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SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3
WITH HARMONIC CURVATURE

By

Jung-Hwan KwoN*

§ 0. Introduction.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor
R;; satisfies the Codazzi equation, namely, in local coordinates, R;;;=R;;;, Where
R;i, denotes the covariant derivative of the Ricci tensor R;;. Recently Rieman-
nian manifolds with harmonic curvature are studied by A. Derdzinski [1], H.

Nakagawa and U-H. Ki [4], [5], [6], E. Omachi [9], M. Umehara [6], [10] and

others.
The purpose of the present paper is to study submanifolds with harmonic

curvature admitting almost contact metric structure in a Euclidean space and to
prove the following :

THEOREM. Let M be a 2n-+1)-dimensional complete simply connected semi-
invariant submanifold in a (2n+4)-dimensional Euclidean space. If M has harmonic
curvature and of constant mean curvature and if the distinguished normal is par-
allel in the normal bundle, then M is isometric to one of the following spaces;

E2n+1, Szn+1 or Szn-—r+1><Er’ (r§2n—1).

The author wishes to express his hearty thanks to the referee whose Kkind
suggestion was very much helpful to the improvement of the paper.

§1. Preliminaries.

Let M be a (2n+4)-dimensional almost Hermitian manifold covered by a
system of coordinate neighborhoods {U : X4}. Manifolds, submanifolds, geometric
objects and mappings discussed in this paper are assumed to be differentiable and
of class C*. Denote by G¢s components of the Hermitian metric tensor, and by
Fg* those of the almost complex structure F of M. Then we have

(1.1) FoBFgt=—0dc*,
(1-2) FCEFBDGED:GCB ’
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dc* being the Kronecker delta. We use throughout this paper the systems of
indices as follows:

A B, C D,--:1,2,--,2n+4;

h,i,7, k, 11,2, -, 2n+1.

The summation will be used with respect to those systems of indices.

Let M be a (2n+1)-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {V ;Y *} and immersed isometrically in M by the
immersion 7 : M—M. In the sequel we identify #(M) with M itself and represent
the immersion by

(1.3) XA=XA4(Y").
We put
(1.4) ’ BiA:aiXA N 31=3/6Y‘

and denote by C4, D4 and E4 three mutually orthogonal unit normals to M.
Then denoting by g;; the fundamental metric tensor of M, we have

(1.5) gjiszcBiBGCB

since the immersion is isometric.
As to the transformations of B;4, C4, D and E4 by Fz* we have respec-
tively equations of the form

(1.6) Fg*BB=f"Bp4+u;C4+v;D4+w;E4,
(L7) FgtCP=—urByA—vD4+uE4,

(1.8) FgADB=—v"Bp4+4+vCA—AE4,

(1.9) FgtEB=—w"By4—uC4+2D4,

where f;* is a tensor field of type (1,1), u;, v;, w; 1-forms and 4, g, v functions
in M, u*, v* and w" being vector fields associated with u;, v; and w; respectively.
Applying the operator F to both sides of (1.6)-(1.9), using [(1.I), we find

(1.10) fi{fr=—0:"tuu v+ wwt,

(1.11) ufit=—wi+pw;, vfif=vu;—Aw;, w.f'!=—put+iv;,
(1.12) flut=wr—pwt, fiMt=—vur4-Aw*, frPwi=put—0*,
(1.13) wul=l—p*—1?, vi=1—v*—2%, ww'=1-21"—p?,

uvt=2p, ww'=Av, vw=py,

Also, from [(1.2), [1.5) and [(1.6), we obtain

(1.14) [t 8= 8j—ujus—vvi—w,w;.
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Putting f;;=f,'g.:;, we see that f;;=—f,;, From [1.12), we can easily see that

(1.15) fe"pt=0,
where
(1.16) . pr=2ut+pv*4vwh.

Suppose that the set (f, g, P) of the tensor field of type (1,1), the Riemannian
metric tensor g;; and the vector field P* given by [1.16) defined an almost con-
tact metric structure that is, in addition to [(1.15), the set (f, g, P) satisfies

(1 17) S fz‘fz"=-5 "+P,P*,

(1.18) [itfi8es=g5—P;P;,

(1.19) P,pP=1,

where P;=g;,P’. Then we find from [(1.13), {1.16) and [(1.19)
(1.20) Rptprt=1,

Conversely suppose that the functions 2, g, v Satley (1.20). Then the set
(f, &, P) defines an almost contact metric structure [11].

§ 2. Semi-invariant submanifolds of codimension 3.

Let M be an almost Hermitian manifold with almost complex structure F.
A submanifold M is called a CR submanifold of M if there exists a differentiable
distribution D on M satisfying the following conditions:

(1) D is invariant, that is, FD,=D, for each x in M,

(2) the complementary orthogonal distribution D* on M is anti-invariant,
that is, FDi:CN, for each x in M, where N, denotes the normal space to M
at x. In particular, M is said to be semi-invariant provided that dim D+=1.
Then a unit normal vector field in FD* is called the distinguished normal to the
semi-invariant submanifold. Putting N4=1C4+uD*+4vE4, we can see that

FBABiB:fihBhA+PiNA
FzANB=_phpB, 4

(2.1)

and that N4 is an intrinsically defined unit normal to M and 2>+ p*+y%=1 [11].
Moreover the set (f, g, P) admits an almost contact metric structure.

Now suppose that the condition A4 p*+1?=1 is satisfied and take N4=
ACA4-puDA4vE4 as C4A. Then we have Ai=1, p=0, v=0 and consequently u"=P",
v;=0, w;=0 because of and [(1.16). Thus (1.6)-(1.9) reduce respectively to

(2.3) Fg*B=f"By*+P;C4,
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(2.4) FgtCB=—P"B,4,
(2.5) FpADB=—FE4,
(2.6) FptEB=D4.

Now denoting by V, the operator of van der Waerden-Bortolotti covariant
differentiation with respect to g;;, we have equations of Gauss for M of M

(2.7) VjBiA:hjicA+kjiDA+ljiEA,
where hj;, kji, I;; are the second fundamental tensors with respect to normals
C4, DA, E4 respectively. The mean curvature vector H4 is given by

1

A
2.8) H= 2n+1

(hCA+4+-kDA+LE4),

where we have put
h=g"*h,;;, k=g’k;, [=g"l;,

g’t being contravariant components of the metric tensor.
The equations of Weingarten are given by

2.9) V,CA=—h*BuA+1,DA+m,EA,
(2.10) V,DA=—k P ByA—1,CA4n,E4,
(2.11) VjEA_—__‘ZthnA—ijA'—njDA,

where hj"=h;g'", kj*=Fk;g'", [;*=l;g', [;, m; and n; being the third funda
mental tensors.

We now assume that M is Kaehlerian and differentiate covariantly along
M and make use of (2.4)-(2.6), we can find

(2.12) Vifit=—h;P*+h*P;, V,Pi=—h;f!,
(2.13) Bu=—lpfit—m;P;, L=k ufit+1P;.
From [2.13), we have

(2.14) B Pt=—m;, [ P'=l;, k=—m,Pt, [=[,P.

From (2.12)-(2.14), using (1.17)-(1.19) and (2.12)-(2.14), it follows that

(2.15) L fit=kPi+my,
(2.16) kl+m, =0,
2.17) kit Ridit=—Uim;+myl,),

(2.18) lﬂli‘——kﬂki‘ZZjli—mjmi.
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§3. Semi-invariant submanifolds of codimension 3 with harmonic
curvature of E*"+¢,

Let M be a (2n+1)-dimensional semi-invariant submanifold of codimension 3
of an even-dimensional Euclidean space E?"+* Then equations of Gauss are
given by
3.1 Riji"=hi"hji—h"hpit+ Rk ji— Rk i1 50— 1" s,

where R,;;* is the Riemannian curvature tensor of M, those of Codazzi by

(3.2) Vihji—Vihpi—l ks lk pi—mplyi+mil =0,
(3.3) Vikji—Vikpitlihji—lihei—nglj+nile =0,
(3.4) Vilji—Vilgit+mehji—mshpi+npkji+nk =0,
and those of Ricci by

(3.5) Veli=Vle+hitlj—hitk e +myn;—m;mn,=0,
(3.6) Vem;—Nme+hptliy—htlpc+nel;—n;l,=0,
3.7 Venj—Vinp+kply—kitl+lem;—1m,=0.

Now, we denote the normal components of V,C by V5C. The normal vector
field C is said to be parallel in the normal bundle if V;C=0, that is, /; and m;
vanish identically.

Throughout this paper we assume that the normal vector field C is parallel
in the normal bundle and we denote

vkhji=vkhji,
3.8) vkkji:vkkji_nklji:
Vilj=Vali4+nek ;.
Then we have
(3.9) Vehi*=Vhi?,

where hjilzhji, hjiz-'—"'—kji and hjiszlji.
Differentiating and covariantly and using /;=0, m;=0, (3.8) and
3.9), we have

(3.10) BVl +1(Veki)=0,  kju(Velif)+1;(Vek:H)=0
and

(3.11) ki(Vike)=1;Vilee),  ku(Vikp)=1;0(V:5)
respectively.

In the sequel we assume that the submanifold M with harmonic curvature
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has constant mean curvature, that is,

(3.12) ViR;i—V;R,:=0,

and |H|?:=CzH*H? is constant which together with £=0 and /=0 implies
(3.13) V:h=0.

From Gauss and Codazzi equations and the definition of harmonic curvature it
follows that

(Vkhit)hjt_(vjhit)hkz’{"z{(vkkit)kjt—(vjkit)kkt}=0:
that is,

3 , 3 ,
(3.14) xzzl(vkhjcz)hi"—‘: El(vkhuz)hj”,

because of and By the Ricci equations and and ViC=0,

we have

(3.15) hjhi**=hyht=,

where x=1, 2, 3. Differentiating covariantly and using we find
(3.16) (Vehidh 2+ (VbR = ) h o+ (Ve hi bt
Transvecting with h*, we have

(3.17) S A(Vahi)ht=h 25—V hy) Rt h %}

=21{(<7khicx)hslhjw"(vk huz)hi‘h;‘”} .
By the properties [3.14) and [3.15), we have
Ex(vkhstx)hit j’I:Zx(vkhjsx)htshitx-

Transvecting with V.h,; and using this equation, we have
(3.18) (Ve YXVER )R 2RI =3 (Ve hi ) (V* )R E RIS,

On the other hand, for fixed indices 2 and x (th“)hj”-—(v,,hj,)hi” can be

regarded as a square matrix of order 2n+41. By the norm of this matrix
with respect to the usual inner product vanishes identically, which implies

3.19 (vkhjt)hicxz(vkhit)hjtx'
The equations and show
(3.20) (thjtz)hf:(vkhux)hj‘

for any indices x, 7, j and k.

Differentiating the first equation of and using m;=0,
(3.14) and we have



Semi-invariant submanifolds of codimension 3 255

(3.21) hj;kil:O, hjtlit:().
From [2.18), [3.14) and [3.19), we find
(3.22) AT ESCNIIES

Differentiating covariantly and taking the skew-symmetric part and
using [(3.7), [3.8), [3.10) and the Ricci identity, we obtain

(Rirjski®+Rinisk ki —(Ripisk +Ripesk )RS

=4kl ik ol it +2{(Vok s )V k1) — (Voke ) (Vo1 )}
from which, transvecting this with g*¢ and using [2.17), [2.18), [3.I) and %,=0,
(3.23) (Vok s )V ki )=4(k sy + ok j2)*
where k,=k k%, ky=k, B, k%, (k;)'=Fk k' and (k)'=Fk kS Rk,

From using we find
(3.24) R (Vaki)=Fky (Vek ).
Transvecting with (k)% using k2;=0, we have
(k;:)°(Nk7%)=0.

If we put k,=(k;;)*k’, then V,k,=4(k;;)*(N,k’"). Hence we have

(3.25) V.k,=0,
that is, k£, is a constant.

Next, from the equation [3.19), we have

(thjt>hit=(vkhit)hj£:
from which,

vk(hji)z—vj(hki)zzoy
namely, (h;;)? is of Codazzi type. Since the mean curvature is constant, we can
easily see that

(3.26) Vih;=0

(for detail, see [10]).
On the other hand, from we have
Rji::hhji_(hji)z—z(kji)z
from which,
(Rji)*=h*(h;)*—2h(h )+ (h ) +4Ck )t
Hence we have

(3.27) Ry=h?h,—2hhs+h,+4k,
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is constant, because of [(3.13), [3.25) and [3.26). And, using the Ricci identity
and we find

(3.28) h(hﬁ)z——hzhﬁ=0.
Furthermore, From the Ricci identity, and we have
(3.29) AR ;i=hahi—h(h,)°.

§4. Proof of Theorem.

Let M be a semi-invariant submanifold with harmonic curvature of codimen-
sion 3 of an even-dimensional Euclidean space E?"** such that the distinguished
normal C4 is parallel in the normal bundle. If the submanifold M has contant
mean curvature, then we can consider two cases.

Case I: h=0
From we have
(4.1) h;;=0,
from which, using
4.2) AR ;;=0.
Hence we have
4.3) V.R;=0,
because of [3.27). Since R;;=—2(k;;)? using [2.17), [3.8) and [4.3), we have
(4.4) k(N k=0,

From and we find

4(k ;i)°+ko(k ;i)' =0,
from which

ku=0, 1;=0
because of [(2.18).

Case II: hA=x0
From we have
(4.5) (hj)*=2Ahj,
where A=h,/h. Substituting into we have
(4.6) : AR;;=0.

Hence we have

(4.7) kaji'—_-O,
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because of [3.27). Since R;;=hh;;—(h;;)*—2(k;;)?, using [2.17), [3.8), [(3.13) and
(4.7), we have
4.8) (Vb H)=0.
From and [(4.8), we have
4(k i)+ ko(k ;1)*=0.

from which _
kﬁ*——-O , lﬁ =0
because of

Thus we have

LEMMA. Let M be a semi-invariant submanifold of codimension 3 in E2"+4,
If M has harmonic curvature and of constant mean curvature and if the distinguished
normal is parallel in the normal bundle, then

(hji)2=ahji, kji:(), lji=0,
where a is constant.

PROOF OF THEOREM.

Let N is the first normal space of M for each x in M and is the second
fundamental form of M, that is, Ni={a(u, v); u, vEN,}, where T E**=
M PN, and N,={§;&=T E*™*, 61 M,}. If a=0, M is totally geodesic and
consequently M=FE?"+!, Next we consider the case of a=0. In this case, the
above lemma yields dim N.=1 for each x in M. Moreover the distribution
N'=\U,N}CN(M) is parallel. Accordingly, a theorem due to J. Erbacher [2],
for the reduction of the codimension implies that there exists a (2n-+2)-dimension-
al totally geodesic submanifeld E?***? in E2?"** in which M is the hypersurface
with parallel second fundamental form. Since M is complete and simply connected,

by [8], we have results in [Theorem.
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