SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 WITH HARMONIC CURVATURE

By

Jung-Hwan Kwon*

§ 0. Introduction.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor R_{ji} satisfies the Codazzi equation, namely, in local coordinates, $R_{jik} = R_{jki}$, where R_{jik} denotes the covariant derivative of the Ricci tensor R_{ji} . Recently Riemannian manifolds with harmonic curvature are studied by A. Derdziński [1], H. Nakagawa and U-H. Ki [4], [5], [6], E. Ômachi [9], M. Umehara [6], [10] and others.

The purpose of the present paper is to study submanifolds with harmonic curvature admitting almost contact metric structure in a Euclidean space and to prove the following:

THEOREM. Let M be a (2n+1)-dimensional complete simply connected semi-invariant submanifold in a (2n+4)-dimensional Euclidean space. If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then M is isometric to one of the following spaces;

$$E^{2n+1}$$
, S^{2n+1} or $S^{2n-r+1} \times E^r$, $(r \le 2n-1)$.

The author wishes to express his hearty thanks to the referee whose kind suggestion was very much helpful to the improvement of the paper.

§ 1. Preliminaries.

Let \overline{M} be a (2n+4)-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods $\{U:X^A\}$. Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of class C^{∞} . Denote by G_{CB} components of the Hermitian metric tensor, and by F_{B^A} those of the almost complex structure F of \overline{M} . Then we have

$$(1.1) F_C{}^B F_B{}^A = -\delta_C{}^A,$$

$$(1.2) F_C{}^E F_B{}^D G_{ED} = G_{CB},$$

Received February 19, 1987. Revised July 6, 1987.

^{*} This research was partially supported by KOSEF.

 $\delta_c{}^a$ being the Kronecker delta. We use throughout this paper the systems of indices as follows:

$$A, B, C, D, \dots : 1, 2, \dots, 2n+4;$$

 $h, i, j, k, \dots : 1, 2, \dots, 2n+1.$

The summation will be used with respect to those systems of indices.

Let M be a (2n+1)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; Y^h\}$ and immersed isometrically in \overline{M} by the immersion $i: M \to \overline{M}$. In the sequel we identify i(M) with M itself and represent the immersion by

$$(1.3) X^{A} = X^{A}(Y^{h}).$$

We put

$$B_i^{A} = \partial_i X^{A}, \qquad \partial_i = \partial/\partial Y^{i}$$

and denote by C^A , D^A and E^A three mutually orthogonal unit normals to M. Then denoting by g_{ji} the fundamental metric tensor of M, we have

$$g_{ii} = B_i{}^C B_i{}^B G_{CB}$$

since the immersion is isometric.

As to the transformations of B_i^A , C^A , D^A and E^A by F_B^A we have respectively equations of the form

$$(1.6) F_{B}{}^{A}B_{i}{}^{B} = f_{i}{}^{h}B_{h}{}^{A} + u_{i}C^{A} + v_{i}D^{A} + w_{i}E^{A},$$

(1.7)
$$F_{B}{}^{A}C^{B} = -u^{h}B_{h}{}^{A} - \nu D^{A} + \mu E^{A},$$

$$(1.8) F_B{}^A D^B = -v^h B_h{}^A + \nu C^A - \lambda E^A,$$

$$(1.9) F_B{}^A E^B = -w^h B_h{}^A - \mu C^A + \lambda D^A,$$

where f_i^h is a tensor field of type (1,1), u_i , v_i , w_i 1-forms and λ , μ , ν functions in M, u^h , v^h and w^h being vector fields associated with u_i , v_i and w_i respectively.

Applying the operator F to both sides of (1.6)–(1.9), using (1.1), we find

$$f_{i}^{t} f_{t}^{h} = -\delta_{i}^{h} + u_{i} u^{h} + v_{i} v^{h} + w_{i} w^{h},$$

$$(1.11) u_t f_i^{t} = -\nu v_i + \mu w_i, \quad v_t f_i^{t} = \nu u_i - \lambda w_i, \quad w_t f_i^{t} = -\mu u_i + \lambda v_i,$$

$$(1.12) f_t{}^h u^t = \nu v^h - \mu w^h, f_t{}^h v^t = -\nu u^h + \lambda w^h, f_t{}^h w^t = \mu u^h - \lambda v^h,$$

(1.13)
$$u_{t}u^{t}=1-\mu^{2}-\nu^{2}, \quad v_{t}v^{t}=1-\nu^{2}-\lambda^{2}, \quad w_{t}w^{t}=1-\lambda^{2}-\mu^{2},$$
$$u_{t}v^{t}=\lambda\mu, \quad u_{t}w^{t}=\lambda\nu, \quad v_{t}w^{t}=\mu\nu.$$

Also, from (1.2), (1.5) and (1.6), we obtain

$$(1.14) f_i^t f_i^s g_{ts} = g_{ii} - u_i u_i - v_i v_i - w_i w_i.$$

Putting $f_{ji}=f_j{}^tg_{ti}$, we see that $f_{ji}=-f_{ij}$. From (1.12), we can easily see that

$$f_t^h p^t = 0,$$

where

$$p^h = \lambda u^h + \mu v^h + \nu w^h.$$

Suppose that the set (f, g, P) of the tensor field of type (1,1), the Riemannian metric tensor g_{ji} and the vector field P^h given by (1.16) defined an almost contact metric structure, that is, in addition to (1.15), the set (f, g, P) satisfies

$$f_i^t f_t^h = -\delta_i^h + P_i P^h,$$

$$(1.18) f_j^t f_i^s g_{ts} = g_{ji} - P_j P_i,$$

$$(1.19) P_t P^t = 1,$$

where $P_i = g_{it}P^t$. Then we find from (1.13), (1.16) and (1.19)

$$(1.20) \lambda^2 + \mu^2 + \nu^2 = 1.$$

Conversely suppose that the functions λ , μ , ν satisfy (1.20). Then the set (f, g, P) defines an almost contact metric structure [11].

§ 2. Semi-invariant submanifolds of codimension 3.

Let \overline{M} be an almost Hermitian manifold with almost complex structure F. A submanifold M is called a CR submanifold of \overline{M} if there exists a differentiable distribution D on M satisfying the following conditions:

- (1) D is invariant, that is, $FD_x = D_x$ for each x in M,
- (2) the complementary orthogonal distribution D^{\perp} on M is anti-invariant, that is, $FD_x^{\perp} \subset N_x$ for each x in M, where N_x denotes the normal space to M at x. In particular, M is said to be *semi-invariant* provided that dim $D^{\perp}=1$. Then a unit normal vector field in FD^{\perp} is called the *distinguished normal* to the semi-invariant submanifold. Putting $N^A = \lambda C^A + \mu D^A + \nu E^A$, we can see that

(2.1)
$$F_{B}{}^{A}B_{i}{}^{B} = f_{i}{}^{h}B_{h}{}^{A} + P_{i}N^{A}$$
$$F_{B}{}^{A}N^{B} = -P^{h}B_{h}{}^{A}$$

and that N^4 is an intrinsically defined unit normal to M and $\lambda^2 + \mu^2 + \nu^2 = 1$ [11]. Moreover the set (f, g, P) admits an almost contact metric structure.

Now suppose that the condition $\lambda^2 + \mu^2 + \nu^2 = 1$ is satisfied and take $N^A = \lambda C^A + \mu D^A + \nu E^A$ as C^A . Then we have $\lambda = 1$, $\mu = 0$, $\nu = 0$ and consequently $u^h = P^h$, $v_i = 0$, $w_i = 0$ because of (1.13) and (1.16). Thus (1.6)-(1.9) reduce respectively to

$$(2.3) F_B{}^A B_i{}^B = f_i{}^h B_h{}^A + P_i C^A,$$

Jung-Hwan Kwon

$$(2.4) F_B{}^A C^B = -P^h B_h{}^A,$$

$$(2.5) F_B{}^A D^B = -E^A,$$

$$(2.6) F_B{}^A E^B = D^A.$$

Now denoting by ∇_j the operator of van der Waerden-Bortolotti covariant differentiation with respect to g_{ji} , we have equations of Gauss for M of \overline{M}

(2.7)
$$\nabla_{j}B_{i}^{A} = h_{ji}C^{A} + k_{ji}D^{A} + l_{ji}E^{A},$$

where h_{ji} , k_{ji} , l_{ji} are the second fundamental tensors with respect to normals C^A , D^A , E^A respectively. The mean curvature vector H^A is given by

(2.8)
$$H^{A} = \frac{1}{2n+1} (hC^{A} + kD^{A} + lE^{A}),$$

where we have put

$$h=g^{ji}h_{ji}$$
, $k=g^{ji}k_{ji}$, $l=g^{ji}l_{ji}$,

 g^{ji} being contravariant components of the metric tensor.

The equations of Weingarten are given by

$$\nabla_{i} C^{A} = -h_{i}{}^{h} B_{h}{}^{A} + l_{i} D^{A} + m_{i} E^{A},$$

$$\nabla_i D^A = -k_i{}^h B_h{}^A - l_i C^A + n_i E^A,$$

$$\nabla_{i}E^{A} = -l_{i}{}^{h}B_{h}{}^{A} - m_{i}C^{A} - n_{i}D^{A},$$

where $h_j{}^h = h_{ji}g^{th}$, $k_j{}^h = k_{ji}g^{th}$, $l_j{}^h = l_{ji}g^{th}$, l_j , m_j and n_j being the third funda mental tensors.

We now assume that \overline{M} is Kaehlerian and differentiate (2.3) covariantly along M and make use of (2.4)-(2.6), we can find

$$(2.12) \nabla_j f_i^h = -h_{ji} P^h + h_j^h P_i, \nabla_j P_i = -h_{ji} f_i^t,$$

$$(2.13) k_{ji} = -l_{jt} f_i^{\ t} - m_j P_i, l_{ji} = k_{jt} f_i^{\ t} + l_j P_i.$$

From (2.13), we have

$$(2.14) k_{jt}P^{t} = -m_{j}, \quad l_{jt}P^{t} = l_{j}, \quad k = -m_{t}P^{t}, \quad l = l_{t}P^{t}.$$

From (2.12)–(2.14), using (1.17)–(1.19) and (2.12)–(2.14), it follows that

$$(2.15) l_t f_i^{t} = k P_i + m_i,$$

$$(2.16) kl + m_t l^t = 0,$$

$$(2.17) k_{jt}l_i^t + k_{it}l_j^t = -(l_im_j + m_il_j),$$

$$(2.18) l_{jt}l_{i}^{t} - k_{jt}k_{i}^{t} = l_{j}l_{i} - m_{j}m_{i}.$$

§ 3. Semi-invariant submanifolds of codimension 3 with harmonic curvature of E^{2n+4} .

Let M be a (2n+1)-dimensional semi-invariant submanifold of codimension 3 of an even-dimensional Euclidean space E^{2n+4} . Then equations of Gauss are given by

$$(3.1) R_{kji}{}^{h} = h_{k}{}^{h}h_{ji} - h_{j}{}^{h}h_{ki} + k_{k}{}^{h}k_{ji} - k_{j}{}^{h}k_{ki} + l_{k}{}^{h}l_{ji} - l_{j}{}^{h}l_{ki},$$

where R_{kji}^{h} is the Riemannian curvature tensor of M, those of Codazzi by

$$(3.2) \qquad \nabla_{k} h_{ji} - \nabla_{j} h_{ki} - l_{k} k_{ji} + l_{j} k_{ki} - m_{k} l_{ji} + m_{j} l_{ki} = 0,$$

$$(3.3) \qquad \nabla_{k} k_{ii} - \nabla_{i} k_{ki} + l_{k} h_{ii} - l_{i} h_{ki} - n_{k} l_{ii} + n_{i} l_{ki} = 0,$$

$$(3.4) \qquad \nabla_{k}l_{ji} - \nabla_{j}l_{ki} + m_{k}h_{ji} - m_{j}h_{ki} + n_{k}k_{ji} + n_{j}k_{ki} = 0,$$

and those of Ricci by

$$(3.5) \qquad \nabla_{k} l_{j} - \nabla_{i} l_{k} + h_{k}^{t} k_{it} - h_{i}^{t} k_{kt} + m_{k} n_{i} - m_{i} n_{k} = 0,$$

$$(3.6) \qquad \nabla_{b} m_{i} - \nabla_{i} m_{b} + h_{b}{}^{t} l_{it} - h_{i}{}^{t} l_{bt} + n_{b} l_{i} - n_{i} l_{b} = 0,$$

(3.7)
$$\nabla_{k} n_{j} - \nabla_{j} n_{k} + k_{k}^{t} l_{jt} - k_{j}^{t} l_{kt} + l_{k} m_{j} - l_{j} m_{k} = 0.$$

Now, we denote the normal components of $\nabla_j C$ by $\nabla_j^{\perp} C$. The normal vector field C is said to be *parallel* in the normal bundle if $\nabla_j^{\perp} C = 0$, that is, l_j and m_j vanish identically.

Throughout this paper we assume that the normal vector field C is parallel in the normal bundle and we denote

(3.8)
$$\begin{aligned}
\dot{\nabla}_{k}h_{ji} &= \nabla_{k}h_{ji}, \\
\dot{\nabla}_{k}k_{ji} &= \nabla_{k}k_{ji} - n_{k}l_{ji}, \\
\dot{\nabla}_{k}l_{ji} &= \nabla_{k}l_{ji} + n_{k}k_{ji}.
\end{aligned}$$

Then we have

$$(3.9) \qquad \qquad \dot{\nabla}_k h_{ii}^{\ x} = \dot{\nabla}_i h_{ki}^{\ x},$$

where $h_{ji}^{1} = h_{ji}$, $h_{ji}^{2} = k_{ji}$ and $h_{ji}^{3} = l_{ji}$.

Differentiating (2.17) and (2.18) covariantly and using $l_j=0$, $m_j=0$, (3.8) and (3.9), we have

(3.10)
$$k_{it}(\nabla_k l_i^t) + l_{it}(\nabla_k k_{it}) = 0, \quad k_{it}(\nabla_k l_i^t) + l_{it}(\nabla_k k_i^t) = 0$$

and

(3.11)
$$k_{jt}(\nabla_i k_k^t) = l_{jt}(\nabla_i l_{kt}), \quad k_{jt}(\dot{\nabla}_i k_k^t) = l_{jt}(\dot{\nabla}_i l_k^t)$$

respectively.

In the sequel we assume that the submanifold M with harmonic curvature

has constant mean curvature, that is,

$$(3.12) \nabla_{k} R_{ii} - \nabla_{i} R_{ki} = 0,$$

and $||H||^2 := C_{AB}H^AH^B$ is constant which together with k=0 and l=0 implies

$$(3.13) \nabla_k h = 0.$$

From Gauss and Codazzi equations and the definition of harmonic curvature it follows that

$$(\nabla_k h_{it}) h_i^t - (\nabla_j h_{it}) h_k^t + 2\{(\nabla_k k_{it}) k_i^t - (\nabla_j k_{it}) k_k^t\} = 0$$

that is,

(3.14)
$$\sum_{r=1}^{3} (\mathring{\nabla}_{k} h_{jt}^{x}) h_{i}^{tx} = \sum_{r=1}^{3} (\mathring{\nabla}_{k} h_{it}^{x}) h_{j}^{tx},$$

because of (3.9) and (3.11). By the Ricci equations (3.5) and (3.6), and $\nabla_j^{\perp} C = 0$, we have

$$(3.15) h_{it}h_i^{tx} = h_{it}h_i^{tx},$$

where x=1, 2, 3. Differentiating (3.15) covariantly and using (3.8), we find

$$(3.16) \qquad (\dot{\nabla}_k h_{it}) h_j^{tx} + (\dot{\nabla}_k h_{jt}^x) h_i^t = (\dot{\nabla}_k h_{jt}) h_i^{tx} + (\dot{\nabla}_k h_{it}^x) h_j^t.$$

Transvecting (3.16) with h_s^{jx} , we have

(3.17)
$$\sum_{x} \{ (\mathring{\nabla}_{k} h_{it}) h_{s}^{tx} h_{j}^{sx} - (\mathring{\nabla}_{k} h_{st}) h_{i}^{tx} h_{j}^{sx} \}$$

$$= \sum_{x} \{ (\mathring{\nabla}_{k} h_{it}^{x}) h_{s}^{t} h_{j}^{sx} - (\mathring{\nabla}_{k} h_{st}^{x}) h_{i}^{t} h_{j}^{sx} \}.$$

By the properties (3.14) and (3.15), we have

$$\sum_{x} (\mathring{\nabla}_{k} h_{st}^{x}) h_{i}^{t} h_{i}^{sx} = \sum_{x} (\mathring{\nabla}_{k} h_{is}^{x}) h_{t}^{s} h_{i}^{tx}.$$

Transvecting (3.17) with $\nabla_k h_{ij}$ and using this equation, we have

$$(3.18) \qquad \sum_{x} (\mathring{\nabla}_{k} h_{ij}) (\mathring{\nabla}^{k} h_{ti}) h_{s}^{tx} h^{jsx} = \sum_{x} (\mathring{\nabla}_{k} h_{ij}) (\mathring{\nabla}^{k} h_{st}) h^{itx} h^{jsx}.$$

On the other hand, for fixed indices k and $x (\mathring{\nabla}_k h_{it}) h_j^{tx} - (\mathring{\nabla}_k h_{jt}) h_i^{tx}$ can be regarded as a square matrix of order 2n+1. By (3.18) the norm of this matrix with respect to the usual inner product vanishes identically, which implies

$$(3.19) \qquad (\mathring{\nabla}_k h_{jt}) h_i^{tx} = (\mathring{\nabla}_k h_{it}) h_j^{tx}.$$

The equations (3.16) and (3.19) show

$$(3.20) \qquad (\mathring{\nabla}_k h_{it}^x) h_i^t = (\mathring{\nabla}_k h_{it}^x) h_j^t$$

for any indices x, i, j and k.

Differentiating the first equation of (2.13) and using $m_j=0$, (2.12), (2.17), (3.8), (3.14) and (3.19), we have

$$(3.21) h_{it}k_i^{t} = 0, h_{it}l_i^{t} = 0.$$

From (2.18), (3.14) and (3.19), we find

$$(3.22) \qquad (\dot{\nabla}_k k_{it}) k_i^t = (\dot{\nabla}_k k_{it}) k_i^t.$$

Differentiating (3.22) covariantly and taking the skew-symmetric part and using (3.7), (3.8), (3.10) and the Ricci identity, we obtain

$$\begin{split} &(R_{lkjs}k_{t}{}^{s} + R_{lkts}k_{j}{}^{s})k_{i}{}^{t} - (R_{lkis}k_{t}{}^{s} + R_{lkts}k_{i}{}^{s})k_{j}{}^{t} \\ = &4k_{ks}l_{l}{}^{s}k_{jt}l_{i}{}^{t} + 2\{(\mathring{\nabla}_{t}k_{kj})(\mathring{\nabla}^{t}k_{li}) - (\mathring{\nabla}_{t}k_{ki})(\mathring{\nabla}^{t}k_{lj})\} \end{split}$$

from which, transvecting this with g^{ki} and using (2.17), (2.18), (3.1) and $k_3=0$,

$$(3.23) \qquad (\mathring{\nabla}_s k_{it})(\mathring{\nabla}^s k_i^t) = 4(k_{ii})^4 + k_2(k_{ii})^2,$$

where $k_2 = k_{st}k^{st}$, $k_3 = k_{s\tau}k_t^{\tau}k^{ts}$, $(k_{ji})^2 = k_{jt}k_i^{t}$ and $(k_{ji})^4 = k_j^{t}k_t^{s}k_s^{\tau}k_{i\tau}$. From (3.22), using (3.9), we find

$$(3.24) k_j^t(\mathring{\nabla}_k k_{it}) = k_k^t(\mathring{\nabla}_t k_{ji}).$$

Transvecting (3.24) with $(k_{ii})^2$, using $k_3=0$, we have

$$(k_{ji})^3(\nabla_k k^{ji})=0.$$

If we put $k_4=(k_{ji})^3k^{ji}$, then $\nabla_k k_4=4(k_{ji})^3(\nabla_k k^{ji})$. Hence we have

$$(3.25) \nabla_k k_4 = 0,$$

that is, k_4 is a constant.

Next, from the equation (3.19), we have

$$(\nabla_k h_{jt}) h_i^t = (\nabla_k h_{it}) h_j^t$$
,

from which,

$$\nabla_{k}(h_{ii})^{2} - \nabla_{i}(h_{ki})^{2} = 0$$
,

namely, $(h_{ji})^2$ is of Codazzi type. Since the mean curvature is constant, we can easily see that

$$(3.26) \qquad \nabla_k h_{ii} = 0$$

(for detail, see [10]).

On the other hand, from (3.1), we have

$$R_{ji} = h h_{ji} - (h_{ji})^2 - 2(k_{ji})^2$$

from which,

$$(R_{ii})^2 = h^2(h_{ii})^2 - 2h(h_{ii})^3 + (h_{ii})^4 + 4(h_{ii})^4$$
.

Hence we have

$$(3.27) R_2 = h^2 h_2 - 2h h_3 + h_4 + 4k_4$$

is constant, because of (3.13), (3.25) and (3.26). And, using the Ricci identity and (3.26), we find

$$(3.28) h(h_{ii})^2 - h_2 h_{ii} = 0.$$

Furthermore, From the Ricci identity, (3.1) and (3.3), we have

(3.29)
$$\Delta R_{ji} = h_3 h_{ji} - h(h_{ji})^3.$$

§ 4. Proof of Theorem.

Let M be a semi-invariant submanifold with harmonic curvature of codimension 3 of an even-dimensional Euclidean space E^{2n+4} such that the distinguished normal C^4 is parallel in the normal bundle. If the submanifold M has contant mean curvature, then we can consider two cases.

Case I: h=0

From (3.28), we have

(4.1)
$$h_{ji}=0$$
,

from which, using (3.29)

$$\Delta R_{ji} = 0.$$

Hence we have

$$\nabla_k R_{ji} = 0,$$

because of (3.27). Since $R_{ji} = -2(k_{ji})^2$, using (2.17), (3.8) and (4.3), we have

$$(4.4) k_{jt}(\mathring{\nabla}_k k_i^t) = 0.$$

From (3.23) and (4.4), we find

$$4(k_{ji})^6 + k_2(k_{ji})^4 = 0$$
,

from which

$$k_{ji}=0$$
, $l_{ji}=0$

because of (2.18).

Case II:
$$h \neq 0$$

From (3.28), we have

$$(4.5) (h_{ji})^2 = \lambda h_{ji},$$

where $\lambda = h_2/h$. Substituting (4.5) into (3.29), we have

$$\Delta R_{ii} = 0.$$

Hence we have

$$\nabla_k R_{ii} = 0,$$

because of (3.27). Since $R_{ji} = h h_{ji} - (h_{ji})^2 - 2(k_{ji})^2$, using (2.17), (3.8), (3.13) and (4.7), we have

$$(4.8) k_{jt}(\mathring{\nabla}_k k_i^t) = 0.$$

From (3.23) and (4.8), we have

$$4(k_{ji})^6 + k_2(k_{ji})^4 = 0$$
.

from which

$$k_{ji}=0$$
, $l_{ji}=0$

because of (2.18).

Thus we have

LEMMA. Let M be a semi-invariant submanifold of codimension 3 in E^{2n+4} . If M has harmonic curvature and of constant mean curvature and if the distinguished normal is parallel in the normal bundle, then

$$(h_{ji})^2 = a h_{ji}, k_{ji} = 0, l_{ji} = 0,$$

where a is constant.

PROOF OF THEOREM.

Let N_x^1 is the first normal space of M for each x in M and is the second fundamental form of M, that is, $N_x^1 = \{\alpha(u,v); u,v \in N_x\}$, where $T_x E^{2n+4} = M_x \oplus N_x$ and $N_x = \{\xi; \xi \in T_x E^{2n+4}, \xi \perp M_x\}$. If a = 0, M is totally geodesic and consequently $M = E^{2n+1}$. Next we consider the case of $a \neq 0$. In this case, the above lemma yields dim $N_x^1 = 1$ for each x in M. Moreover the distribution $N^1 = \bigcup_x N_x^1 \subset N(M)$ is parallel. Accordingly, a theorem due to J. Erbacher [2], for the reduction of the codimension implies that there exists a (2n+2)-dimensional totally geodesic submanifold E^{2n+2} in E^{2n+4} in which M is the hypersurface with parallel second fundamental form. Since M is complete and simply connected, by [8], we have results in Theorem.

Bibliography

- [1] Derdziński, A., Compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Global Differential Geometry and Global Analysis, Lecture notes in Math., Springer, 838 (1979), 126-128.
- [2] Erbacher, J., Reduction of the codimension of an isometric immersion, J. Differential Geometry, 5 (1971), 333-340.
- [3] Ki, U-H., Eum, S.S., Kim, U.K. and Kim, U.H., Submanifolds of codimension 3 of Kaehlerian manifold (I), J. Korean Math. Soc., 16-2 (1980), 137-153.
- [4] Ki, U-H. and Nakagawa, H., Submanifolds with harmonic curvature, Tsukuba J. of Math. 10-2 (1986), 43-50.
- [5] Ki, U-H. and Nakagawa, H., Totally real submanifolds with harmonic curvature, to

appear in Kyungpook Math. J.

- [6] Ki, U-H., Nakagawa, H. and Umehara, M., On complete hypersurfaces with harmonic curvature, Tsukuba J. of Math., 11 (1987), 61-76.
- [7] Ki, U-H. and Pak, J.S., Generic submanifolds of an even-dimensional Euclidean space. J. Diff. Geom., 16 (1981), 293-303.
- [8] Nomizu, K. and Smyth, B., A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differential Geometry, 3 (1969), 367-377.
- [9] Ômachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9 (1986), 170-174.
- [10] Umehara, M., Hypersurfaces with harmonic curvature, Tsukuba J. of Math., 10 (1986), 79-88.
- [11] Yano, K. and Ki, U-H., On $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$, Kōdai Math. Sem. Rep., 29 (1978), 285-307.

Univ. of Tsukuba Ibaraki, 305 Japan and Taegu Univ. Taegu, 705-033 Korea