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ON THE ACTION OF AUTOMORPHISMS OF A CURVE
ON THE FIRST $l$-ADIC COHOMOLOGY

by

Izumi KURIBAYASHI and Fumiyuki MOMOSE

Introduction
Let $G=\langle\sigma\rangle$ be a cyclic group with $n=\# G>1$ . For each divisor $d$ of $n$ , let

$\chi d$ denote the character of $G$ of the irreducible representation over $Q$ , the field
of rational numbers, whose kernel is equal to $\langle\sigma^{d}\rangle$ . Let $k$ be an algebraically
closed ground field and $X$ be a complete non-singular curve over $k$ of genus
$g\geqq 2$ . The main purpose of the present paper is to prove the following theorems,

under the assumption that $G\subseteqq Aut(X)$ , the automorphism group of $X$ ; in this
situation we denote by $Tr(G|H^{1}(X, Q_{l}))$ the character of the natural represe-
ntation of $G$ on the first l-adic cohomology $H^{1}(X, Q_{l})$ of $X$, where $l$ is any prime
number different from the characteristic of $k$ (cf. Notation, \S 2 and also [4]):

THEOREM I. Assume that $Tr(G|H^{1}(X, Q_{l}))=\sum_{d|n}a_{d}\chi a$ , where the symbol
$\sum_{d|n}$

stands for the summation over all divisors $d$ of $n$ . Then

(a) For divisors $d,$ $e$ of $n$ with $d|e$, we have

$a_{e}\geqq\left\{\begin{array}{l}a_{d} ifd\neq 1,\\aa-2 ifd=1.\end{array}\right.$

(b) If we put

$\alpha_{e}=\left\{\begin{array}{l}-e\sum_{f|n/e}a_{ef}\mu(f) for e|n,e\neq 1,n,\\2-\Sigma af\mu(f) for e=1.\end{array}\right.f|n$

then $\alpha_{e}\geqq 0$, where $\mu()$ denotes the Mobius function.

THEOREM II. $n\leqq 4g+2$ . Moreover, if $n\neq 4g+2$ then $n\leqq 4g$ .

Our proofs of Theorem II and Theorem I (a) are essentially due to the fact
that the rational character $Tr(G|H^{1}(X, Q_{l}))$ has the property described in Theo-
rem I (b). And so, in the large part of this paper we are devoted to the inves $\cdot$

tigation of the rational characters having such a property. Concerning Theorem
I, we note that $\alpha_{e}$ equals to the cardinality of the set

{ $P\in X|\sigma^{e}(P)=P,$ $\sigma^{f}(P)\neq P$ for $f|e,f\neq e$},
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in the case where $k=C$, the field of complex numbers, (cf. Lemma 2.4). Theorem
II has been proved by Wiman [10] (cf. [2]) in the case where $k=C$ (cf. also,

[9]). We shall see that the bound $4g+2$ (resp. $4g$ ) is attained by an automor $\cdot$

phism of a curve over $k$ of genus $g$ if and only if $pX4g+2$ or $p=2$ or $p=2g+1$
(resp. $p\mathcal{X}4g$ or $p\neq 2,$ $g=3’$ ), where $p$ denotes the characteristic of $k$ (cf. $Re$ .
mark 3.3).

We give a brief survey of this paper. In \S 1, we provide the “Riemann-
Hurwitz relation” and a lemma asserting that our property is preserved for in-
duced characters. We shall use them as basic tools for our proofs. In \S 2, we
prove (b) of Theorem I by using the Lefschetz formula, and deduce the inequali-
ties in (a) from the property. In \S 3, we prove Theorem II and moreover deter $\cdot$

mine the structure of the character $Tr(G|X^{1}(X, Q_{l}))$ in the extremal cases. In
\S 4, as applicasions we shall obtain some results concerning the action of auto-
morphisms on the space $H^{0}(X, \Omega_{X})$ of l-canonical forms. Especially we shall prove
the following proposition as an interpretation (of the rational-character-case) of
the existence theorem in [3].

PROPOSITI0N III. Let $\chi$ be a rational character of $G$ of degree $\geqq 2$ . Then
the following conditions are equivalent.

(i) $\chi$ is realizable, $i$. $e.,$ $\chi=Tr(G|H^{0}(X, \Omega_{X}))$ with $G\subseteqq Aut(X)$ for some
compact Riemann surface $X$.

(ii) The $\alpha_{e}\prime s(e|n, e\neq n)$ defined (as above) for the character 2 $\chi$ have the
property: $\alpha_{e}\geqq 0$ .

NOTATION In this paper, let $G=\langle\sigma\rangle,$ $n,$ $\chi d(d|n),$ $k$ and $l$ have the meaning
described in Introduction, where for integers $m$ and $m^{\prime}$ , if $m$ divides $m^{\prime}$ , we
denote $m|m^{\prime}$ as usual. The symbols $\mu()$ and $\phi()$ denote the $M\circ bius$ function
and the Euler function, respectively. For a finite set $U$ we denote by $\# U$ the
cardinality of $U$ .

For $\lambda=\sum_{d1n}aa\chi a\in R_{Q(G)}$ , the group generated by the characters of the repre-

sentations of $G$ over $Q$ (cf. [7]), we define:

$(*)$
$\alpha_{e}=\alpha_{e}^{(\lambda)}=2\delta_{e,1}-e\sum_{f|n/e}a_{ef}\mu(f)$ for $e|n,$ $e\neq n$ ,

where $\delta_{t,s}$ denotes the Kronecker’s delta, $i$. $e.$ , $\delta_{i,\theta}=1$ (resp. $=0$) if $t=s$ (resp.
$t\neq s)$ . We note that the $\chi d$ form an orthogonal basis of $R_{Q(}G$) (cf. $e.g.,$ $[7,$ $p$ .
104]).

\S 1. Preliminary

First of all we explain a characterization of the $\alpha_{e}$ for the later use.
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LEMMA 1.1. Let $\lambda=\sum_{d|n}a_{d}\chi d\in R_{Q}(G)$ . Then

$\lambda(\sigma^{e})=2-\sum_{f|e}\alpha_{f}$ for $e|n,$ $e\neq n$ .

PROOF. Since $S_{d}(\zeta_{d}^{e})=[Q(\zeta_{d}):Q(\zeta_{d/(e,d)})]\cdot S_{d/(e,d)}(\zeta_{d/(e,d)})$ , where $\zeta_{m}$ donotes
exe $(2 \pi\sqrt{-1}/m)$ and $S_{m}$ : $Q(\zeta_{m})\rightarrow Q$ the trace form, we have that

(1) $\chi d(\sigma^{e})=S_{d}(\zeta_{d}^{e})=\mu(d/(e, d))\phi(d)/\phi(d/(e, d))$

$=\sum_{f|(e,d)}f\mu(d/f)$

for $d|n,$ $e\in Z$. To see the last equality, we may assume that $e|d$. Then we put

and let as follows:

$e=e^{\prime}\cdot\prod p_{i^{i}}^{r}$ with $p_{i}J\prime e^{\prime}$ and $\Pi p_{i^{i}}^{r}=e_{0}$ ;

$\hat{e}=d/e=\hat{e}^{\prime}\Pi p_{i^{i}}^{\hat{r}}$ with $p_{i}$ ar $\hat{e}^{\prime}$ and $\Pi p_{i^{i}}^{\hat{r}}=\hat{e}_{0}$ ,

where $\{p_{i}\}$ denotes the set of common prime divisors of $e$ and $\hat{e}$ . Since the
functions $\mu()$ and $\phi()$ are multiplicative, noting that $\phi(e_{0}\hat{e}_{0})=e_{0}\hat{e}_{0}\prod(1-1/p_{i})$

$=e_{0}\phi(\hat{e}_{0})$ , we have

$\sum_{f|e}f\mu(d/f)=\sum_{f^{\prime}|e^{\prime}f}\sum_{0|eo}f^{\prime}f_{0}\mu(e^{\prime}/f^{\prime})\mu(e_{0}\hat{e}_{0}/f_{0})\mu(\hat{e}^{\prime})$

$=e_{0}\mu(\hat{e}^{\prime})\mu(\hat{e}_{0})\sum_{f^{\prime}|e^{\prime}}f^{\prime}\mu(e^{\prime}/f^{\prime})$

$=e_{0}\mu(\hat{e}^{\prime})\mu(\hat{e}_{0})\phi(e^{\prime})$

$=\mu(\hat{e})\phi(e^{\prime})\phi(e_{0}\hat{e}_{0})/\phi(\hat{e}_{0})$

$=\mu(d/e)\phi(d)/\phi(d/e)$ ,

as desired.
From (1) it follows that

$\lambda(\sigma^{e})=\sum_{d|n}aa\sum_{f|(e,d)}f\mu(d/f)$

$=\sum_{f|e}f\{\sum_{g|n/J}afg\mu(g)\}$

$=2-\{2-\sum_{g|n}a_{g}\mu(g)- \sum_{f|e,f\neq 1}f\sum_{g|n/f}afg\mu(g)\}$

$=2-\sum_{f|e}\alpha_{f}$ . Q. E. D.

Next, to state our basic technical lemmas bolow concerning the induced virtual
characters, we fix some notations.

Notation. Let $d|n,$ $d\neq 1$ and put $\overline{G}^{(d)}=G/\langle\sigma^{d}\rangle$ . For $e|d$, the mapping: $\overline{G}^{(d)}\rightarrow Q$

defined by ( $\tau$ mod $\langle\sigma^{d}\rangle$ ) $|\rightarrow\chi_{e}(\tau)$ is the character of the irreducible representation
over $Q$ whose kernel is equal to \langle ( $\sigma$ mod $\langle\sigma^{d}\rangle$ ) \rangle . We denote this mapping $\chi_{e}$ ,

too. For $\lambda=\sum_{e|n}a_{e}\chi_{e}\in R_{Q(G)}$
, let $\overline{\lambda}^{(d)}$ denote its induced virtual character of $\overline{G}^{(d)}$
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(via the natural homomorphism: $G\rightarrow\overline{G}^{(d)}$) and $\overline{\alpha}_{e}^{(d)}(e|d, e\neq d)$ the $\alpha_{e}$ for $\overline{\lambda}^{(d)}\in$

$R_{Q}(\overline{G}^{(d)})$ .
We note that

(2)
$\overline{\lambda}^{(d)}=\sum_{e|d}a_{e}\chi_{e}$ ; and

(3) $\overline{\alpha}_{e}^{(d)}=2\delta_{e,1}-e\sum_{f|d/e}a_{ef}\mu(f)$ .

Now we consider the “Rimann-Hurwitz relation” (cf. [3, \S 4]).

LEMMA 1.2. Let $\lambda\in R_{Q(G)}$ . For a divisor $d$ of $n$ with $d\neq n$ , we have:
$\lambda(1)-2=d(\overline{\lambda}(n/d)(1)-2)+$

$\sum_{e|n,e\neq n}\alpha_{e}((?\iota/e, d)-1)$
.

$PR\infty F$ . From $\overline{\lambda}(n/d\gamma(1)=(1/d)\sum_{u=1}^{d}\lambda(\sigma^{un/i})$ it follows that

$\lambda(1)-2=d(\overline{\lambda}(n/d)(1)-2)+\sum_{u=1}^{d-1}\{2-\lambda(\sigma^{un/d})\}$

$=d(\overline{\lambda}(n/d)(1)-2)+\sum_{f|d}\phi(f)\sum_{e|n/f}\alpha_{e}$

$f\neq 1$

$=d(\overline{\lambda}(n/d)(1)-2)+\sum_{e|n}\alpha_{e}\{\sum_{f|(n/e.d)}\phi(f)\}$

$e\neq n$ $f\neq 1$

$=d(\overline{\lambda}(n/d)(1)-2)+$

$\sum_{e1n,e\neq n}\alpha_{e}((n/e, d)-1)$
. Q. E. D.

Finally we prove the following:

LEMMA 1. 3. Let $\lambda aJxJ$ . If $\alpha_{f}^{(\lambda)}\geqq 0$ for all $f|n$ with $f\neq n$, then

$\alpha_{e}^{(d)}\geqq 0(e|d, e\neq d)$ for each $d|n,$ $d\neq 1$ .
$PR\infty F$ . First we see by (2) that
if $n^{\prime}|n,$ $d|n^{\prime}$ with $d\neq 1$ , then the induced virtual character of $\overline{\lambda^{(n^{\prime})}}$ via the
natural homomorphism: $ G/\langle\sigma^{n^{\prime}}\rangle\rightarrow G/\langle\sigma^{d}\rangle$ is equal to $\overline{\lambda^{(d)}}$ .

Thus, by applying (to $\overline{\lambda}(n/p)$) the induction on the number of divisors of $n$ , we
see that it suffices to show the lemma only for $d=n/p$ with a prime number $p$ .

To prove the lemma in this case, assume $n=p^{r}m$ and $e=p^{s}m^{\prime}$ with $pJ\prime m$,
$pJ\prime m^{\prime}$ , and $e|d,$ $e\neq d$. Then we have by $(*)$ that

$\alpha_{e}=2\delta_{e,1}-e\{\sum_{i|n/pe}a_{ef}\mu(f)+\sum_{|m/m^{\prime}}a_{efp^{r-*}}\mu(fp^{r-\epsilon})\}$ .

Combining this and (3), we get

$\overline{\alpha}_{e}^{(n/p)}\left\{\begin{array}{l}\alpha_{e} \iota f r-s\geqq 2,\\\alpha_{e}+\alpha_{pe}/p if r-s=1.\end{array}\right.$
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This completes the proof by our assumption on $\alpha_{e^{\prime}}s$ .

\S 2. Proof of Theorem I

First we prove (a) of Theorem I, assuming (b). For our purpose it suffices
to show the following:

PROPOSITION 2. 1. Let $\lambda aJ\chi f$ . If $\alpha_{f}\geqq 0$ for all $f|n$ with $f\neq n$,

then for each divisor $e$ of $n$ we have that

$a_{e}\geqq aa-2\cdot\delta_{d,1}$ for $d|e$ .

PROOF. Put $b_{f}=af-2\cdot\delta_{J1}$ for $f|n$ . Then we have

$\sum_{f|n/e}b_{ef}\mu(f)=-\alpha_{e}/e$ for $e|n,$ $e\neq n$ .
Hence, by our assumption on the $\alpha_{e}$ , it suffices to show the following:

LEMMA 2.2. Let $n$ be an integer $>1$ and let $b_{f}\in Q$ for $f|n$ . Assume that
$tne$ inequality

$\Sigma b_{ef}\mu(f)\leqq 0$

$f|n/e$

holds for each $e|n,$ $e\neq n$ . Then $b_{e}\geqq ba$ for all divisors $e,$
$d$ of $n$ with $d|e$.

PROOF of LEMMA 2.2. By induction on the number of divisors of $n$ , we
may assume that

$b_{d}\leqq b_{e}$ holds for $e|n,$ $d|e$ with $d\neq 1$ .
In fact, if $b_{f}^{(n/d)}$ denotes $baf$ for $f|n/d$, then

$b_{1}^{(n/d)}=ba$ , $b_{e/d}^{(n/d)}=b_{e}$ ; and

$\sum_{f|n/de^{\prime}}b_{e^{\prime}f}^{(n/a)}\mu(f)\leqq 0$
$(e^{\prime}|n/d, e^{\prime}\neq n/d)$ ,

for $e|n,$ $d|e$ with $d\neq 1$ . There remains to show that
$b_{1}\leqq b_{p}$ for each prime divisor $p$ of $n$ .

To see this, we use the assumption:

$ 0\geqq\sum$ $\sum$

$b_{ef}\mu(f)=\sum_{d|n}ba\sum_{f|d}\mu(f)$
$e|nf|n/e$
$p*e$ $p*d/f$

$=\sum_{d|n}b_{d}\sum_{f|d}\mu(f)-\sum ba\sum\mu(f)$
$d|n$ $f|d/p$

$p*d$ plld

$=b_{1}-b_{p}$ .
This completes the proof of Lemma 2.2 and hence of Proposition 2.1.

Throughout the rest of this section we work under the assumption and
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notation in Theorem I, except for Corollary 2.5. In particular we assume that

$G\subseteqq Aut(X)$ . We put:

$\lambda=Tr(G|H^{1}(X, Q_{l})),$ $G_{P}=\{\tau\in G|\tau(P)=P\}$ for $P\in X$.

For any $\tau\in G_{P},$ $\tau\neq 1$ , we define $i_{P}(\tau)$ to be the order of the zero of $\tau^{*}(\pi)-\pi$ at
$P$, where $\pi$ is a local uniformizing parameter at $P$. From the Lefschetz formula
(cf. [4], V \S 2; [8] VI \S 4) we have the following:

LEMMA 2.3.
$\lambda(\tau)=2-\sum_{P\in X_{P}}i_{P}(\tau)$

for $\tau\neq 1$ .

Hence, in particular, the character $\lambda$ is integer-valued, whence it follows that $\lambda$

$\in R_{Q(}G)$ (cf. [7, p. 93]).

Next we shall prove (b). Here we fix some notation:
let $n=p^{r}m$ with $(p, m)=1$ , where $p$ denotes the characteristic of $k$ ($n=m$ for $p=0$) ;

we denote by $F_{f}(f|n, f\neq n)$ the set of the fixed points of $\sigma^{f}$ .
Before giving a proof to (b), we consider its special case:

LEMMA 2.4. For a divisor $e$ of $n$ with $m\lambda e$, we have

$\alpha_{e}=\#$ { $P\in X|\sigma^{e}(P)=P,$ $\sigma^{f}(P)\neq P$ for $f|e,$ $f\neq e$}.

$PR\infty F$ . From Lemma 1.1 and Lemma 2.3 it follows that

(1) $\sum_{f|d}\alpha_{f}=\sum_{P\in Fa}i_{P}(\sigma^{d})$
(for each $d|n,$ $d\neq n$).

On the other hand, by the assumption on $e$ we have that

$i_{P}(\sigma^{e})=1$ for $P\in F_{e}$ .

Hence, by induction on the number of divisors of $e$ we obtain our lemma.

Thus, to prove (b) we may assume that $p>0,$ $e=p^{s}m$ with $0\leqq s<r$ . Then
we have that

$\alpha_{e}=\sum_{d|m}\alpha_{p}s_{d}-$
$\sum_{d|m,d\neq m}\alpha_{p}s_{d}$

$\geqq\{\sum_{f|e}\alpha_{f}-\sum_{t|e/p}\alpha_{f}\}-\# F_{e}$
(by Lemma 2.4)

$=\sum_{P\in Fe}i_{P}(\sigma^{e})-\sum_{\in PFe/p}i_{P}(\sigma^{e/p})-\# F_{e}$
(by (1))

$=\sum_{\in PF_{e/p}}\{i_{P}(\sigma^{e})-i_{P}(\sigma^{e/p})-1\}+$
$\sum_{P\in Fe,P\in F_{e/p}}$

{ $i_{P}$ (a$e)-1$ }.

On the other hand, it is easy to see that
(2) if $P\in F_{e/p}$ then $i_{P}(\sigma^{e})\geqq i_{P}(\sigma^{e/p})+1$ ; and
(3) if $P\in F_{e}$ then $i_{P}(\sigma^{e})\geqq 2$ (by our assumption on $e$).
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These complete the proof of (b) and hence of Theorem I.
It is well-known that the character $Tr(Aut(X)|H^{1}(X, Q_{l}))$ is faithful (cf.

$e$ . $g.,$ $[6]$ and [5, p. 176]). Theorem I provides another proof of this fact. In fact,

by proposition 2.1 we moreover have the following:

COROLLARY 2.5. Assume that $\lambda=\sum_{d|n}aa\chi a\in R_{Q(G)}$ is a character such that
$\alpha_{e}\geqq 0$ for all $e|n,$ $e\neq n$ . If $\lambda\neq\chi_{1},2\chi_{1}$ (in particular, if the degree $\lambda(1)>2$) then
$\lambda$ is faithful $(i. e., a_{n}\geqq 1)$ and hence $\lambda(1)\geqq a_{n}\phi(n)\geqq\phi(n)$ .

\S 3. Proof of Theorem II

Since the demension of the space $H^{1}(X, Q_{l})$ is $2g(>2)$ , to prove Theorem II
it suffices by Corollary 2.5 and Theorem I to show the following:

PROPOSITION 3.1. Assume that $\lambda=\sum_{d|n}aa\chi a\in R_{Q(G)}$ is a faithful character

such that $\alpha_{e}\geqq 0$ for all $e|n,$ $e\neq n$ . Denote by $h(\geqq 1)$ the degree of $\lambda$ . Then

$n=2h+2$ or $n\leqq 2h$ .
If $n=2h+2$ then

$\lambda=\sum_{d|n/}\chi_{2d}$ with $2|h$ .

If $n=2h$ then
(i)

$\lambda=\sum_{d|m}\chi_{2^{r}}a$ with $n=2^{r}m(r\geqq 1),$ $(2, m)=1$ ;

.

(ii) $\lambda=\chi_{1}+$

$\sum_{d|h,d\neq 1}\chi_{2}a$

with
$(2, h)=1,$

$h>1$ ; or

(m) $\lambda=\chi_{6}+\chi_{12}$ .

PROOF. First we prove the proposition for a special type of $\lambda$ , which serves
also as the first step of our induction (cf. the:final part of the proof). In fact,
now we assume that

(1) $\lambda=a_{1}\chi_{1}+a_{n}\chi_{n}$ .
Then we have by the definition $(*)$ that

$\alpha_{e}=-ea_{n}\mu(n/e)$ for $e|n,$ $e\neq 1,$ $n$ .
For a prime factor $p$ of $n$ , this implies

$\mu(n/pf)\leqq 0$ for $f|n/p$ with $f\neq n/p$.
Hence $n/p=q^{r-1}(r\geqq 1)$ for some prime number $q$ . We estimate $n$ by $h=a_{1}+$

$a_{n}\phi(n)$ in the following two cases. In the case where $q=p$ , we have that

$n=\phi(n)p/(p-1)=(h-a_{1})p/(p-1)a_{n}\leqq 2h$ .
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and that $\lambda=\chi_{2}^{r}$ whenever $n=2h$ . In the case where $q\neq p$, we have $n=pq$ (here

we may assume $p<q$). Then

$n=pq\leqq pq+(p-2)(q-2)=2\phi(n)+2=(2h-2a_{1})/a_{n}+2$ .
Hence we have that $n=2h+2$ or $n\leqq 2h$, and that $\lambda=\chi_{2q}$ (resp. $\lambda=\chi_{1}+\chi_{2q}$)

whenever $n=2h+2$ (resp. $n=2h$).

Let $n$ decompose into a product of coprime integers $u$ and $m$ having the
property:

for each prime divisor $p$ of $n,$ $a_{n/p}=0$ if and only if $p|u$ .
By the above consideration we may assume (for the rest of the proof) that

$\lambda$ is not of the form in (1).

Then we note that
(2) $m\neq 1,$ $n=um$ is not a prime number and $h\geqq a_{n}\phi(n)>1$ .

In fact, if $m=1$ then $ad=0$ for any $d|n$ with $d\neq 1,$ $n$ by Proposition 2.1.
Next we prove our proposition under an additional condition:
(3) for any prime divisor $p$ of $m,\sum_{d|n/p}\alpha a\leqq 3$

.

We shall examine the following three cases:
Case (a) $u=1$ ;

Case (b) $u\neq 1$ and $\alpha_{ud}=0$ for each $d|m,$ $d\neq m$ ;

Case (c) $u\neq 1$ and $\alpha_{uf}\neq 0$ for some $f|m,$ $f\neq m$ .
Proof in Case (a). Since $d|\alpha_{d}$ , from our condition (3) (with $m=n$) it follows
that

(4) if $\alpha_{d}\neq 0$ (where $d|n,$ $d\neq n$) then $d=1$ with $\alpha_{1}\leqq 3’$ , $d=2$ with $\alpha_{2}=2$,
$\alpha_{1}\leqq 1$

’ or $d=3$ with $\alpha_{3}=3,$ $\alpha_{1}=0’$ ,

and that
(5) $\alpha_{2}=2,$ $\alpha_{3}=3$ only when $n=6$ .

To estimate $n$ by $h=\lambda(1)$ , we use the relation:
(6) $\phi(n)\cdot a_{n}=\langle\lambda, \chi_{n}\rangle=(1/n)$

$\{\sum_{\tau\in G ,\tau\neq 1}\lambda(\tau)\chi_{n}(\tau^{-1})+\phi(n)\cdot h\}$

.

by (4) and Lemma 1.1, we see that

$\sum_{\tau_{\tau}\in_{\neq}G_{1}}\lambda(\tau)\chi_{n}(\tau^{-1})=\sum_{i|n}(2\cdot\delta_{i_{1}},-\alpha_{i})\sum_{\tau 1\leqq i\leqq 3\in G}\chi_{n}(\tau)$

$=\phi(n)\{\alpha_{1}+\alpha_{2}+\alpha_{3}-2\}$ .
Hence we have by (6) that

$n\leqq a_{n}\cdot n=h-2+\alpha_{1}+\alpha_{2}+\alpha_{3}$ .
Thus, we obtain by (4) and (5) that

$n\leqq h+1<2h$ or $n/2=3\leqq 6a_{n}-3=h$ .
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We now consider the case where $n=2h$ . Then we have that $n=6,$ $h=3,$ $\alpha_{1}=0$.
$\alpha_{2}=2$ and $\alpha_{3}=3$ and hence that $\lambda=\chi_{1}+\chi_{6}$ . But this type of $\lambda$ is avoided in our case.

To consider Case (b) or Case (c), here we note that
(7) if $u\neq 1$ then $\lambda=a_{1}\chi_{1}+\sum_{d|m}a_{u}a\chi_{u}a$ .

In fact, for a prime divisor $p$ of $u$ we have by Proposition 2.1 that $a_{e}=0$ when-
ever $e|n/p,$ $e\neq 1$ .
Proof in Case (b). From (7) it follows that for any $f|u,$ $f\neq u$ ,

$0\leqq\alpha_{Jm}=-fm\sum_{e|n/fm}aJme\mu(e)=-fma_{n}\mu(u/f)$ .
Thus $u=p^{r}(r\geqq 1)$ for some prime number $p$ . On the other hand, using the
induction on the number of divisors of $m/d$, we see by the condition of our case
and the definition $(*)$ that $a_{u}a=a_{n}$ for $d|m$ . These imply (note (2)) that

(8) $\alpha_{d}=(2-a_{1})\delta_{d_{1}},+da_{n}\cdot\delta a_{n/p}$ for $d|n,$ $d\neq n$ .
In fact, by (7) we have

$\alpha_{d}=2\cdot\delta_{d,1}-d\Sigma a_{df}\mu(f)$

$f|n/d$

$=(2-a_{1})\delta_{d_{1}},-da_{n}\cdot\mu(u/(d, u))\sum_{f|m/(d,m)}\mu(f)$

$=(2-a_{1})\cdot\delta a_{1}+da_{n}\cdot\delta a_{n/p}$

From (8) and Lemma 1.1 it follows that

$\lambda(\sigma^{d})=2-\sum_{e|d}\alpha_{e}=a_{1}-da_{n}\cdot\delta_{d,n/p}$ for $d|n,$ $d\neq n$ ,

and hence that

$\tau\in G\sum_{\tau\neq 1}\lambda(\tau)\chi_{n}(\tau^{-1})=a_{1}\sum_{\tau\neq 1}\chi_{n}(\tau)-a_{n}\cdot n/p\sum_{\#\langle\tau\rangle=p}\tau\in G\tau\in G\chi_{n}(\tau)=\phi(n)\{-a_{1}+a_{n}\cdot n/p\}$

.

By (6) this implies that

$n\leqq a_{n}\cdot n=(h-a_{1})p/(p-1)\leqq 2h$ .
If $n=2h$ , then we have that

$\lambda=\sum_{d|m}\chi_{2^{r}d}$
with $n=2^{r}m$ $(r\geqq 1),$ $(2, m)=1$ .

Proof in Case (c). As before (cf. (4)), from (3) and the condition of our case
it follows that

(9) $\alpha_{u}=u=2$ or 3 and $\alpha_{u}a=0$ for all $d|m,$ $d\neq 1,$ $m$ .
Using the induction on the number of divisors of $m/d$ as in Case (b), we see
by (9) that $a_{u}a=a_{n}-1\cdot\delta_{d,1}$ for $d|m$ . Hence we have by (7) that

(10)
$\lambda=a_{1}\chi_{1}-\chi_{u}+a_{n}\cdot\sum_{d|m}\chi_{ud}$ .

Now we consider the case where $u=2$ . Then, by (10) we see that
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$h=a_{1}-\phi(2)+a_{n}\phi(2)m$ and that

$n\leqq a_{n}n=2h+2-2a_{1}$ , $=2h+2$ or $\leqq 2h$ .
If $n=2h+2$ then

$\lambda=\Sigma\chi_{2d}$ with $2|h$ .
$d|n/2$

$d\neq 1$

If $n=2h$ then

$\lambda=\chi_{1}+\Sigma\chi_{2}a$ with 21 $h,$ $h>1$ .
$d|n/2$

$d\neq 1$

Next we consider the case where $u=3$ . Then, by (10) we see
$m\leqq a_{n}\cdot m=(h-a_{1})/2+1\leqq h/2+1$ .

If $h\geqq 6$ , then $n=3m\leqq 2h$ , and $\lambda=\chi_{6}+\chi_{12}$ with $n=12$ whenever $n=2h$ . (We

note that $m=4and\sum_{d|n/2}\alpha_{d}=4>3$ for $\lambda=\chi_{6}+\chi_{12}$). If $h=5$ or 4, then $n=3m=6<$

$2h$ , since 31 $m$ and $m\neq 1$ . If $h=3$ (resp. $=2$), then $n=3m=6$ and $\lambda=\chi_{1}+\chi_{6}$

(resp. $=\chi_{6}$). (We note that $m=1$ for $\lambda=\chi_{1}+\chi_{6}$ or $\chi_{6}$).

It remains to show the proposition under the condition:
(11) there is a prime divisor $p$ of $m$ such $that\sum_{d|n/p}\alpha_{d}\geqq 4$

.

For each prime divisor $q$ of $n$ , put

$\gamma_{q}=\sum_{d|n/q}\alpha_{d}$
and $h_{q}=\overline{\lambda}(n/q)(1)$ .

Then, Lemma 1.2 yields the relation:
(12) $h-2=q(h_{q}-2)+\gamma_{q}(q-1)$ .

Applying the induction on the number of divisors of $n$ in Proposition 3.1 (cf.

(1) for the first step) to the faithful character (note $a_{n/p}\neq 0$ by the choice of p)

(13) $\overline{\lambda}^{(n/p)}=\sum_{e|n/p}a_{e}\chi_{e}$

(cf. also, Lemma 1. 3) in lieu of $\lambda$ , we obtain that $n/p\leqq 2h_{p}+2$ and hence by
(12) and (11) that

$n\leqq 2h+2+2(3-\gamma_{p})(p-1)\leqq 2h$ .
We now consider the case where $n=2h$ . Then $p=2,$ $\gamma_{p}=4$ , $n/p=2h_{p}+2$ .

Hence, applying an induction on the number of divisors of $n$ (cf. (1) for the
fist step) to our faithful character (13) (with $p=2$) as above, we obtain that
$n/4=(n/p)/2$ is an odd integer $>1$ and that

(14) $\overline{\lambda}^{(n/2)}=\sum_{d|n/4}\chi_{2d}$ .

We wish to show that $n/4$ is a prime number, so suppose either (15) or (16)

below:
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(15) $n/4=q^{r}(r\geqq 2)$ with $q=3$ .
(16) There is a prime factor $q>3$ of $n/4$ with $n\neq 4q$ .

Since $\gamma_{2}=4$ , we have
$\sum_{d|n/2}\alpha_{d}=\alpha_{1},$

$\alpha_{1}+\alpha_{2},$ $\alpha_{1}+\alpha_{3}$ or $\alpha_{2}$ .

Thus, by (15) or (16) we get

(17)
$\gamma_{q}=\sum_{d|n/q}\alpha_{d}\geqq\sum_{d|n/2q}\alpha_{d}=\sum_{d|n/2}\alpha_{d}=4$ .

On the other hand, we note by Proposition 2.1 and (14) that

$a_{n/q}\geqq a_{n/2q}=\phi(n/2)^{-1}\langle\overline{\lambda}^{(n/2)}, \chi_{2\cdot n/4q}\rangle=1$ .
Applying the above argument to the faithful character $\overline{\lambda}^{(n/q)}$ , we get $n/q\leqq 2h_{q}+$

$2$ and hence by (17) that

$n\leqq 2h+2+2(3-\gamma_{q})(q-1)\leqq 2h-2$ ,

which is a contradiction. So we can put $n=4q$ with an odd prime integer $q$ .
Then $\overline{\lambda}^{(n/2)}=\chi_{2q}$ by (14). Comparing this and (13), we get $a_{1}=a_{2}=a_{q}=0,$ $a_{2q}=1$

$i$ . $e.,$ $\lambda=\chi_{2q}+a_{4}\chi_{4}+a_{4q}\chi_{4q}$ . From this we see that $q=3,$ $a_{4}=0$ and $a_{4q}=1$ , since

2 $q=h=\phi(2q)+a_{4}\phi(4)+a_{4q}\phi(4q)=(q-1)(1+2a_{4q})+2a_{4}\geqq 3(q-1)$ .
Thus we get $\lambda=\chi_{6}+\chi_{12}$ .

This completes the proof of Proposition 3.1 and hence of Theorem II.

From the latter part of Proposition 3.1 (and Theorem I) we get the follo-
wing:

C0ROLLARY 3.2. Assume that $G\subseteqq Aut(X)$ for some complete nonsingular

cunve $X$ of genus $g\geqq 2$ . Put $\lambda=Tr(G|H^{1}(X, Q\iota))$ . Then
(a) If $n=4g+2$ then $\lambda_{\alpha}=$ $\Sigma$

$\chi_{2}a$ .
$d|2q+1$

$d\neq 1$

(b) If $n=4g$ then $\lambda_{\gamma}=\chi_{6}+\chi_{12}$ ; $or$

$\lambda_{\beta}=\sum_{d|m}\chi_{2^{r_{d}}}$
with $n=2^{r}m(r>1),$ $(2, m)=1$ .

Remark 3.3. Let $g$ denote an integer $\geqq 2$ , and $p$ the characteristic of $k$ . We
denote by $\zeta_{m}$ a primitive m-th root of unity (if exists).

(a) The character $\lambda_{\alpha}=\sum_{d|2g+1}\chi_{2d}-\chi_{2}$ is realizable as $Tr(G|H^{1}(X, Q\iota))$ by the

curve $X$ over $k$ and the automorphism $\sigma$ of $X$ below:

$y^{2}=x^{2g+1}+1,$ $(x,y)|\rightarrow(\zeta_{2g+1}\cdot x, -y)$ if $p\mathcal{X}4g+2$ ;
$y^{2}+y=x^{2g+1},$ $(x,y)|\rightarrow(\zeta_{2g+1}\cdot x, y+1)$ if $p=2$ ;
$y^{2}=x^{2g+1}-x,$ $(x,y)|\rightarrow(x+1, -y)$ if $p=2g+1$ .
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On the other hand, $\lambda_{a}$ is not realizable by any curve over $k$ of genus $g$ and any
automorphism if $p|2q+1$ and $p\neq 2g+1$ .

(b) Assume that $4g=2^{r}\cdot m$ $(r\geqq 2)$ with $(2, m)=1$ . The character $\lambda_{\beta}=$

$\sum_{d|m}\chi_{2^{\gamma}}a$
is realizable by the curve and the automorphism below:

$y^{2}=x(x^{2g}+1),$ $(x,y)|\rightarrow(\zeta_{2g}\cdot x, \zeta_{4g}\cdot y)$ if $pI4g$ .
On the other hand, $\lambda_{\beta}$ is not realizable if $p|4g$ .

(c) The character $\lambda_{\gamma}=\chi_{6}+\chi_{12}$ is realizable by the curve in Proj $(k[x,y, z])$

and the automorphism below:

$x^{3}y-xy^{3}+z^{4}=0,$ $(x,y, z)|\rightarrow(x+y,y, \zeta_{4}\cdot z)$ if $F=3$ ;
$x^{4}+y^{3}x+z^{4}=0$, $(x,y, z)|\rightarrow(x, \zeta_{3}\cdot y, \zeta_{4}\cdot z)$ if $p\neq 2,3$ .

On the other hand, $\lambda_{\gamma}$ is not realizable if $p=2$ .

$PR\infty F$ . First, we note by [4, p. 187 Corollary 2.8] that

4 $g_{2}=2g+Tr(\sigma^{n/2}|H^{1}(X, Q\iota))$

if $\sigma\in Aut(X)$ for some curve $X$ of genus $g$ and $2|n$ , where $g_{2}$ denotes the
genus of $ X/\langle\sigma^{n/2}\rangle$ . Hence, if $\lambda_{\alpha}$ (resp. $\lambda_{\beta},$ $\lambda_{\gamma}$) is realizable, then

(19) $\sigma^{n/2}$ is a hyperelliptic (resp. a hyperelliptic, not a hyperelliptic) in-
volution.

(a) By Corollary 3.2, to see (a) it suffices to show the latter part. Now
assume that $\lambda_{\alpha}$ is realizable and $p|2g+1$ with $p\neq 2g+1$ . Then, the image of $G$

via the natural homomorphism: $G\rightarrow PGL(2, k)$ must be a cyclic group of order
$2g+1$ . On the other hand, it follows from our assumption on $p$ and $g$ that $PGL(2, k)$

does not have such a subgroup by considering the Jordan’s canonical forms.
(b) This can be proved in the same way as (a).

(c) By (19), it suffices to show the latter part. Now assume that $\lambda_{\gamma}=$

$Tr(G|H^{1}(X, Q_{l}))$ for some curve $X$ with $G\subseteqq Aut(X)$ and $p=2$ . If $X$ is hyperlli-
ptic, we have a contradiction as in (a). In the case where $X$ is non-hyperelliptic,
since Tr(Aut(X) $|H^{0}(X,$ $\Omega_{X})$ ) $is$ faithful, we have an inclusion: $G\rightarrow GL(3, k)$ . On
the other hand, $GL(3, k)$ does not have a cyclic subgroup of order 12. Q. E. D.

\S 4. Application

Throughout this section we assume $k=C$ and by $\zeta_{n}$ a primitive n-th root of
unity. Before giving a proof to Proposition III, we make, as an interpretation
of Theorem I (a), an evaluation of the eigenvalues of the action of an automor-

phism of a curve $X$ on the space $H^{0}(X, \Omega_{X})$ of l-canonical forms.
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PROPOSITION 4. 1. Assume that $G\subseteqq Aut(X)$ for a compact Riemann surface
$X$ of genus $g\geqq 2$ . Put $\chi=Tr(G|H^{0}(X, \Omega_{X}))$ and let $m_{a}=\langle\chi, \psi_{a}\rangle(a\in Z)$ , where
$\psi_{a}$ : $G\rightarrow C\backslash \{0\}$ denotes the homomorphism defined by $\sigma|\rightarrow\zeta_{n}^{a}$ . Then we have the
following:

(a) $m_{a}+m_{n-a}=mb+m_{n-b}$ if $(a, n)=(b, n)$ .
(b) $m_{e}+m_{n-e}\geqq md+m_{n-d}-2\cdot\delta_{d,n}$ for $d|n,$ $e|d$.

$PR\infty F$ . It suffices to show that
(1) $\chi+\chi^{-1}=Tr(G|H^{1}(X, Q_{l}))$ .

On the other hand, this follows from the Lefschetz fixed point formula (cf. [1.

p. 265]). Q. E. D.

For the rest of this section we consider Proposition III. Our proof is based
on an existence theorem ([3, Proposition 4.5]):

LEMMA 4. 2. Let $\chi:G\rightarrow C$ be a character of $degree\geqq 2$ . Then $\chi$ is realizable
(cf. Proposition III for this terminology) if and only if $\chi$ satisfies the following
condition:

(\dagger ) for each $e|n,$ $e\neq n$ and each integer $i(0<i<n/e)$ with $(i, n/e)=1$ , there
exists a non-negative integer $\alpha_{et}$ with $e|\alpha_{et}$ such that for all $d|n$ with $d\neq n$,

$\chi(\sigma^{d})=1+\sum_{e|d}\sum_{1\leqq i\leqq n/e}\alpha_{ei}\cdot\zeta_{n}^{di}/(1-\zeta_{n}^{di})$ .
$(i,n/e)=1$

PROOF of PROPOSITION III. Put $\lambda=\chi+\chi^{-1}=2\chi$ . First we note that
(2) $\zeta/(1-\zeta)+\zeta^{-1}/(1-\zeta^{-1})=-1$ if $\zeta\neq 1$ .

To show the implication: $(i)\Rightarrow(ii)$ , we assume the existence of $\alpha_{ei^{\prime}}s$ such as
in $(\uparrow)$ . Then, by (2) we have

$\lambda(\sigma^{d})=2-\sum_{e|d}\sum_{i}\alpha_{ei}$ for $d|n,$ $d\neq n$ .

Hence, from Lemma 1.1 it follows that

$\alpha_{e}^{(\lambda)}=\sum_{i}\alpha_{ei}\geqq 0$ for $e|n,$ $e\neq n$ ,

as desired. To show the converse, we note that

$2\alpha_{e}^{(1+\chi)}=\alpha_{e}^{(\lambda)}$ for $e|n$ with $e\neq n$ .
In fact, we have

$\chi(\sigma^{d})=1-\sum_{e|d}\alpha_{e}^{(1+\chi)}$
$(d|n, d\neq n)$ .

Hence, by our assumption on $\lambda$ and the definition $(*)$ we have that $\alpha_{e}^{(1+\chi)}\geqq 0$ and
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$e|\alpha_{e}^{(I+\chi)}$ . Using these, we obtain a set of desired $\alpha_{ei^{\prime}}s$ :

$\alpha_{ei}=\{\alpha^{(1^{(1+\chi)}}0^{e}2\alpha_{e_{+x)}}$ $otherwise^{2;}ife\neq n/2andife=n/$

.
if $i=1$ or $n/e-1$ ;

Q. E. D.

REMARK. We note by (1) that if a real-valued character of $G$ of degree
$\geqq 2$ is realizable (in our sense), then it is a rational character.

REMARK 4.3. In this remark, $G$ denotes a finite group. Denote by 6 the
set of cyclic subgroups $D$ of $G$ such that $D\neq\{1\}$ . Let $\lambda$ be a rational character
of $G$ . For each $D\in 6$ we define an integer $\alpha_{D}$ by the relation below:

$\lambda(\sigma_{E})=2-\sum_{D\in 6}\alpha_{D}$ for $E\in 6$ ,
$ D\supset E\approx$

where $\sigma_{E}$ denotes a generator of $E$ (cf. Lemma 1.1).

If $G\subseteqq Aut(X)$ for some compact Riemann surface $X$ of genes $\geqq 2$ and $\lambda=$

$Tr(G|H^{1}(X, Q_{l}))$ , then for $D\in 6$ we have that
$\alpha_{D}\geqq 0$ and $[N_{G}(D):D]|\alpha_{D}$ ,

because $\alpha_{D}=\#$ { $P\in X|\tau(P)=P\Leftrightarrow\tau\in D$ for $\tau\in G$ } as in Lemma 2.4 (note: the
isotropy subgroup GP is cyclic, cf. [1, III. 7. 7]).

In general, even if $\alpha_{D}\geqq 0$ for each $D\in 6$ , the condition that $[N_{G}(D) : D]|\alpha_{D}$

is not necessarily satisfied. In particular, such $\chi$ as in Proposition III (ii) is not
necessarily realizable for our (abelian) $G$ . For example, take: $G=(Z/p\cdot Z)\times(Z/p\cdot Z)$

with $p$ being a prime number and $\chi=\sum_{D\in 6}2\chi_{D}$
, where $\chi_{D}$ : $G\rightarrow Q$ denotes the

compositum of the character of the faithful irreducible representation of $G/D$

over $Q$ and the natural homomorphism: $G\rightarrow G/D$ . Then it is easy to see that
$\alpha_{D}=4$ for $D\in 6$ .

Note added in proof (Nov. 1987). Proffessor H. Stichtenoth kindly let us
know a direct $pr\infty f$ of THEOREM II using the Riemann-Hurwitz foumula.
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