Pa(x'($)NEUesy. Put y'(s)=fx'(s)€Y and then x'(s)eD, ,. Then we have

(7) paG.a4h(5)CSt(pa4(x,(5)); qja4)CSt(pa4(Dy’(s)>: CUa4)
and then
go(sm<KoUL)>:pa6.azh(s)Cpa4,aZSt(pa“(Dy'(s)); q-]a4)CSt(pa2(Dy’(s)): Cl]a.z)-
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Finally we consider the case (iii). In this case we may assume that v,, vy,
-+, v, are vertexes in K°—L and v,.y, Uy+s, -+, Up are vertexes in L for some
u, 0Zu=<p. Since L is full, t=[vu+1, Vuss, =+, VplEL and then sN(K°UL)=
{vo, V1, -+, vu}\Ut. Since teL, by the case (ii) paga h(t)CTUeq, and po,x'(t)
EUeqy. Since  (fy,Day, rr) ' Vo, >Ua,, there exists VeV, such that
fo,Pay ropWUey)TVi. Since glL=fy,pagsawph| L, fo,propx')EV, and g(t)=
foPag raph®CV;, Since gt)Cg(s)\CgW)CV, V.NViDgt)+=@. By the
choice of b, there exists my(t)&M’ such that ¢, s,V iCGV myy). Since ¢p,.5,Vs
CCWV )y GV amger) NGV mis3) Do 0,(VsNVD)#ED. By (3), VawNVmgwN
20,(¥)# @ and then VposN\VmyixN\g0,(Y)#=@B. By the choice of b, there exists
Yo()EY such that VyD¢5 Vmewr. Since VyorNV yocr D955V meoy NV mgcer) # D,
by (1) st(pay,(Dycsrr Ua NS Pay(Dygiry), Vag) DPagS 'V yoxNV you0)# @, that is,

8) SHPag(Dyis))y Ua ) \SHPay(Dyyiry), Ua))#*D .

Since f satisfies (RM2), ¢,,f=/fs,Prw,, and then by (8) ¢, fx'(t)V ;. By the
choice of mo(t), go,fX'(VEG(V nyry) and then by (2) o, f5' O)E GV myctr)MNgoy(Y)
:Vmocs)f\m- Thus y'(t):fx'(t)equlvmo(c)cvyg(t) and then by (1) pa3(Dy’(£))
Chayf Vo TS8P ay(Dygrd), Uay). This means that

9) St(Pay(Dyor), Uag \SHDay(Dyres), Uag)# D -

Since (€L, by (5)-(9) {pax(v):i=u+l, -+, ptUpPag a, AT I{st(Pa,(Dycw),
Uag) i i=u+1, -, pYUst(pa,(Dy t>), Uay))Tst(st(Pa,(Dycsr)r Uay), tDa,). By the
choice of a, there exists y€Y such that pa, q¢,SH(st(Pay(Dycsy)y Uay), StDa,)C
St(Pay(Dy), Ua,). Thus g'(sNEUL))={pa,xe):i=0,1, -+, u}\Upa, a,h()C
St(pa,(Dy), Ua,). Thus we have completed the proof of Claim 2.

Since (K, K°UL)&"*'POL,,;,, by Claim 2 and the choice of a, there exists
a map g': K—X, satisfying the following conditions:

g'K"UL=p,, .g° and
(11 for each simplex s of K there exists y=Y such that

gi ()T st(pa,(Dy), Ua,).

Claim 3. (fo,Pay. 5078 Go,5,8) <SPV, .

Take any z= K and then there exists a simplex s of K with z&s. First
we assume that s&€ L. In this case by the choices of a,, g and fo,Pay. ropgtls
=fo,Dar. s> Pag ar 8 1S = fo, Pag. oy BlS = Qo0 fo,Pag ropph|S =s0,81s.  Thus
Claim 3 holds in this case.

Next we assume that s¢& L. We put s=[v,, vy, -+, vp]. Since L is full,
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we may assume that v, K°—L. By there exists yeY such that g!(s)c
st(pa,(Dy), Ua,). By (RM2) for f

(12) 0o, S =fo,Drp-

Since fo, Pay. s Pay(Dy)=e,(¥) by [(I2)and (fo, pa,, rc61)) " Vo, > Uays fo,Pay. r6,)8(S)
Cfo,Pay. 1o (SHPay(Dy), Ua))T5tqo,(¥), Vo). Since z, voEs,

13) forDay. 1658 (2), fo,Pay. rc0>8 (W) E SGs (3), Vp,).

By and fo,Day rp&8 Wo)=qs, f(x(ve)). Since V nes, V o € Vs, there
exist Vl, VgEchl such that sz.bl(Vm(s)>CVl and qbz,bl(Vm(vo))CVg. By the
choice of x(vo), ¢o,f(x(We))EV m(y> and then

(14) JforPay. r0p8 (W)EV 5.

By (2), (4) and the choice of Vi, ¢5,.5,00,.5,8(9)C by 5,G(V mc3)CT G0y 0,V mesyCVy
and then

(15) 054.5,8(2); Go,.0,8WV)EV 1.

By (2), (4) and the choice of Vz, qb‘.blg(vo)esz,blG(Vm(vo)>Cqbg.bl(Vm(vo)>CV2’
that is,

(16) Go,.0,8(V)EV .

From [I3}-(16), fs,0a,. 50,8 (2), Go,0,8(2)E st(st(V,, V), stV, ). Thus in this
case we have the required condition and hence we have Claim 3.

We put G=p,,..g": 4**'—X,. By the choices of a,, b, and Claim 3,
(foDa. 1 >G, Gs,.08)<StV, and G|04**'=p,, .h. Thus f satisfies (ALP**) with
respect to (D, S), and hence we have Claim 1.

By Claim 1 and (3.1) f has ALP with respect to (D, S),. Thus f is approxi-
matively n-connected. Hence we have completed the proof. m

(6.4) COROLLARY. Let Y be a paracompact space and f : X—Y a closed onto
map with (8). If f~(v) is approximatively n-connected for each y€Y, then we
have the following :

(1) pro-m (f): pro-mp(X, x)—>pro-m. (Y, f(x)) is an isomorphism for 0<k=<n
and epimorphism for k=n-+1 in pro-groups for each x=X.

(ii) #x(f): (X, x)—%Y, f(x)) is an isomorphism for 0=k<n and for
each x= X.

(ili) If n+1=Max(sd X+1, sdY)<co, then f:(X, x)—(, f(x)) induces a
shape equivalence for each x< X.
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(6.5) COROLLARY. Let f: X—=Y be a closed onto map from a paracompact
space X. If f~%y) is approximatively n-connected for each y&Y, then (i)-(iii)
in (6.4) hold.

(6.4) follows from (3.4), (3.6), (3.7) and (6.3). (6.5) follows from (6.5) and
Michael’s (see Engelking [9, p.385]). m

We say that f: X—Y is a cell-like map, in notation CE-map, provided that
f~'(») has trivial shape for any y&Y.

(6.6) COROLLARY. Let f:X—Y be a closed map from a paracompact space
X. If fis a CE-map, then we have the following :

(1) pro-m (f): pro-m (X, x)—pro-m (Y, f(x)) is an isomor phism in pro-groups
for each k and each x< X.

(ii) #p(f): #p(X, x)—%,(Y, f(x)) is an isomorphism for each k and each
xeX.

(i) If sd X, sdY <oo, f:(X, x)—(, f(x)) induces a shape equivalence for
each x= X,

(6.6) follows from (6.5). ®m

(6.7) REMARK. Usually approximatively n-connected maps are called UV™-
maps (see Lacher [18]). Smale and Kozlowski studied these maps
and showed special cases of theorems (6.4) and (6.3). Various Vietoris-Smale
theorems in shape theory were studied by many authors, Bogatyi [2, 3], Dydak
[4-7], Kodama [11, 12], Kuperberg [16], Kozlowski-Segal [15], Morita [27, 28].
Our results are the most general.
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